Conversion of Bound Muons: Lepton Flavour and Number Violation

Tanja Geib

+ Alexander Merle: Phys. Rev. D93 (2016) $055039 \rightarrow$ technical details on $\mu^{-}-e^{-}$ + Stephen King, Alexander Merle, Jose Miguel No, Luca Panizzi: Phys. Rev. D93 (2016) $073007 \rightarrow$ complementarity of $\mu^{-}-e^{-}$with LHC
+ Alexander Merle, Kai Zuber: Phys. Lett. B764 (2017) $157 \rightarrow$ 'appetiser' $\mu^{-}-e^{+}$
+ Alexander Merle: arXiv:1612.00452 \rightarrow technical details on $\mu^{-}-e^{+}$

Max Planck Institute for Physics

PSI Seminar, December 16, 2016

Today's Agenda:

- What happens in a $\mu-e$ conversion?
- What are similarities and differences when considering $\mu^{-}-e^{-}$and $\mu^{-}-e^{+}$conversion?
- How to tackle $\mu^{-}-e^{+}$conversion (using the example of a realisation via doubly charged scalars)?
- Discovery potential for $\mu^{-}-e^{+}$conversion
- Open issues \rightarrow where do we need to improve in order to get reliable predictions?
- Summary and Outlook

Today's Agenda:

- What happens in a $\mu-e$ conversion?
- What are similarities and differences when considering $\mu^{-}-e^{-}$and $\mu^{-}-e^{+}$conversion?
- How to tackle $\mu^{-}-e^{-}$conversion (using the example of a realisation via doubly charged scalars)?
- Employing the complementarity between collider and low energy physics to increase the testability \rightarrow Results based on the example case
- How to tackle $\mu^{-}-e^{+}$conversion (using the example of a realisation via doubly charged scalars)?
- Discovery potential for $\mu^{-}-e^{+}$conversion
- Open issues \rightarrow where do we need to improve in order to get reliable predictions?
- Summary and Outlook

Today's Agenda:

- What happens in a $\mu-e$ conversion?
- What are similarities and differences when considering $\mu^{-}-e^{-}$and $\mu^{-}-e^{+}$conversion?
- How to tackle $\mu^{-}-e^{-}$conversion (using the example of a realisation via doubly charged scalars)?
- Employing the complementarity between collider and low energy physics to increase the testability \rightarrow Results based on the example case
- How to tackle $\mu^{-}-e^{+}$conversion (using the example of a realisation via doubly charged scalars)?
- Discovery potential for $\mu^{-}-e^{+}$conversion
- Open issues \rightarrow where do we need to improve in order to get reliable predictions?
- Summary and Outlook

Today's Agenda:

- What happens in a $\mu-e$ conversion?
- What are similarities and differences when considering $\mu^{-}-e^{-}$and $\mu^{-}-e^{+}$conversion?
- How to tackle $\mu^{-}-e^{-}$conversion (using the example of a realisation via doubly charged scalars)?
- Employing the complementarity between collider and low energy physics to increase the testability \rightarrow Results based on the example case
- How to tackle $\mu^{-}-e^{+}$conversion (using the example of a realisation via doubly charged scalars)?
- Discovery potential for $\mu^{-}-e^{+}$conversion
- Open issues \rightarrow where do we need to improve in order to get reliable predictions?
- Summary and Outlook

$\mu-e$ Conversion

What happens in a $\mu^{-}-e^{ \pm}$conversion ?? \rightarrow experimentally a two-step process

First Step: μ^{-}is captured in an 'outer'
atomic shell, and subsequently de-excites
to the 1 s ground state

Second Step: μ^{-}is captured by the nucleus and reemits an $e^{ \pm}$
\rightarrow we only consider "coherent" conversion: initial and final state nucleus are in ground state

$\mu-e$ Conversion

What happens in a $\mu^{-}-e^{ \pm}$conversion ?? \rightarrow experimentally a two-step process

First Step: μ^{-}is captured in an 'outer' atomic shell, and subsequently de-excites to the $1 s$ ground state

Second Step: μ^{-}is captured by the nucleus and reemits an $e^{ \pm}$
we only consider
conversion: initial and final state nucleus are in ground state

$\mu-e$ Conversion

What happens in a $\mu^{-}-e^{ \pm}$conversion ?? \rightarrow experimentally a two-step process

First Step: μ^{-}is captured in an 'outer' atomic shell, and subsequently de-excites to the $1 s$ ground state

Second Step: μ^{-}is captured by the nucleus and reemits an $e^{ \pm}$
we only consider
initial and final state nucleus are in ground state

$\mu-e$ Conversion

What happens in a $\mu^{-}-e^{ \pm}$conversion ?? \rightarrow experimentally a two-step process

First Step: μ^{-}is captured in an 'outer' atomic shell, and subsequently de-excites to the $1 s$ ground state

Second Step: μ^{-}is captured by the nucleus and reemits an $e^{ \pm}$
\rightarrow we only consider "coherent" conversion: initial and final state nucleus are in ground state

Energy Scales of the Process

- muon bound in 1s state with binding energy
$\epsilon_{B} \simeq \frac{m_{\mu}}{m_{e}} \cdot 13.6 \mathrm{eV} \cdot Z \ll m_{\mu} \xrightarrow{Z \leq 100}$ non-relativistic
 state
+ in good approximation: both nuclei at rest

$\Rightarrow e^{ \pm}$is relativistic particle under influence of Coulomb potential:
$E_{e} \simeq E_{\mu} \simeq m_{\mu}$ and $m_{e} \simeq 0$
- for 4-momentum transfer $q^{\prime}=p_{e}-p_{\mu}$

Energy Scales of the Process

- muon bound in 1s state with binding energy
$\epsilon_{B} \simeq \frac{m_{\mu}}{m_{e}} \cdot 13.6 \mathrm{eV} \cdot Z \ll m_{\mu} \xrightarrow{Z \leq 100}$ non-relativistic
- consider "coherent" process \rightarrow initial and final nucleus in ground state
+ in good approximation: both nuclei at rest

Energy Scales of the Process

- muon bound in 1s state with binding energy
$\epsilon_{B} \simeq \frac{m_{\mu}}{m_{e}} \cdot 13.6 \mathrm{eV} \cdot Z \ll m_{\mu} \xrightarrow{Z \leq 100}$ non-relativistic
- consider "coherent" process \rightarrow initial and final nucleus in ground state
+ in good approximation: both nuclei at rest

$$
\begin{aligned}
\Rightarrow E_{e} & =\underbrace{m_{\mu}-\epsilon_{B}}_{E_{\mu}}+\underbrace{E_{i}-E_{f}}_{\sim \mathcal{O}(\mathrm{MeV})} \sim \mathcal{O}(100 \mathrm{MeV}) \\
& \sim \mathcal{O}(100 \mathrm{MeV})
\end{aligned}
$$

$\Rightarrow e^{ \pm}$is relativistic particle under influence of Coulomb potential:
$E_{e} \simeq E_{\mu} \simeq m_{\mu}$ and $m_{e} \simeq 0$

- for 4-momentum transfer $q^{\prime}=p_{e}-p_{\mu}$

In this set-up $\Rightarrow q^{\prime 2} \sim-m_{\mu}^{2}$

Energy Scales of the Process

- muon bound in 1s state with binding energy
$\epsilon_{B} \simeq \frac{m_{\mu}}{m_{e}} \cdot 13.6 \mathrm{eV} \cdot Z \ll m_{\mu} \xrightarrow{Z \leq 100}$ non-relativistic
- consider "coherent" process \rightarrow initial and final nucleus in ground state
+ in good approximation: both nuclei at rest

$$
\begin{aligned}
\Rightarrow E_{e} & =\underbrace{m_{\mu}-\epsilon_{B}}_{E_{\mu}}+\underbrace{E_{i}-E_{f}}_{\sim \mathcal{O}(\mathrm{MeV})} \sim \mathcal{O}(100 \mathrm{MeV}) \\
& \sim \mathcal{O}(100 \mathrm{MeV})
\end{aligned}
$$

$\Rightarrow e^{ \pm}$is relativistic particle under influence of Coulomb potential:
$E_{e} \simeq E_{\mu} \simeq m_{\mu}$ and $m_{e} \simeq 0$

- for 4-momentum transfer $q^{\prime}=p_{e}-p_{\mu}$

In this set-up $\Rightarrow q^{\prime 2} \simeq-m_{\mu}^{2}$

$\mu^{-}-e^{-}$vs $\mu^{-}-e^{+}$Conversion

from
TG, Merle, Zuber Phys.Lett. B764 (2017) 157

$$
\mu^{-}-\boldsymbol{e}^{-}
$$

further investigations needed:
\rightarrow confirm/ohtain the nercentage
that takes place "coherently'
\rightarrow derive a more involved spectrum

$\mu^{-}-e^{-}$vs $\mu^{-}-e^{+}$Conversion

from
TG, Merle, Zuber Phys.Lett. B764 (2017) 157

$$
\boldsymbol{\mu}^{-}-\boldsymbol{e}^{-}
$$

further investigations needed
\rightarrow confirm/ohtain the nercentage that takes place "coherently' \rightarrow derive a more involved spectrum

- occurs at single nucleon ($\Delta Q=0$)

$$
\mu^{-}-e^{+}
$$

- needs to occur at two nucleons to achieve $\Delta Q=2 \rightarrow$ similar to $0 \nu \beta \beta$
- around 40% of the process total are g.s. \rightarrow g.s.

$\mu^{-}-e^{-}$vs $\mu^{-}-e^{+}$Conversion

from
TG, Merle, Zuber Phys.Lett. B764 (2017) 157

$$
\boldsymbol{\mu}^{-}-\boldsymbol{e}^{-}
$$

further investigations needed

- occurs at single nucleon ($\Delta Q=0$)
- dominated by coherent process

$$
\boldsymbol{\mu}^{--} \boldsymbol{e}^{+}
$$

- needs to occur at two nucleons to achieve $\Delta Q=2 \rightarrow$ similar to $0 \nu \beta \beta$
- around 40% of the process' total are g.s. \rightarrow g.s.

$\mu^{-}-e^{-}$vs $\mu^{-}-e^{+}$Conversion

from
TG, Merle, Zuber Phys.Lett. B764 (2017) 157

$$
\boldsymbol{\mu}^{-}-\boldsymbol{e}^{-}
$$

- occurs at single nucleon $(\Delta Q=0)$
- dominated by coherent process

$$
\mu^{--} e^{+}
$$

- needs to occur at two nucleons to achieve $\Delta Q=2 \rightarrow$ similar to $0 \nu \beta \beta$
- around 40% of the process' total are g.s. \rightarrow g.s.
\Downarrow
further investigations needed:
\rightarrow confirm/obtain the percentage that takes place "coherently"
\rightarrow derive a more involved spectrum for the positrons

Improvements from Upcoming Experiments

Snapshot on current limits and sensitivities of upcoming experiments:
Future sensitivity for $\mu-e$ conversion

$\mathrm{Pb}-208$ prese				
Au-197				
Ti-48				
$\mathrm{Si}-28$				
Al-27 twe experimental figures				
10^{-19}	10^{-17}	10^{-15}	10^{-13}	10^{-11}
	$\mathrm{BR}\left(\mu^{-}-e^{-}\right.$conversion)			

past: SINDRUM II for ${ }^{48} \mathrm{Ti}$ (1993), ${ }^{208} \mathrm{~Pb}$ (1995), ${ }^{197} \mathrm{Au}$ (2006)
future: DeeMee for ${ }^{28} \mathrm{Si}$, COMET and Mu2e (taking data ~ 2018) for ${ }^{27} \mathrm{Al}$, PRISM/PRIME for ${ }^{48} \mathrm{Ti}$
\rightarrow improvements can be transferred to $\mu^{-}-e^{+}$conversion
\rightarrow sensitivities on both processes will increase by several orclers of magnitude in the foreseeable future \rightarrow target both processes with the same experimental setup

Improvements from Upcoming Experiments

Snapshot on current limits and sensitivities of upcoming experiments:

Future sensitivity for $\mu-e$ conversion				
Pb-208				
$\mathrm{Au}-197$				
future				
Ti-48				
$\mathrm{Si}-28$				
$\mathrm{Al}-27$ ar figures				
10^{-19}	10^{-17}	10^{-15}	10^{-13}	10^{-11}
	$\mathrm{BR}\left(\mu^{-}-e^{-}\right.$conversion)			

\rightarrow improvements can be transferred to $\mu^{-}-e^{+}$conversion
\rightarrow sensitivities on both processes will increase by several orders of magnitude in the foreseeable future
\rightarrow target both processes with the same experimental setup

Improvements from Upcoming Experiments

Snapshot on current limits and sensitivities of upcoming experiments:

\rightarrow improvements can be transferred to $\mu^{-}-e^{+}$conversion
\rightarrow sensitivities on both processes will increase by several orders of magnitude in the foreseeable future
\rightarrow target both processes with the same experimental setup
\Rightarrow it's time to investigate these bound muon conversions to describe them within a general framework independent of the respective particle physics realisation

How to tackle $\boldsymbol{\mu}^{-} \boldsymbol{-} \boldsymbol{e}^{-}$conversion (using the example of a realisation via doubly charged scalars)?

Effective theory of a doubly charged scalar singlet

 based on King, Merle, Panizzi JHEP 1411 (2014) 124Minimal extension of SM:

- only one extra particle: S^{++}
\rightarrow lightest of possible new particles (UV completion e.g. Cocktail model)
\rightarrow reduction of input parameters
- tree-level coupling to SM (to charged right-handed leptons) \rightarrow LNV and LFV!
- effective Dim-7 operator (necessary to generate neutrino mass)
$\mathcal{L}=\mathcal{L}_{\mathrm{SM}}-V(H, S)$
$+\left(D_{\mu} S\right)^{\dagger}\left(D^{\mu} S\right)$

Effective theory of a doubly charged scalar singlet based on King, Merle, Panizzi JHEP 1411 (2014) 124

Minimal extension of SM:

- only one extra particle: S^{++}
\rightarrow lightest of possible new particles (UV completion e.g. Cocktail model)
\rightarrow reduction of input parameters
- tree-level coupling to SM (to charged right-handed leptons)
\rightarrow LNV and LFV!
- effective Dim-7 operator (necessary to generate neutrino mass)
$\mathcal{L}=\mathcal{L}_{\text {SM }}-V(H, S)$

$$
\begin{equation*}
+\left(D_{\mu} S\right)^{\dagger}\left(D^{\mu} S\right)+f_{a b} \overline{\left(\ell_{R a}\right)^{c}} \ell_{R b} S^{++}+\text {h.c. } \tag{2}
\end{equation*}
$$

Effective theory of a doubly charged scalar singlet

 based on King, Merle, Panizzi JHEP 1411 (2014) 124Minimal extension of SM:

- only one extra particle: S^{++}
\rightarrow lightest of possible new particles (UV completion e.g. Cocktail model)
\rightarrow reduction of input parameters
- tree-level coupling to SM (to charged right-handed leptons)
\rightarrow LNV and LFV!
- effective Dim-7 operator (necessary to generate neutrino mass)

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}-V(H, S)
$$

$$
+\left(D_{\mu} S\right)^{\dagger}\left(D^{\mu} S\right)+f_{a b} \overline{\left(\ell_{R a}\right)^{c}} \ell_{R b} S^{++}+\text {h.c. }-\frac{g^{2} v^{4} \xi \Lambda^{3}}{4 \Lambda^{++} W_{\mu}^{-} W^{-\mu}}+\text { h.c. }
$$

$\mu^{-}-e^{-}$Conversion: Universally Valid for Models Involving Doubly Charged Singlet Scalars based on TG, Merle Phys.Rev. D93 (2016) 055039
$\mu^{-}-e^{-}$conversion realised at one-loop level

$\mu^{-}-e^{-}$Conversion: Universally Valid for Models Involving Doubly Charged Singlet Scalars based on TG, Merle Phys.Rev. D93 (2016) 055039
$\mu^{-}-e^{-}$conversion realised at one-loop level

relevant diagrams

Different Contributions to $\mu^{-}-e^{-}$Conversion

$$
\sim \mathcal{O}(\overbrace{}^{-15} \mathrm{~m})
$$

- estimate nuclear radius: $R=\overbrace{r_{0}} A^{1 / 3} \sim \mathcal{O}\left(10^{-15} \mathrm{~m}\right)$
- reduced Bohr radius: $\underset{\mathcal{O}\left(10^{-10} \mathrm{~m}\right)}{a_{0}} \frac{m_{e}}{m_{\mu}} \sim \mathcal{O}\left(10^{-13} \mathrm{~m}\right)$

Different Contributions to $\mu^{-}-e^{-}$Conversion

$$
\sim \mathcal{O}(\overbrace{}^{-15} \mathrm{~m})
$$

- estimate nuclear radius: $R=\overbrace{r_{0}} A^{1 / 3} \sim \mathcal{O}\left(10^{-15} \mathrm{~m}\right)$
- reduced Bohr radius: $\underset{\mathcal{O}\left(10^{-10} \mathrm{~m}\right)}{a_{0}} \frac{m_{e}}{m_{\mu}} \sim \mathcal{O}\left(10^{-13} \mathrm{~m}\right)$
- estimate interaction range: $r_{\gamma} \rightarrow \infty$ and $r_{Z} \leq 10^{-18} \mathrm{~m}$

Different Contributions to $\mu^{-}-e^{-}$Conversion

$$
\sim \mathcal{O}\left(10^{-15} \mathrm{~m}\right)
$$

- estimate nuclear radius: $R=\overbrace{r_{0}} A^{1 / 3} \sim \mathcal{O}\left(10^{-15} \mathrm{~m}\right)$
- reduced Bohr radius: $\underbrace{a_{0}}_{\mathcal{O}\left(10^{-10} \mathrm{~m}\right)} \frac{m_{e}}{m_{\mu}} \sim \mathcal{O}\left(10^{-13} \mathrm{~m}\right)$
- estimate interaction range: $r_{\gamma} \rightarrow \infty$ and $r_{Z} \leq 10^{-18} \mathrm{~m}$

Different Contributions to $\mu^{-}-e^{-}$Conversion

$$
\sim \mathcal{O}\left(10^{-15} \mathrm{~m}\right)
$$

- estimate nuclear radius: $R=\overbrace{r_{0}} A^{1 / 3} \sim \mathcal{O}\left(10^{-15} \mathrm{~m}\right)$
- reduced Bohr radius: $\underbrace{a_{0}}_{\mathcal{O}\left(10^{-10} \mathrm{~m}\right)} \frac{m_{e}}{m_{\mu}} \sim \mathcal{O}\left(10^{-13} \mathrm{~m}\right)$
- estimate interaction range: $r_{\gamma} \rightarrow \infty$ and $r_{Z} \leq 10^{-18} \mathrm{~m}$ \Rightarrow for Z-exchange: μ^{-}has to be within nucleus! Probability?!

Different Contributions to $\mu^{-}-e^{-}$Conversion

$$
\sim \mathcal{O}\left(10^{-15} \mathrm{~m}\right)
$$

- estimate nuclear radius: $R=\overbrace{r_{0}} A^{1 / 3} \sim \mathcal{O}\left(10^{-15} \mathrm{~m}\right)$
- reduced Bohr radius: $\underbrace{a_{0}}_{\mathcal{O}\left(10^{-10} \mathrm{~m}\right)} \frac{m_{e}}{m_{\mu}} \sim \mathcal{O}\left(10^{-13} \mathrm{~m}\right)$
- estimate interaction range: $r_{\gamma} \rightarrow \infty$ and $r_{Z} \leq 10^{-18} \mathrm{~m}$ \Rightarrow for Z-exchange: μ^{-}has to be within nucleus! Probability?!

Different Contributions to $\mu^{-}-e^{-}$Conversion

$$
\sim \mathcal{O}\left(10^{-15} \mathrm{~m}\right)
$$

- estimate nuclear radius: $R=\overbrace{r_{0}} A^{1 / 3} \sim \mathcal{O}\left(10^{-15} \mathrm{~m}\right)$
- reduced Bohr radius: $\underbrace{a_{0}}_{\mathcal{O}\left(10^{-10} \mathrm{~m}\right)} \frac{m_{e}}{m_{\mu}} \sim \mathcal{O}\left(10^{-13} \mathrm{~m}\right)$
- estimate interaction range: $r_{\gamma} \rightarrow \infty$ and $r_{Z} \leq 10^{-18} \mathrm{~m}$ \Rightarrow for Z-exchange: μ^{-}has to be within nucleus! Probability?!

\Rightarrow contributions need to be treated qualitatively differently!!

Photonic Contribution

\rightarrow wave functions for μ^{-}and e^{-}obtained by solving modified Dirac equation (+ Coulomb potential)
\rightarrow Most general (Lorentz-) invariant expression for \mid

with $q^{\prime}=p_{e}-p_{\mu}$.
In non-relativistic limit:
$\Rightarrow \psi_{j l m}$ and $Z_{e \rho} \rho^{(P)}(r)$ factorise from Γ^{0} on matrix element level

Photonic Contribution

\rightarrow wave functions for μ^{-}and e^{-}obtained by solving modified Dirac equation (+ Coulomb potential)
\rightarrow Most general (Lorentz-) invariant expression for 「

In non-relativistic limit:
\Rightarrow dijim and Zen $(P)(r)$ factorise from Γ^{0} on matrix element level

Photonic Contribution

$$
\mathcal{M} \propto \int \mathrm{d}^{3} r \overline{\psi_{j l m}^{e}}\left(p_{e}, r\right) \Gamma^{\nu} \psi_{j_{\mu} l_{\mu} m_{\mu}}^{\mu}\left(p_{\mu}, r\right) \underbrace{\langle N| \bar{q} \gamma_{\nu} q|N\rangle}_{Z e \rho^{(P)}(r) \delta_{\nu 0}}
$$

\rightarrow wave functions for μ^{-}and e^{-}obtained by solving modified Dirac equation (+ Coulomb potential)
\rightarrow Most general (Lorentz-) invariant expression for Γ^{ν} :
$\Gamma^{\nu}=\left(\gamma^{\nu}-\frac{q^{\prime} q^{\prime \nu}}{q^{\prime 2}}\right) F_{1}\left(q^{\prime 2}\right)+\frac{i \sigma^{\nu \rho} q_{\rho}^{\prime}}{m_{\mu}} F_{2}\left(q^{\prime 2}\right)+\left(\gamma^{\nu}-\frac{q^{\prime} q^{\prime \nu}}{q^{\prime 2}}\right) \gamma_{5} G_{1}\left(q^{\prime 2}\right)+\frac{i \sigma^{\nu \rho} q_{\rho}^{\prime}}{m_{\mu}} \gamma_{5} G_{2}\left(q^{\prime 2}\right)$
with $q^{\prime}=p_{e}-p_{\mu}$.
In non-relativistic limit:
$\Rightarrow \psi_{j l m}$ and $Z e \rho^{(P)}(r)$ factorise from Γ^{0} on matrix element level

Photonic Contribution

Write branching ratio as product of nuclear and particle physics parts

$$
\operatorname{BR}\left(\mu^{-} N \rightarrow e^{-} N\right)=\frac{8 \alpha^{5} m_{\mu} Z_{\text {eff }}^{4} Z F_{p}^{2}}{\Gamma_{\text {capt }}} \equiv^{2}
$$

see Kuno, Okada
Rev. Mod. Phys.
73 (2001) 151-202
\rightarrow factorisation works perfectly for photonic contributions
\rightarrow 三 has to be modified for non-photonic contributions to be a function of the nuclear characteristics (A, Z)

Particle physics information absorbed into

\Rightarrow determine form factors from amputated diagrams with off-shell photon with help of Mathematica package Package-X (Patel, Comput. Phys. Commun. 197 (2015) 276)

Photonic Contribution

Write branching ratio as product of nuclear and particle physics parts

$$
\operatorname{BR}\left(\mu^{-} N \rightarrow e^{-} N\right)=\frac{8 \alpha^{5} m_{\mu} Z_{\text {eff }}^{4} Z F_{p}^{2}}{\Gamma_{\text {capt }}} \equiv^{2}
$$

see Kuno, Okada
Rev. Mod. Phys.
73 (2001) 151-202
\rightarrow factorisation works perfectly for photonic contributions
\rightarrow 三 has to be modified for non-photonic contributions to be a function of the nuclear characteristics (A, Z)

Particle physics information absorbed into

\Rightarrow determine form factors from amputated diagrams with off-shell photon with help of Mathematica package Package-X (Patel, Comput. Phys. Commun. 197 (2015) 276)

Photonic Contribution

Write branching ratio as product of nuclear and particle physics parts

$$
\mathrm{BR}\left(\mu^{-} N \rightarrow e^{-} N\right)=\frac{8 \alpha^{5} m_{\mu} Z_{\mathrm{eff}}^{4} Z F_{p}^{2}}{\Gamma_{\mathrm{capt}}} \Xi^{2}
$$

see Kuno, Okada
Rev. Mod. Phys.
73 (2001) 151-202
\rightarrow factorisation works perfectly for photonic contributions
\rightarrow 三 has to be modified for non-photonic contributions to be a function of the nuclear characteristics (A, Z)

Particle physics information absorbed into

$$
\bar{\Xi}^{2}=\left|-F_{1}\left(-m_{\mu}^{2}\right)+F_{2}\left(-m_{\mu}^{2}\right)\right|^{2}+\left|G_{1}\left(-m_{\mu}^{2}\right)+G_{2}\left(-m_{\mu}^{2}\right)\right|^{2}
$$

\Rightarrow determine form factors from amputated diagrams with off-shell

Photonic Contribution

Write branching ratio as product of nuclear and particle physics parts

$$
\mathrm{BR}\left(\mu^{-} N \rightarrow e^{-} N\right)=\frac{8 \alpha^{5} m_{\mu} Z_{\mathrm{eff}}^{4} Z F_{p}^{2}}{\Gamma_{\mathrm{capt}}} \bar{三}^{2}
$$

see Kuno, Okada
Rev. Mod. Phys.
73 (2001) 151-202
\rightarrow factorisation works perfectly for photonic contributions
\rightarrow 三 has to be modified for non-photonic contributions to be a function of the nuclear characteristics (A, Z)

Particle physics information absorbed into

$$
\bar{\Xi}^{2}=\left|-F_{1}\left(-m_{\mu}^{2}\right)+F_{2}\left(-m_{\mu}^{2}\right)\right|^{2}+\left|G_{1}\left(-m_{\mu}^{2}\right)+G_{2}\left(-m_{\mu}^{2}\right)\right|^{2}
$$

\Rightarrow determine form factors from amputated diagrams with off-shell photon with help of Mathematica package Package-X (Patel, Comput. Phys. Commun. 197 (2015) 276)

Photonic Contribution: Results

In good approximation (up to a few per cent), we use
$F_{1}\left(q^{\prime 2}\right)=G_{1}\left(q^{\prime 2}\right)=-f_{e a}^{*} f_{a \mu}\left[\frac{2 m_{a}^{2}+m_{\mu}^{2} \log \left(\frac{m_{a}}{M_{S}}\right)}{12 \pi^{2} M_{S}^{2}}+\frac{\sqrt{m_{\mu}^{2}+4 m_{2}^{2}}\left(m_{\mu}^{2}-2 m_{a}^{2}\right)}{12 \pi^{2} m_{\mu} M_{S}^{2}} \operatorname{Arctanh}\left(\frac{m_{\mu}}{\sqrt{m_{\mu}^{2}+4 m_{a}^{2}}}\right)\right]$
$F_{2}\left(q^{\prime 2}\right)=-G_{2}\left(q^{\prime 2}\right)=f_{e a}^{*} f_{a \mu} \frac{m_{\mu}^{2}}{24 \pi^{2} M_{S}^{2}}$
with $q^{\prime 2}=-m_{\mu}^{2}$ for the particle physics factor:

$$
\begin{aligned}
& \left.\equiv_{\text {photonic }}^{2}=\frac{1}{288 \pi^{4} m_{\mu}^{2} M_{S}^{4}} \right\rvert\, \sum_{a=e, \mu, \tau} f_{e a}^{*} f_{a \mu}\left(4 m_{a}^{2} m_{\mu}-m_{\mu}^{3}+2\left(-2 m_{a}^{2}+m_{\mu}^{2}\right) \sqrt{4 m_{a}^{2}+m_{\mu}^{2}}\right. \\
&\text { Arctanh } \left.\left[\frac{m_{\mu}}{\sqrt{4 m_{a}^{2}+m_{\mu}^{2}}}\right]+m_{\mu}^{3} \ln \left[\frac{m_{a}^{2}}{M_{S}^{2}}\right]\right)\left.\right|^{2}
\end{aligned}
$$

\rightarrow while F_{2} is independent of $m_{a},\left|F_{1}\right|$ decreases with increasing m_{a}

 \rightarrow hierarchy: $\left|F_{2}\right|<\left|F_{1}\right|$ but for $M_{S} \sim 10 \mathrm{GeV}$ of order 10% \rightarrow compare to $\mu \rightarrow$ e $: F_{1}\left(q^{\prime 2}=0\right)=G_{1}\left(q^{\prime 2}=0\right)=0$ and
Photonic Contribution: Results

In good approximation (up to a few per cent), we use
$F_{1}\left(q^{\prime 2}\right)=G_{1}\left(q^{\prime 2}\right)=-f_{e a}^{*} f_{a \mu}\left[\frac{2 m_{a}^{2}+m_{\mu}^{2} \log \left(\frac{m_{a}}{M_{S}}\right)}{12 \pi^{2} M_{S}^{2}}+\frac{\sqrt{m_{\mu}^{2}+4 m_{2}^{2}}\left(m_{\mu}^{2}-2 m_{a}^{2}\right)}{12 \pi^{2} m_{\mu} M_{S}^{2}} \operatorname{Arctanh}\left(\frac{m_{\mu}}{\sqrt{m_{\mu}^{2}+4 m_{a}^{2}}}\right)\right]$
$F_{2}\left(q^{\prime 2}\right)=-G_{2}\left(q^{\prime 2}\right)=f_{e a}^{*} f_{a \mu} \frac{m_{\mu}^{2}}{24 \pi^{2} M_{S}^{2}}$
with $q^{\prime 2}=-m_{\mu}^{2}$ for the particle physics factor:

$$
\begin{aligned}
\left.\bar{E}_{\text {photonic }}^{2}=\frac{1}{288 \pi^{4} m_{\mu}^{2} M_{s}^{4}} \right\rvert\, & \sum_{a=e, \mu, \tau} f_{e a}^{*} f_{a \mu}\left(4 m_{a}^{2} m_{\mu}-m_{\mu}^{3}+2\left(-2 m_{a}^{2}+m_{\mu}^{2}\right) \sqrt{4 m_{a}^{2}+m_{\mu}^{2}}\right. \\
& \text { Arctanh } \left.\left[\frac{m_{\mu}}{\sqrt{4 m_{a}^{2}+m_{\mu}^{2}}}\right]+m_{\mu}^{3} \ln \left[\frac{m_{a}^{2}}{M_{S}^{2}}\right]\right)\left.\right|^{2}
\end{aligned}
$$

\rightarrow while F_{2} is independent of $m_{a},\left|F_{1}\right|$ decreases with increasing m_{a}
\rightarrow hierarchy: $\left|F_{2}\right|<\left|F_{1}\right|$ but for $M_{S} \sim 10 \mathrm{GeV}$ of order 10%

Photonic Contribution: Results

In good approximation (up to a few per cent), we use
$F_{1}\left(q^{\prime 2}\right)=G_{1}\left(q^{\prime 2}\right)=-f_{e a}^{*} f_{a \mu}\left[\frac{2 m_{a}^{2}+m_{\mu}^{2} \log \left(\frac{m_{a}}{M_{S}}\right)}{12 \pi^{2} M_{S}^{2}}+\frac{\sqrt{m_{\mu}^{2}+4 m_{2}^{2}}\left(m_{\mu}^{2}-2 m_{a}^{2}\right)}{12 \pi^{2} m_{\mu} M_{S}^{2}} \operatorname{Arctanh}\left(\frac{m_{\mu}}{\sqrt{m_{\mu}^{2}+4 m_{a}^{2}}}\right)\right]$
$F_{2}\left(q^{\prime 2}\right)=-G_{2}\left(q^{\prime 2}\right)=f_{e a}^{*} f_{a \mu} \frac{m_{\mu}^{2}}{24 \pi^{2} M_{S}^{2}}$
with $q^{\prime 2}=-m_{\mu}^{2}$ for the particle physics factor:

$$
\begin{aligned}
& \left.\equiv_{\text {photonic }}^{2}=\frac{1}{288 \pi^{4} m_{\mu}^{2} M_{S}^{4}} \right\rvert\, \sum_{a=e, \mu, \tau} f_{e a}^{*} f_{a \mu}\left(4 m_{a}^{2} m_{\mu}-m_{\mu}^{3}+2\left(-2 m_{a}^{2}+m_{\mu}^{2}\right) \sqrt{4 m_{a}^{2}+m_{\mu}^{2}}\right. \\
&\text { Arctanh } \left.\left[\frac{m_{\mu}}{\sqrt{4 m_{a}^{2}+m_{\mu}^{2}}}\right]+m_{\mu}^{3} \ln \left[\frac{m_{a}^{2}}{M_{S}^{2}}\right]\right)\left.\right|^{2}
\end{aligned}
$$

\rightarrow while F_{2} is independent of $m_{a},\left|F_{1}\right|$ decreases with increasing m_{a}
\rightarrow hierarchy: $\left|F_{2}\right|<\left|F_{1}\right|$ but for $M_{S} \sim 10 \mathrm{GeV}$ of order 10%
\rightarrow compare to $\mu \rightarrow e \gamma: F_{1}\left(q^{\prime 2}=0\right)=G_{1}\left(q^{\prime 2}=0\right)=0$ and
$F_{2}\left(q^{\prime 2}=0\right)=-G_{2}\left(q^{\prime 2}=0\right)=F_{2}\left(q^{\prime 2}=-m_{\mu}^{2}\right) \Rightarrow \mu^{-}-e^{-}$conversion enhanced by F_{1} contribution

Non-Photonic Contribution

Short-range \leftrightarrow takes place inside the nucleus: EFT treatment \Rightarrow Integrating out the Z-boson:

\rightarrow four-point vertices
\rightarrow consider operators up to dimension six
\rightarrow for the coherent $\mu^{-}-e^{-}$conversion, the only vertex realised in this model is described by

Non-Photonic Contribution

Short-range \leftrightarrow takes place inside the nucleus: EFT treatment \Rightarrow Integrating out the Z-boson:

\rightarrow four-point vertices
\rightarrow consider operators up to dimension six
\rightarrow for the coherent $\mu^{-}-e^{-}$conversion, the only vertex realised in this model is described by

$$
\mathcal{L}_{\text {short-range }}=-\frac{G_{F}}{\sqrt{2}} \underbrace{\frac{2\left(1+k_{q} \sin ^{2} \theta_{W}\right) \cos \theta_{W}}{g} A_{R}\left(q^{\prime 2}\right)}_{\operatorname{g}_{R V(q)}} \overline{e_{R}} \gamma_{\nu} \mu_{R} \bar{q} \gamma^{\nu} q
$$

Non-Photonic Contribution

We can write the branching ratio as

$$
\operatorname{BR}\left(\mu^{-} N \rightarrow e^{-} N\right)=\frac{8 \alpha^{5} m_{\mu} Z_{\text {eff }}^{4} Z F_{p}^{2}}{\Gamma_{\text {capt }}} \Xi_{\text {non-photonic }}^{2}\left(Z, N, A_{R}\left(q^{\prime 2}\right)\right)
$$

\rightarrow no perfect factorisation anymore: 三 modified to be function of nuclear characteristics
\rightarrow instead of lines we do have bands with finite widths for $\overline{\text { E }}$
\Rightarrow determine
from amputated diagrams with off-shell
Z-Boson
Combining photonic and non-photonic contributions: $\overline{\bar{p}}_{\text {particle }} \rightarrow \overline{\bar{c}}_{\text {combined }}(Z, N)=\bar{\Xi}_{\text {photonic }}+\bar{E}_{\text {non-photonic }}(Z, N)$

Non-Photonic Contribution

We can write the branching ratio as

$$
\operatorname{BR}\left(\mu^{-} N \rightarrow e^{-} N\right)=\frac{8 \alpha^{5} m_{\mu} Z_{\text {eff }}^{4} Z F_{p}^{2}}{\Gamma_{\text {capt }}} \Xi_{\text {non-photonic }}^{2}\left(Z, N, A_{R}\left(q^{\prime 2}\right)\right)
$$

\rightarrow no perfect factorisation anymore: 三 modified to be function of nuclear characteristics
\rightarrow instead of lines we do have bands with finite widths for $\overline{\text { E }}$
\Rightarrow determine form factors from amputated diagrams with off-shell Z-Boson

Combining photonic and non-photonic contributions: $\bar{\Xi}_{\text {particle }} \rightarrow \bar{\Xi}_{\text {combined }}(Z, N)=\overline{\text { photonic }}+\Xi_{\text {non-photonic }}(Z, N)$

Non-Photonic Contribution

We can write the branching ratio as

$$
\operatorname{BR}\left(\mu^{-} N \rightarrow e^{-} N\right)=\frac{8 \alpha^{5} m_{\mu} Z_{\text {eff }}^{4} Z F_{p}^{2}}{\Gamma_{\text {capt }}} \Xi_{\text {non-photonic }}^{2}\left(Z, N, A_{R}\left(q^{\prime 2}\right)\right)
$$

\rightarrow no perfect factorisation anymore: 三 modified to be function of nuclear characteristics
\rightarrow instead of lines we do have bands with finite widths for $\overline{ }$
\Rightarrow determine form factors from amputated diagrams with off-shell
Z-Boson
Combining photonic and non-photonic contributions:

$$
\bar{\Xi}_{\text {particle }} \rightarrow \bar{\Xi}_{\text {combined }}(Z, N)=\bar{\Xi}_{\text {photonic }}+\bar{\Xi}_{\text {non-photonic }}(Z, N)
$$

\rightarrow dependence on nuclear characteristics

Combining the Contributions: Results

 see TG, Merle Phys.Rev. D93 (2016) 055039

Benchmark Points:
$f_{a b}$ such that LFV/LNV bounds fulfilled + suitable neutrino mass matrix reproduced

- 'red': $f_{e e} \simeq 0$ and $f_{e \tau} \simeq 0$
- 'purple': $f_{e e} \simeq 0$ and $f_{e \mu} \simeq \frac{f_{\mu \tau}^{*}}{f_{\mu \mu}^{*}} f_{e \tau}$
- 'blue': $f_{e \mu} \simeq \frac{f_{\mu \tau}^{*}}{f_{\mu \mu}^{*}} f_{e \tau}$
choose representative 'average' set for each scenario to display M_{S} dependence

Combining the Contributions: Results

see TG, Merle Phys.Rev. D93 (2016) 055039

\rightarrow widths of the bands so small that appear as lines
\rightarrow non-photonic (DASHED) contributions negligibly small
\rightarrow approximate process by its purely photonic (SOLID) contribution
\rightarrow factorisation: dependence on isotope only in width of limit

Results: Photonic Contribution vs $\mu \rightarrow e \gamma$

see TG, Merle Phys.Rev. D93 (2016) 055039 and King, Merle, Panizzi JHEP 1411 (2014) 124

strongest bound for red, weakest for blue points

Results: Photonic Contribution vs $\mu \rightarrow e \gamma$

see TG, Merle Phys.Rev. D93 (2016) 055039 and King, Merle, Panizzi JHEP 1411 (2014) 124
For $\mu^{+} \rightarrow \boldsymbol{e}^{+} \gamma$: strongest bound for red, weakest for blue points

$$
\mathcal{A} \propto\left|f_{e e} f_{e \mu}^{*}+f_{e \mu} f_{\mu \mu}^{*}+f_{e \tau} f_{\tau \mu}^{*}\right| \cdot C
$$

\rightarrow some amount of cancellation
For $\mu^{-}-e^{-}$conversion
\rightarrow flavour-dependent coefficients:

Results: Photonic Contribution vs $\mu \rightarrow e \gamma$

see TG, Merle Phys.Rev. D93 (2016) 055039 and King, Merle, Panizzi JHEP 1411 (2014) 124
For $\mu^{+} \rightarrow \boldsymbol{e}^{+} \gamma$: strongest bound for red, weakest for blue points

$$
\mathcal{A} \propto\left|f_{e e} f_{e \mu}^{*}+f_{e \mu} f_{\mu \mu}^{*}+f_{e \tau} f_{\tau \mu}^{*}\right| \cdot C
$$

\rightarrow some amount of cancellation
For $\boldsymbol{\mu}^{-}-\boldsymbol{e}^{-}$conversion:
!! other way around !!
\rightarrow flavour-dependent coefficients:

Results: Photonic Contribution vs $\mu \rightarrow e \gamma$

see TG, Merle Phys.Rev. D93 (2016) 055039 and King, Merle, Panizzi JHEP 1411 (2014) 124
For $\boldsymbol{\mu}^{+} \rightarrow \boldsymbol{e}^{+} \gamma$:
strongest bound for red, weakest for blue points

$$
\mathcal{A} \propto\left|f_{e e} f_{e \mu}^{*}+f_{e \mu} f_{\mu \mu}^{*}+f_{e \tau} f_{\tau \mu}^{*}\right| \cdot C
$$

\rightarrow some amount of cancellation
For $\boldsymbol{\mu}^{-} \boldsymbol{e}^{-}$conversion:
!! other way around !!

$$
\mathcal{A} \propto\left|C_{e} f_{e e}^{*} f_{e \mu}+C_{\mu} f_{e \mu}^{*} f_{\mu \mu}+C_{\tau} f_{e \tau}^{*} f_{\tau \mu}\right|
$$

\rightarrow flavour-dependent coefficients:
prevent similar cancellations \rightarrow shape of amplitude leads to drastical change (not mainly off-shell contributions)

Results: Complementarity

see TG, King, Merle, No, Panizzi Phys.Rev. D93 (2016) 073007

From 'average scenarios' (depicted by lines), we can estimate the lower limits on \mathbf{M}_{S} resulting from μ-e conversion:

COMET I (Al-27) [GeV]

| blue curve | $M_{S}>131.9-447.1$ | $M_{S}>1031.5-13271.3$ | $M_{S}>1954.1$ |
| :---: | :---: | :---: | :---: | :---: |
| purple curve | $M_{S}>42.5-152.3$ | $M_{S}>360.7-4885.2$ | $M_{S}>694.5$ |
| red curve | $M_{S}>33.9-118.1$ | $M_{S}>276.3-3656.1$ | $M_{S}>528.0$ |

$$
\rightarrow \text { Limits from } \mu^{-}-e^{-} \text {conversion can be stronger than from LHC (but indirect) }
$$

Results: Complementarity

see TG, King, Merle, No, Panizzi Phys.Rev. D93 (2016) 073007

From 'average scenarios' (depicted by lines), we can estimate the lower limits on \mathbf{M}_{S} resulting from μ-e conversion:

	current limit [GeV]	future sensitivity [GeV]	COMET I (Al-27) [GeV]
blue curve	$M_{S}>131.9-447.1$	$M_{S}>1031.5-13271.3$	$M_{S}>1954.1$
purple curve	$M_{S}>42.5-152.3$	$M_{S}>360.7-4885.2$	$M_{S}>694.5$
red curve	$M_{S}>33.9-118.1$	$M_{S}>276.3-3656.1$	$M_{S}>528.0$

\rightarrow Limits from $\mu^{-}-e^{-}$conversion can be stronger than from LHC (but indirect)

How to tackle $\boldsymbol{\mu}^{-}-\boldsymbol{e}^{+}$conversion (using the example of a realisation via doubly charged scalars)?

Motivation

In the following, we perform the computation for the decay rate for one particular short-range operator $\epsilon_{3}^{L L z}$. But why?!
\rightarrow has the nuclear matrix elements (for ${ }^{48} \mathrm{Ti}$) that we use: $\epsilon_{3}^{L L z}$
\rightarrow explicit computation focussing on the nuclear physics
\Rightarrow includes the formalism that we want make accessible to the
particle physics community

- many aspects do not change if another operator was realised
guideline how to use existing results and establish a general formalism
to replicate such a computation for different scenarios

Motivation

In the following, we perform the computation for the decay rate for one particular short-range operator $\epsilon_{3}^{L L z}$. But why?!

- There are a few earlier references available focussing on $\mu^{-}-e^{+}$ conversion from Majorana neutrinos but no uniform formalism is used:
- J. D. Vergados and M. Ericson, Nucl. Phys. B195 (1982) 262
- A. N. Kamal and J. N. Ng, Phys. Rev. D20 (1979) 2269
- C. E. Picciotto and M. S. Zahir, Phys. Rev. D26 (1982) 2320
- J. D. Vergados, Phys. Rev. C24 (1981) 640

\rightarrow explicit computation focussing on the nuclear physics
\Rightarrow includes the formalism that we want make accessible to the
particle physics community
- many aspects do not change if another operator was realised
guideline how to use existing results and estalblish a general formalism
to replicate such a computation for different scenarios

Motivation

In the following, we perform the computation for the decay rate for one particular short-range operator $\epsilon_{3}^{L L z}$. But why?!

- There are a few earlier references available focussing on $\mu^{-}-e^{+}$ conversion from Majorana neutrinos but no uniform formalism is used:
- J. D. Vergados and M. Ericson, Nucl. Phys. B195 (1982) 262
- A. N. Kamal and J. N. Ng, Phys. Rev. D20 (1979) 2269
- C. E. Picciotto and M. S. Zahir, Phys. Rev. D26 (1982) 2320
- J. D. Vergados, Phys. Rev. C24 (1981) 640
- P. Domin, S. Kovalenko, A. Faessler, and F. Simkovic Phys. Rev. C70 (2004) 065501
\rightarrow has the nuclear matrix elements (for ${ }^{48} \mathrm{Ti}$) that we use: $\epsilon_{3}^{L L z}$
\rightarrow explicit computation focussing on the nuclear physics
\Rightarrow includes the formalism that we want make accessible to the particle physics community
- many aspects do not change if another operator was realised
\square to replicate such a computation for different scenarios

Motivation

In the following, we perform the computation for the decay rate for one particular short-range operator $\epsilon_{3}^{L L z}$. But why?!

- There are a few earlier references available focussing on $\mu^{-}-e^{+}$ conversion from Majorana neutrinos but no uniform formalism is used:
- J. D. Vergados and M. Ericson, Nucl. Phys. B195 (1982) 262
- A. N. Kamal and J. N. Ng, Phys. Rev. D20 (1979) 2269
- C. E. Picciotto and M. S. Zahir, Phys. Rev. D26 (1982) 2320
- J. D. Vergados, Phys. Rev. C24 (1981) 640
- P. Domin, S. Kovalenko, A. Faessler, and F. Simkovic Phys. Rev. C70 (2004) 065501
\rightarrow has the nuclear matrix elements (for ${ }^{48} \mathrm{Ti}$) that we use: $\epsilon_{3}^{L L z}$
\rightarrow explicit computation focussing on the nuclear physics
\Rightarrow includes the formalism that we want make accessible to the particle physics community
- many aspects do not change if another operator was realised
\rightarrow guideline how to use existing results and establish a general formalism to replicate such a computation for different scenarios

$\mu^{-}-e^{+}$Conversion from doubly charged scalars

- formalism to describe $\mu^{-}-e^{+}$conversions within general framework
- use EFT to neatly separate the nuclear physics from the respective particle physics realisation of the conversion \rightarrow factorisation

$\mu^{-}-e^{+}$Conversion from doubly charged scalars

- formalism to describe $\mu^{-}-e^{+}$conversions within general framework
- use EFT to neatly separate the nuclear physics from the respective particle physics realisation of the conversion \rightarrow factorisation

$\mu^{-}-e^{+}$Conversion from doubly charged scalars

- formalism to describe $\mu^{-}-e^{+}$conversions within general framework
- use EFT to neatly separate the nuclear physics from the respective particle physics realisation of the conversion \rightarrow factorisation

\rightarrow map the model onto short-range operators

General Formalism for $\mu^{-}-e^{+}$Conversion from

 Short-Range Operators based on Päs et al. Phys.Lett. B498 (2001) 35, and TG, Merle, Zuber Phys.Lett. B764 (2017) 157Employ EFT formalism to generally describe $\mu^{-}-e^{+}$conversion $\Rightarrow \operatorname{dim}-9$ short-range operators:

$$
\begin{aligned}
\mathcal{L}_{\text {short-range }}^{\mu e} & =\frac{G_{F}^{2}}{2 m_{\rho}} \sum_{x, y, z=L, R}\left[\epsilon_{1}^{x y z} J_{x} J_{y} j_{z}+\epsilon_{2}^{x y z} J_{x}^{\nu \rho} J_{y, \nu \rho} j_{z}+\epsilon_{3}^{x y z} J_{x}^{\nu} J_{y, \nu} j_{z}+\epsilon_{4}^{x y z} J_{x}^{\nu} J_{y, \nu \rho} j_{z}^{\rho}\right. \\
& \left.+\epsilon_{5}^{x y z} J_{x}^{\nu} J_{y} j_{z, \nu}+\epsilon_{6}^{x y z} J_{x}^{\nu} J_{y}^{\rho} j_{z, \nu \rho}+\epsilon_{7}^{x y z} J_{x} J_{y}^{\nu \rho} j_{z, \nu \rho}+\epsilon_{8}^{x y z} J_{x, \nu \alpha} J_{y}^{\rho \alpha} j_{z, \rho}^{\nu}\right]
\end{aligned}
$$

using the hadronic currents:

$$
J_{R, L}=\bar{d}\left(1 \pm \gamma_{5}\right) u, \quad J_{R, L}^{\nu}=\bar{d} \gamma^{\nu}\left(1 \pm \gamma_{5}\right) u, \quad J_{R, L}^{\nu \rho}=\bar{d} \sigma^{\nu \rho}\left(1 \pm \gamma_{5}\right) u,
$$

and the leptonic currents:

$$
\begin{aligned}
& j_{R, L}=\overline{e^{c}}\left(1 \pm \gamma_{5}\right) \mu=2 \overline{\left(e_{R, L}\right)^{c}} \mu_{R, L}, j_{R, L}^{\nu}=\overline{e^{c}} \gamma^{\nu}\left(1 \pm \gamma_{5}\right) \mu=2 \overline{\left(e_{L, R}\right)^{c}} \gamma^{\nu} \mu_{R, L}, \\
& \text { and } j_{R, L}^{\nu \rho}=\overline{e^{c}} \sigma^{\nu \rho}\left(1 \pm \gamma_{5}\right) \mu=2 \overline{\left(e_{R, L}\right)^{c}} \sigma^{\nu \rho} \mu_{R, L} .
\end{aligned}
$$

\square

General Formalism for $\mu^{-}-e^{+}$Conversion from

 Short-Range Operators based on Päs et al. Phys.Lett. B498 (2001) 35, and TG, Merle, Zuber Phys.Lett. B764 (2017) 157Employ EFT formalism to generally describe $\mu^{-}-e^{+}$conversion $\Rightarrow \operatorname{dim}-9$ short-range operators:

$$
\begin{aligned}
\mathcal{L}_{\text {short-range }}^{\mu e} & =\frac{G_{F}^{2}}{2 m_{\rho}} \sum_{x, y, z=L, R}\left[\epsilon_{1}^{x y z} J_{x} J_{y} j_{z}+\epsilon_{2}^{x y z} J_{x}^{\nu \rho} J_{y, \nu \rho} j_{z}+\epsilon_{3}^{x y z} J_{x}^{\nu} J_{y, \nu} j_{z}+\epsilon_{4}^{x y z} J_{x}^{\nu} J_{y, \nu \rho} j_{z}^{\rho}\right. \\
& \left.+\epsilon_{5}^{x y z} J_{x}^{\nu} J_{y} j_{z, \nu}+\epsilon_{6}^{x y z} J_{x}^{\nu} J_{y}^{\rho} j_{z, \nu \rho}+\epsilon_{7}^{x y z} J_{x} J_{y}^{\nu \rho} j_{z, \nu \rho}+\epsilon_{8}^{x y z} J_{x, \nu \alpha} J_{y}^{\rho \alpha} j_{z, \rho}^{\nu}\right]
\end{aligned}
$$

using the hadronic currents:

$$
J_{R, L}=\bar{d}\left(1 \pm \gamma_{5}\right) u, \quad J_{R, L}^{\nu}=\bar{d} \gamma^{\nu}\left(1 \pm \gamma_{5}\right) u, \quad J_{R, L}^{\nu \rho}=\bar{d} \sigma^{\nu \rho}\left(1 \pm \gamma_{5}\right) u,
$$

and the leptonic currents:

$$
\begin{aligned}
& j_{R, L}=\overline{e^{c}}\left(1 \pm \gamma_{5}\right) \mu=2 \overline{\left(e_{R, L}\right)^{c}} \mu_{R, L}, \quad j_{R, L}^{\nu}=\overline{e^{c}} \gamma^{\nu}\left(1 \pm \gamma_{5}\right) \mu=2 \overline{\left(e_{L, R}\right)^{c}} \gamma^{\nu} \mu_{R, L}, \\
& \text { and } j_{R, L}^{\nu \rho}=\overline{e^{c}} \sigma^{\nu \rho}\left(1 \pm \gamma_{5}\right) \mu=2 \overline{\left(e_{R, L}\right)^{c}} \sigma^{\nu \rho} \mu_{R, L} .
\end{aligned}
$$

\Rightarrow derive the decay rate using the example of doubly charged scalars

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

 Start with the amplitude obtained from EFT diagram
which is

$$
\begin{aligned}
\left\langle N^{\prime}, f\right| S_{\mathrm{eff}}^{(1)}|N, i\rangle & =-i\left\langle N^{\prime}, f\right| \int \mathrm{d}^{4} x \widehat{T}\left\{\mathcal{L}_{\mathrm{eff}}(x)\right\}|N, i\rangle \\
& =-i \frac{G_{F}^{2}}{2 m_{p}} \epsilon_{3}^{L L R} \int \mathrm{~d}^{4} x\left\langle N^{\prime}, f\right| \widehat{T}\left\{J_{L, \nu}(x) J_{L}^{\nu}(x) j_{R}(x)\right\}|N, i\rangle
\end{aligned}
$$

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

Start with the amplitude obtained from EFT diagram

which is

$$
\begin{aligned}
\left\langle N^{\prime}, f\right| S_{\text {eff }}^{(1)}|N, i\rangle & =-i\left\langle N^{\prime}, f\right| \int \mathrm{d}^{4} x \widehat{T}\left\{\mathcal{L}_{\text {eff }}(x)\right\}|N, i\rangle \\
& =-i \frac{G_{F}^{2}}{2 m_{p}} \epsilon_{3}^{L L R} \int \mathrm{~d}^{4} x\left\langle N^{\prime}, f\right| \widehat{T}\left\{J_{L, \nu}(x) J_{L}^{\nu}(x) j_{R}(x)\right\}|N, i\rangle
\end{aligned}
$$

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

Structure can be split into hadronic and leptonic parts:

$$
\left\langle N^{\prime}, f\right| \widehat{T}\left\{J_{L, \nu}(x) J_{L}^{\nu}(x) j_{R}(x)\right\}|N, i\rangle=\left\langle N^{\prime}\right| \widehat{T}\left\{J_{L, \nu}(x) J_{L}^{\nu}(x)\right\}|N\rangle\langle f| j_{R}(x)|i\rangle
$$

Leptonic part:

- muon is bound in 1 s state
- positron propagates freely under the influence of the nucleus' Coulomb potential
\Rightarrow need to modify the free spinors u and v respectively
\square

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

Structure can be split into hadronic and leptonic parts:

$$
\left\langle N^{\prime}, f\right| \widehat{T}\left\{J_{L, \nu}(x) J_{L}^{\nu}(x) j_{R}(x)\right\}|N, i\rangle=\left\langle N^{\prime}\right| \widehat{T}\left\{J_{L, \nu}(x) J_{L}^{\nu}(x)\right\}|N\rangle\langle f| j_{R}(x)|i\rangle
$$

Leptonic part:

- muon is bound in $1 s$ state
- positron propagates freely under the influence of the nucleus' Coulomb potential
\Rightarrow need to modify the free spinors u and v respectively
\square
with bound muon wave function $\phi,(\vec{x})$ and the Fermi function $F(Z, E)$

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

Structure can be split into hadronic and leptonic parts:

$$
\left\langle N^{\prime}, f\right| \widehat{T}\left\{J_{L, \nu}(x) J_{L}^{\nu}(x) j_{R}(x)\right\}|N, i\rangle=\left\langle N^{\prime}\right| \widehat{T}\left\{J_{L, \nu}(x) J_{L}^{\nu}(x)\right\}|N\rangle\langle f| j_{R}(x)|i\rangle
$$

Leptonic part:

- muon is bound in $1 s$ state
- positron propagates freely under the influence of the nucleus' Coulomb potential
\Rightarrow need to modify the free spinors u and v respectively

$$
\langle f| j_{R}(x)|i\rangle=2 \mathrm{e}^{i k_{e} \cdot x} \mathrm{e}^{-i E_{\mu} \cdot x^{0}} \sqrt{F\left(Z-2, E_{e}\right)} \phi_{\mu}(\vec{x}) \overline{v_{e}}\left(k_{e}\right) \mathrm{P}_{\mathrm{R}} u_{\mu}\left(k_{\mu}\right)
$$

with bound muon wave function $\phi_{\mu}(\vec{x})$ and the Fermi function $F(Z, E)$

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

Hadronic part:

- hadronic currents can be approximated by their non-relativistic versions $J_{\nu}(\vec{x})$
- need to account for quarks' distribution within the nucleus \rightarrow dipole parametrisation factor $\tilde{F}\left(\vec{k}^{2}, \wedge_{i}\right)$
- two nucleon interactions \rightarrow take place with finite distance \rightarrow introduce second location \tilde{x} over which we also "sum" $\int \mathrm{d}^{3} \tilde{x}$
\Rightarrow need to modify hadronic currents J_{ν} respectively
\square

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

Hadronic part:

- hadronic currents can be approximated by their non-relativistic versions $J_{\nu}(\vec{x})$
- need to account for quarks' distribution within the nucleus \rightarrow dipole parametrisation factor $\tilde{F}\left(\vec{k}^{2}, \Lambda_{i}\right)$
- two nucleon interactions \rightarrow take place with finite distance \rightarrow introduce second location \tilde{x} over which we also "sum" $\int \mathrm{d}^{3} \tilde{x}$

\Rightarrow need to modify hadronic currents J_{ν} respectively

\square

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

Hadronic part:

- hadronic currents can be approximated by their non-relativistic versions $J_{\nu}(\vec{x})$

- need to account for quarks' distribution within the nucleus \rightarrow dipole parametrisation factor $\tilde{F}\left(\vec{k}^{2}, \Lambda_{i}\right)$
- two nucleon interactions \rightarrow take place with finite distance \rightarrow introduce second location \tilde{x} over which we also "sum" $\int \mathrm{d}^{3} \tilde{x}$

\Rightarrow need to modify hadronic currents J_{ν} respectively

\square

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

Hadronic part:

- hadronic currents can be approximated by their non-relativistic versions $J_{\nu}(\vec{x})$

- need to account for quarks' distribution within the nucleus \rightarrow dipole parametrisation factor $\tilde{F}\left(\vec{k}^{2}, \Lambda_{i}\right)$
- two nucleon interactions \rightarrow take place with finite distance \rightarrow introduce second location \tilde{x} over which we also "sum" $\int \mathrm{d}^{3} \tilde{x}$
\Rightarrow need to modify hadronic currents J_{ν} respectively

$$
\left\langle N^{\prime}\right| \widehat{T}\left\{J_{L, \nu}(x) J_{L}^{\nu}(x)\right\}|N\rangle \rightarrow \int \mathrm{d}^{3} \tilde{x} \int \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}}\left\langle N^{\prime}\right| \mathrm{e}^{i \vec{k} \cdot(\vec{x}-\vec{x}) \tilde{F}^{2}\left(\vec{k}^{2}, \Lambda_{i}\right) J_{L, \nu}(\overrightarrow{\tilde{x}}) J_{L}^{\nu}(\vec{x})|N\rangle . N . . . \mid}
$$

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

Next:

- perform x^{0} integration
\rightarrow conservation of external energies $2 \pi \delta\left(E_{i}+E_{\mu}-E_{f}-E_{e}\right)$
- write non-relativistic currents in term of effective transition operators:
 with nuclear isospin raising operator τ_{m}^{-}and the dominant spin structures given by the Fermi onerator and the Gamoun-Teller onerator

physics model:

\square

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

Next:

- perform x^{0} integration \rightarrow conservation of external energies $2 \pi \delta\left(E_{i}+E_{\mu}-E_{f}-E_{e}\right)$
- write non-relativistic currents in term of effective transition operators:
$\tilde{F}\left(\vec{k}^{2}, \Lambda_{i}\right) J_{L \nu}(\vec{x})=\sum_{m} \tau_{m}^{-}\left(g_{V} \tilde{F}\left(\vec{k}^{2}, \Lambda_{V}\right) g_{\nu 0}+g_{A} \tilde{F}\left(\vec{k}^{2}, \Lambda_{A}\right) g_{\nu j} \sigma_{m}^{j}\right) \delta^{(3)}\left(\vec{x}-\vec{r}_{m}\right)$ with nuclear isospin raising operator τ_{m}^{-}and the dominant spin structures given by the Fermi operator and the Gamow-Teller operator

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

Next:

- perform x^{0} integration \rightarrow conservation of external energies $2 \pi \delta\left(E_{i}+E_{\mu}-E_{f}-E_{e}\right)$
- write non-relativistic currents in term of effective transition operators:
$\tilde{F}\left(\vec{k}^{2}, \Lambda_{i}\right) J_{L \nu}(\vec{x})=\sum_{m} \tau_{m}^{-}\left(g_{V} \tilde{F}\left(\vec{k}^{2}, \Lambda_{V}\right) g_{\nu 0}+g_{A} \tilde{F}\left(\vec{k}^{2}, \Lambda_{A}\right) g_{\nu j} \sigma_{m}^{j}\right) \delta^{(3)}\left(\vec{x}-\vec{r}_{m}\right)$
with nuclear isospin raising operator τ_{m}^{-}and the dominant spin structures given by the Fermi operator and the Gamow-Teller operator
\Rightarrow allows for factorisation of nuclear physics from respective particle physics model:

$$
\mathcal{M}=\frac{G_{F}^{2} \epsilon_{3}^{L R} g_{A}^{2} m_{e}}{2 R} \sqrt{F\left(Z-2, E_{e}\right)} \delta\left(E_{f}-E_{i}+E_{e}-E_{\mu}\right) \overline{v_{e}}\left(k_{e}\right) \mathrm{P}_{\mathrm{R}} u_{\mu}\left(k_{\mu}\right) \mathcal{M}^{\left(\mu^{-}, e^{+}\right) \phi}
$$

with $\mathcal{M}^{\left(\mu^{-}, e^{+}\right) \phi}$ being the nuclear matrix element.

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

From amplitude to decay rate using Fermi's Golden rule:

$$
\Gamma=2 \pi \frac{1 / T}{(2 \pi)^{3}} \int \mathrm{~d}^{3} k_{e}|\mathcal{M}|^{2}
$$

So, we need to

- spin sum/average $\rightarrow 1 / 4$
- rewrite nuclear matrix element using that the muon wave function varies only slowly within nucleus:
- square delta-function: " $\delta\left(E_{f}-E_{i}+E_{e}-E_{\mu}\right)^{2 "}=\frac{T}{2 \pi} \delta\left(E_{f}-E_{i}+E_{e}-E_{\mu}\right)$

\square

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

From amplitude to decay rate using Fermi's Golden rule:

$$
\Gamma=2 \pi \frac{1 / T}{(2 \pi)^{3}} \int \mathrm{~d}^{3} k_{e}|\mathcal{M}|^{2}
$$

So, we need to

- spin sum/average $\rightarrow 1 / 4$
- rewrite nuclear matrix element using that the muon wave function varies only slowly within nucleus: $\left|\mathcal{M}^{\left(\mu^{-}, e^{+}\right) \phi}\right|^{2}=\left\langle\phi_{\mu}\right\rangle^{2}\left|\mathcal{M}^{\left(\mu^{-}, e^{+}\right)}\right|^{2}$
- square delta-function: " $\delta\left(E_{f}-E_{i}+E_{e}-E_{\mu}\right)^{2 "}=\frac{T}{2 \pi} \delta\left(E_{f}-E_{i}+E_{e}-E_{\mu}\right)$
and obtain the

Deriving the Decay Rate for ϵ_{3} based on TG, Merle arXiv:1612.00452

From amplitude to decay rate using Fermi's Golden rule:

$$
\Gamma=2 \pi \frac{1 / T}{(2 \pi)^{3}} \int \mathrm{~d}^{3} k_{e}|\mathcal{M}|^{2}
$$

So, we need to

- spin sum/average $\rightarrow 1 / 4$
- rewrite nuclear matrix element using that the muon wave function varies only slowly within nucleus: $\left|\mathcal{M}^{\left(\mu^{-}, e^{+}\right) \phi}\right|^{2}=\left\langle\phi_{\mu}\right\rangle^{2}\left|\mathcal{M}^{\left(\mu^{-}, e^{+}\right)}\right|^{2}$
- square delta-function: " $\delta\left(E_{f}-E_{i}+E_{e}-E_{\mu}\right)^{2}$ " $=\frac{T}{2 \pi} \delta\left(E_{f}-E_{i}+E_{e}-E_{\mu}\right)$ and obtain the decay rate:

$$
\Gamma=\frac{g_{A}^{4} G_{F}^{4} m_{e}^{2} m_{\mu}^{2}\left|\epsilon_{3}^{L L R}\right|^{2}}{32 \pi^{2} R^{2}}\left|F\left(Z-2, E_{e}\right)\right|\left\langle\phi_{\mu}\right\rangle^{2}\left|\mathcal{M}^{\left(\mu^{-}, e^{+}\right)}\right|^{2}
$$

\rightarrow can be generalised to $\epsilon_{3}^{x y z}$ for $x=y$
\rightarrow for $x \neq y$ there is a relative sign switched in the nuclear matrix element

Further Realisations of ϵ_{3}

Cheng-Geng-Ng model Cheng, Geng, Ng Phys.Rev. D75 (2007) 053004

Heavy Majorana neutrinos
Domin, Kovalenko, Faessler,
Simkovic Phys.Rev. C70 (2004) 065501

Left-Right symmetric

Further Realisations of ϵ_{3}

EFT with doubly charged scalar King, Merle, Panizzi
JHEP 1411 (2014) 124

Cheng-Geng-Ng model

Cheng, Geng, Ng Phys.Rev.

D75 (2007) 053004

Heavy Majorana neutrinos
Domin, Kovalenko, Faessler,
Simkovic Phys.Rev. C70
(2004) 065501

Further Realisations of ϵ_{3}

EFT with doubly charged scalar King, Merle, Panizzi JHEP 1411 (2014) 124

Cheng-Geng-Ng model

 Cheng, Geng, Ng Phys.Rev. D75 (2007) 053004

Heavy Majorana neutrinos
Domin, Kovalenko, Faessler, Simkovic Phys.Rev. C70 (2004) 065501

Further Realisations of ϵ_{3}

EFT with doubly charged scalar King, Merle, Panizzi JHEP 1411 (2014) 124

Cheng-Geng-Ng model Cheng, Geng, Ng Phys.Rev. D75 (2007) 053004

Heavy Majorana neutrinos
Domin, Kovalenko, Faessler, Simkovic Phys.Rev. C70 (2004) 065501

Further Realisations of ϵ_{3}

EFT with doubly charged scalar King, Merle, Panizzi JHEP 1411 (2014) 124

Cheng-Geng-Ng model Cheng, Geng, Ng Phys.Rev. D75 (2007) 053004

Heavy Majorana neutrinos Domin, Kovalenko, Faessler, Simkovic Phys.Rev. C70 (2004) 065501

Left-Right symmetric models Pritimita, Dash, Patra JHEP 1610 (2016) 147

Reach of Future Experiments for ϵ_{3}

based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

- obvious: limits on $0 \nu \beta \beta$ are superior to those of $\mu^{-}-e^{+}$ conversion by orders of magnitude
- but also apparent: there are models where LNV is much more prominent in e μ instead of ee sector
- there are much more settings/operators which are likely to sit within reach for the next generation of experiments

Reach of Future Experiments for ϵ_{3}

based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

- obvious: limits on $0 \nu \beta \beta$ are superior to those of $\mu^{-}-e^{+}$ conversion by orders of magnitude
- but also apparent: there are models where LNV is much more prominent in ell instead of ee sector
- there are much more settings/operators which are likely to sit within reach for the next generation of experiments

Reach of Future Experiments for ϵ_{3}

 based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

- obvious: limits on $0 \nu \beta \beta$ are superior to those of $\mu^{-}-e^{+}$ conversion by orders of magnitude
- but also apparent: there are models where LNV is much more prominent in $e \mu$ instead of ee sector
- there are much more
settings/operators which are likely to sit within reach for the next generation of experiments

Reach of Future Experiments for ϵ_{3}

 based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

- obvious: limits on $0 \nu \beta \beta$ are superior to those of $\mu^{-}-e^{+}$ conversion by orders of magnitude
- but also apparent: there are models where LNV is much more prominent in $e \mu$ instead of ee sector
- there are much more settings/operators which are likely to sit within reach for the next generation of experiments

Reach of Future Experiments for ϵ_{3}

 based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157LNV discovery potential

- obvious: limits on $0 \nu \beta \beta$ are superior to those of $\mu^{-}-e^{+}$ conversion by orders of magnitude
- but also apparent: there are models where LNV is much more prominent in $e \mu$ instead of ee sector
- there are much more settings/operators which are likely to sit within reach for the next generation of experiments
\Rightarrow valuable new information from $\mu^{-}-e^{+}$conversion experiments

Open Issues of $\mu^{-}-e^{+}$based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

However: several key pieces of information are missing!! We are in dire need of improvements from different areas:

- Experiment: more detailed sensitivity studies for $\mu^{-}-e^{+}$conversion
- Nuclear Matrix Elements:
- detailed study on percentage of process that is "coherent'
- hardly any nuclear matrix elements (NMEs) are available \rightarrow need for NMEs for further element, e. g. ${ }^{27} \mathrm{Al}$, and for other operators like $\epsilon_{1,2}$
\Rightarrow there are promising models but we cannot judge them properly
- Particle Physics: for many models there are no (detailed) studies on LNV in the $e \mu$ sector and no information on which effective operators are realised

Open Issues of $\mu^{-}-e^{+}$based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

However: several key pieces of information are missing!! We are in dire need of improvements from different areas:

- Experiment: more detailed sensitivity studies for $\mu^{-}-e^{+}$conversion
- Nuclear Matrix Elements:
- detailed study on percentage of process that is "coherent"
- hardly any nuclear matrix elements (NMEs) are available \rightarrow need for NMEs for further element, e. g. ${ }^{27} \mathrm{Al}$, and for other operators like $\epsilon_{1,2}$ \Rightarrow there are promising models but we cannot judge them properly
- Particle Physics: for many models there are no (detailed) studies on LNV in the e μ sector and no information on which effective operators are realised

Open Issues of $\mu^{-}-e^{+}$based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

However: several key pieces of information are missing!! We are in dire need of improvements from different areas:

- Experiment: more detailed sensitivity studies for $\mu^{-}-e^{+}$conversion
- Nuclear Matrix Elements:
- detailed study on percentage of process that is "coherent"
- nardy any nuclear matrix elements (NMEs) are available \rightarrow need for NMEs for further element, e. g. ${ }^{27} \mathrm{Al}$, and for other operators like $\epsilon_{1,2}$

Open Issues of $\mu^{-}-e^{+}$based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

However: several key pieces of information are missing!!
We are in dire need of improvements from different areas:

- Experiment: more detailed sensitivity studies for $\mu^{-}-e^{+}$conversion
- Nuclear Matrix Elements:
- detailed study on percentage of process that is "coherent"
- hardly any nuclear matrix elements (NMEs) are available \rightarrow need for NMEs for further element, e. g. ${ }^{27} \mathrm{Al}$, and for other operators like $\epsilon_{1,2}$
\Rightarrow there are promising models but we cannot judge them properly

Open Issues of $\mu^{-}-e^{+}$based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

However: several key pieces of information are missing!!
We are in dire need of improvements from different areas:

- Experiment: more detailed sensitivity studies for $\mu^{-}-e^{+}$conversion
- Nuclear Matrix Elements:
- detailed study on percentage of process that is "coherent"
- hardly any nuclear matrix elements (NMEs) are available \rightarrow need for NMEs for further element, e. g. ${ }^{27} \mathrm{Al}$, and for other operators like $\epsilon_{1,2}$
\Rightarrow there are promising models but we cannot judge them properly
- Particle Physics: for many models there are no (detailed) studies on LNV in the e μ sector and no information on which effective operators are realised

Open Issues of $\mu^{-}-e^{+}$based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

However: several key pieces of information are missing!!
We are in dire need of improvements from different areas:

- Experiment: more detailed sensitivity studies for $\mu^{-}-e^{+}$conversion
- Nuclear Matrix Elements:
- detailed study on percentage of process that is "coherent"
- hardly any nuclear matrix elements (NMEs) are available \rightarrow need for NMEs for further element, e. g. ${ }^{27} \mathrm{Al}$, and for other operators like $\epsilon_{1,2}$
\Rightarrow there are promising models but we cannot judge them properly
- Particle Physics: for many models there are no (detailed) studies on LNV in the e μ sector and no information on which effective operators are realised
\Rightarrow Only if all three communities pull together, advances will be achieved!!

Summary and Outlook

- orders of magnitude improvement of sensitivities in near-future experiments

```
- }\mp@subsup{\mu}{}{-}-\mp@subsup{e}{}{-}\mathrm{ conversion:
```

- FIRST work that treats $\mu^{-}-e^{-}$conversion in such detail,
 \rightarrow analytic expression for $\overline{\text { }}_{\text {particle }}$
- complementarity: rich phenomenology of loop models \rightarrow high- and low-energy processes $\rightarrow \mu^{-}-e^{-}$conversion important part of study
- $\mu^{-}-e^{+}$conversion:
- complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_{3}
- pointed out open issues and further models/operators
- LNV possibly more prominent in $e \mu$ sector \rightarrow experiments could make a countable physics impact
- open issues need to be addressed in order to proceed
- COMET: expecting to take first data in 2018

Summary and Outlook

- orders of magnitude improvement of sensitivities in near-future experiments
- $\mu^{-}-\boldsymbol{e}^{-}$conversion:
- FIRST work that treats $\mu^{-}-e^{-}$conversion in such detail,
i. e. beyond previous EFT treatment/approximations
\rightarrow analytic expression for $\bar{\Xi}_{\text {particle }}$
- complementarity: rich phenomenology of loop models \rightarrow high- and
low-energy processes $\rightarrow \mu^{-}-e^{-}$conversion important part of study
- $\mu^{-}-\boldsymbol{e}^{+}$conversion:
- complete computation of the rate for the lepton flavour and number
violating conversion process, mediated by the effective operator ϵ_{3}
- pointed out open issues and further models/operators
- LNV possibly more prominent in e μ sector \rightarrow experiments could make
a countable physics impact
- open issues need to be addressed in order to proceed
- COMET: expecting to take first data in 2018

Summary and Outlook

- orders of magnitude improvement of sensitivities in near-future experiments
- $\mu^{-}-e^{-}$conversion:
- FIRST work that treats $\mu^{-}-e^{-}$conversion in such detail,
i. e. beyond previous EFT treatment/approximations
\rightarrow analytic expression for $\bar{\Xi}_{\text {particle }}$
- complementarity: rich phenomenology of loop models \rightarrow high- and low-energy processes $\rightarrow \mu^{-}-e^{-}$conversion important part of study
- complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_{3}
- pointed out open issues and further models/operators
- LNV possibly more prominent in $e \mu$ sector \rightarrow experiments could make
a countable physics impact
- open issues need to be addressed in order to proceed
- COMET: expecting to take first data in 2018

Summary and Outlook

- orders of magnitude improvement of sensitivities in near-future experiments
- $\mu^{-}-e^{-}$conversion:
- FIRST work that treats $\mu^{-}-e^{-}$conversion in such detail,
i. e. beyond previous EFT treatment/approximations
\rightarrow analytic expression for $\bar{\Xi}_{\text {particle }}$
- complementarity: rich phenomenology of loop models \rightarrow high- and low-energy processes $\rightarrow \mu^{-}-e^{-}$conversion important part of study
- $\mu^{-}-e^{+}$conversion:
- complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_{3}
- pointed out open issues and further models/operators
- LNV possibly more prominent in $e \mu$ sector \rightarrow experiments could make a countable physics impact
- open issues need to be addressed in order to proceed
- COMET: expecting to take first data in 2018

Summary and Outlook

- orders of magnitude improvement of sensitivities in near-future experiments
- $\mu^{-}-\boldsymbol{e}^{-}$conversion:
- FIRST work that treats $\mu^{-}-e^{-}$conversion in such detail,
i. e. beyond previous EFT treatment/approximations
\rightarrow analytic expression for $\bar{\Xi}_{\text {particle }}$
- complementarity: rich phenomenology of loop models \rightarrow high- and low-energy processes $\rightarrow \mu^{-}-e^{-}$conversion important part of study
- $\mu^{-}-e^{+}$conversion:
- complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_{3}
- pointed out open issues and further models/operators
- LNV possibly more prominent in $e \mu$ sector \rightarrow experiments could make a countable physics impact
- COMET: expecting to take first data in 2018

Summary and Outlook

- orders of magnitude improvement of sensitivities in near-future experiments
- $\mu^{-}-\boldsymbol{e}^{-}$conversion:
- FIRST work that treats $\mu^{-}-e^{-}$conversion in such detail,
i. e. beyond previous EFT treatment/approximations
\rightarrow analytic expression for $\bar{\Xi}_{\text {particle }}$
- complementarity: rich phenomenology of loop models \rightarrow high- and low-energy processes $\rightarrow \mu^{-}-e^{-}$conversion important part of study
- $\mu^{-}-e^{+}$conversion:
- complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_{3}
- pointed out open issues and further models/operators
- LNV possibly more prominent in $e \mu$ sector \rightarrow experiments could make a countable physics impact
- open issues need to be addressed in order to proceed
- COMET
expecting to take first data in 2018

Summary and Outlook

- orders of magnitude improvement of sensitivities in near-future experiments
- $\mu^{-}-e^{-}$conversion:
- FIRST work that treats $\mu^{-}-e^{-}$conversion in such detail,
i. e. beyond previous EFT treatment/approximations
\rightarrow analytic expression for $\bar{\Xi}_{\text {particle }}$
- complementarity: rich phenomenology of loop models \rightarrow high- and low-energy processes $\rightarrow \mu^{-}-e^{-}$conversion important part of study
- $\mu^{-}-e^{+}$conversion:
- complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_{3}
- pointed out open issues and further models/operators
- LNV possibly more prominent in $e \mu$ sector \rightarrow experiments could make a countable physics impact
- open issues need to be addressed in order to proceed
- COMET: expecting to take first data in 2018

Thank you for your attention!!

Any questions?

Backup Slides

Generating the Neutrino Mass

The mass is generated at two-loop level via the diagram

which leads to the neutrino mass

$$
\mathcal{M}_{\nu, a b}^{2 \text {-loop }}=\frac{2 \xi m_{a} m_{b} M_{S}^{2} g_{a b}\left(1+\delta_{a b}\right)}{\Lambda^{3}} \mathcal{I}\left[M_{W}, M_{S}, \mu\right]
$$

\longrightarrow Majorana mass term
\longrightarrow further LNV processes

Testing the Model

Selection of interesting processes: low energy physics

- neutrinoless double beta decay:

$$
\frac{\xi f_{e e}}{M_{S}^{2} \Lambda^{3}}<\frac{4.0 \cdot 10^{-3}}{T e V^{5}}
$$

- $\mu^{-} \rightarrow e^{-} \gamma$:

$$
\left|f_{e e}^{*} f_{e \mu}+f_{e \mu}^{*} f_{\mu \mu}+f_{e \tau}^{*} f_{\mu \tau}\right|<3.2 \cdot 10^{-4} M_{S}^{2}[\mathrm{TeV}]
$$

Testing the Model

benchmark points:

$f_{a b}$ such that bounds fulfilled + suitable light neutrino mass matrix reproduced

- 'red': $f_{e e} \simeq 0$ and $f_{e \tau} \simeq 0$
- 'purple': $f_{e e} \simeq 0$ and $f_{e \mu} \simeq \frac{f_{\mu \tau}^{*}}{f_{\mu \mu}^{*}} f_{e \tau}$
- 'blue': $f_{e \mu} \simeq \frac{f_{\mu \tau}^{*}}{f_{\mu \mu}^{*}} f_{e \tau}$
complementary check with high energy experiments:
compute cross sections for e.g.

Testing the Model

benchmark points:
$f_{a b}$ such that bounds fulfilled + suitable light neutrino mass matrix reproduced

- 'red': $f_{e e} \simeq 0$ and $f_{e \tau} \simeq 0$
- 'purple': $f_{e e} \simeq 0$ and $f_{e \mu} \simeq \frac{f_{\mu \tau}^{*}}{f_{\mu \mu}^{*}} f_{e \tau}$
- 'blue': $f_{e \mu} \simeq \frac{f_{\mu \tau}^{*}}{f_{\mu \mu}^{*}} f_{e \tau}$
complementary check with high energy experiments: compute cross sections for e.g.
- $S^{ \pm \pm} \rightarrow W^{ \pm \pm}$
- $S^{ \pm \pm} \rightarrow l_{a}^{ \pm \pm} l_{b}^{ \pm \pm}$
\rightarrow some of the benchmark points already excluded by LHC data (7 TeV run)

Photonic Contribution: Cross Check via UV Divergences

 In form of $i \mathcal{M}=e f_{e a}^{*} f_{a \mu} A_{\nu}\left(q^{\prime}\right) \bar{u}_{e}\left(p_{e}\right) \mathcal{I}^{\nu} u_{\mu}\left(p_{\mu}\right)$:

Photonic Contribution: Cross Check via UV Divergences

 In form of $i \mathcal{M}=e f_{e a}^{*} f_{a \mu} A_{\nu}\left(q^{\prime}\right) \bar{u}_{e}\left(p_{e}\right) \mathcal{I}^{\nu} u_{\mu}\left(p_{\mu}\right)$:

$$
-4 Q_{S} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{P_{L} k\left(2 p_{\mu}-2 k+q^{\prime}\right)^{\nu}}{\left[k^{2}-m_{a}^{2}\right]\left[\left(p_{\mu}-k+q^{\prime}\right)^{2}-M_{S}^{2}\right]\left[\left(p_{\mu}-k\right)^{2}-M_{S}^{2}\right]} \stackrel{\text { div }}{\longrightarrow} \frac{2 i}{(4 \pi)^{2} \varepsilon} Q_{S} P_{L} \gamma^{\nu}
$$

Photonic Contribution: Cross Check via UV Divergences

$$
\text { In form of } i \mathcal{M}=e f_{e a}^{*} f_{a \mu} A_{\nu}\left(q^{\prime}\right) \bar{u}_{e}\left(p_{e}\right) \mathcal{I}^{\nu} u_{\mu}\left(p_{\mu}\right) \text { : }
$$

$$
\begin{gathered}
-4 Q_{S} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{P_{L} k\left(2 p_{\mu}-2 k+q^{\prime}\right)^{\nu}}{\left[k^{2}-m_{a}^{2}\right]\left[\left(p_{\mu}-k+q^{\prime}\right)^{2}-M_{S}^{2}\right]\left[\left(p_{\mu}-k\right)^{2}-M_{S}^{2}\right]} \stackrel{\text { div }}{\longrightarrow} \frac{2 i}{(4 \pi)^{2} \varepsilon} Q_{S} P_{L} \gamma^{\nu} \\
-4 Q_{I+} \int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \frac{P_{L}\left(k+q^{\prime}+m_{a}\right) \gamma^{\nu}\left(k+m_{a}\right) P_{R}}{\left[k^{2}-m_{a}^{2}\right]\left[\left(p_{\mu}-k\right)^{2}-M_{S}^{2}\right]\left[\left(k+q^{\prime}\right)^{2}-m_{a}^{2}\right]} \stackrel{\text { div }}{\longrightarrow} \frac{-i}{(4 \pi)^{2} \varepsilon} Q_{I+} P_{L} \gamma^{\rho} \gamma^{\nu} \gamma_{\rho} P_{R}
\end{gathered}
$$

Photonic Contribution: Cross Check via UV Divergences

$$
\text { In form of } i \mathcal{M}=e f_{e a}^{*} f_{a \mu} A_{\nu}\left(q^{\prime}\right) \bar{u}_{e}\left(p_{e}\right) \mathcal{I}^{\nu} u_{\mu}\left(p_{\mu}\right) \text { : }
$$

$$
\begin{aligned}
& -4 Q_{S} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{P_{L} k\left(2 p_{\mu}-2 k+q^{\prime}\right)^{\nu}}{\left[k^{2}-m_{a}^{2} I\left(\rho_{\mu}-k+q^{\prime}\right)^{2}-M_{S}^{2} I\left(\rho_{\mu}-k\right)^{2}-M_{S}^{2}\right]} \xrightarrow{\text { div }} \frac{2 i}{(4 \pi)^{2} \varepsilon} Q_{S} P_{L} \gamma^{\nu} \\
& -4 Q_{I+} \int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \frac{P_{L}\left(k+\phi^{\prime}+m_{a}\right) \gamma^{\nu}\left(k+m_{a}\right) P_{R}}{\left.\left[k^{2}-m_{a}^{2} I\left(\rho_{\mu}-k\right)^{2}-M_{S}^{2}\right]\left(k+q^{\prime}\right)^{2}-m_{a}^{2}\right]} \xrightarrow{\text { div }} \frac{-i}{(4 \pi)^{2} \varepsilon} Q_{l+} P_{L} \gamma^{\rho} \gamma^{\nu} \gamma_{\rho} P_{R}
\end{aligned}
$$

$$
-4 Q_{\mu}-\int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \frac{P_{L} k\left(\phi_{e}+m_{\mu}\right) \gamma^{\nu}}{\left[p_{e}^{2}-m_{\mu}^{2}\right]\left[\left(p_{e}-k\right)^{2}-M_{S}^{2}\left[k^{2}-m_{a}^{2}\right]\right.} \stackrel{\text { div }}{\longrightarrow} \frac{2 i}{(4 \pi)^{2} \varepsilon} \frac{Q_{\mu}-}{m_{\mu}^{2}} P_{L} \phi_{e}\left(\phi_{e}+m_{\mu}\right) \gamma^{\nu}
$$

Photonic Contribution: Cross Check via UV Divergences

In form of $i \mathcal{M}=e f_{e a}^{*} f_{a \mu} A_{\nu}\left(q^{\prime}\right) \bar{u}_{e}\left(p_{e}\right) \mathcal{I}^{\nu} u_{\mu}\left(p_{\mu}\right)$:

$$
\begin{aligned}
& -4 Q_{S} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{P_{L} k\left(2 p_{\mu}-2 k+q^{\prime}\right)^{\nu}}{\left[k^{2}-m_{a}^{2}\right]\left[\left(p_{\mu}-k+q^{\prime}\right)^{2}-M_{S}^{2}\right]\left[\left(p_{\mu}-k\right)^{2}-M_{S}^{2}\right]} \stackrel{\text { div }}{\longrightarrow} \frac{2 i}{(4 \pi)^{2} \varepsilon} Q_{S} P_{L} \gamma^{\nu} \\
& -4 Q_{I}+\int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \frac{P_{L}\left(k+q^{\prime}+m_{a}\right) \gamma^{\nu}\left(k+m_{a}\right) P_{R}}{\left[k^{2}-m_{a}^{2}\right]\left[\left(p_{\mu}-k\right)^{2}-M_{S}^{2}\right]\left[\left(k+q^{\prime}\right)^{2}-m_{a}^{2}\right]} \stackrel{\text { div }}{\longrightarrow} \frac{-i}{(4 \pi)^{2} \varepsilon} Q_{I+} P_{L} \gamma^{\rho} \gamma^{\nu} \gamma_{\rho} P_{R} \\
& -4 Q_{\mu}-\int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \frac{P_{L} \not k\left(\not p_{e}+m_{\mu}\right) \gamma^{\nu}}{\left[p_{e}^{2}-m_{\mu}^{2}\right]\left[\left(p_{e}-k\right)^{2}-M_{S}^{2}\right]\left[k^{2}-m_{a}^{2}\right]} \stackrel{\text { div }}{\xrightarrow{(4 \pi)^{2} \varepsilon}} \frac{2 i}{Q_{\mu}-}{m_{\mu}^{2}}_{P_{L} \not 中_{e}}\left(\not p_{e}+m_{\mu}\right) \gamma^{\nu} \\
& 4 Q_{e}-\int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \frac{\gamma^{\nu} \not p_{\mu} P_{L} k}{\left[p_{\mu}^{2}\right]\left[\left(p_{\mu}-k\right)^{2}-M_{S}^{2}\right]\left[k^{2}-m_{a}^{2}\right]} \stackrel{\text { div }}{\longrightarrow} \frac{-2 i}{(4 \pi)^{2} \varepsilon} \frac{Q_{e}-}{m_{\mu}^{2}} \gamma^{\nu} \not p_{\mu} P_{L} \not p_{\mu}
\end{aligned}
$$

Photonic Contribution: Cross Check via UV Divergences

 In form of $i \mathcal{M}=e f_{e a}^{*} f_{a \mu} A_{\nu}\left(q^{\prime}\right) \bar{u}_{e}\left(p_{e}\right) \mathcal{I}^{\nu} u_{\mu}\left(p_{\mu}\right)$:

$$
\begin{aligned}
& -4 Q_{S} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{P_{L} \not k\left(2 p_{\mu}-2 k+q^{\prime}\right)^{\nu}}{\left[k^{2}-m_{a}^{2}\right]\left[\left(p_{\mu}-k+q^{\prime}\right)^{2}-M_{S}^{2}\right]\left[\left(p_{\mu}-k\right)^{2}-M_{S}^{2}\right]} \stackrel{\text { div }}{\longrightarrow} \frac{2 i}{(4 \pi)^{2} \varepsilon} Q_{S} P_{L} \gamma^{\nu} \\
& -4 Q_{I}+\int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \frac{P_{L}\left(\not k+\not q^{\prime}+m_{a}\right) \gamma^{\nu}\left(\not k+m_{a}\right) P_{R}}{\left[k^{2}-m_{a}^{2}\right]\left[\left(p_{\mu}-k\right)^{2}-M_{S}^{2}\right]\left[\left(k+q^{\prime}\right)^{2}-m_{a}^{2}\right]} \stackrel{\operatorname{div}}{\longrightarrow} \frac{-i}{(4 \pi)^{2} \varepsilon} Q_{I}+P_{L} \gamma^{\rho} \gamma^{\nu} \gamma_{\rho} P_{R} \\
& -4 Q_{\mu}-\int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \frac{P_{L} \not k\left(\not p_{e}+m_{\mu}\right) \gamma^{\nu}}{\left[p_{e}^{2}-m_{\mu}^{2}\right]\left[\left(p_{e}-k\right)^{2}-M_{S}^{2}\right]\left[k^{2}-m_{a}^{2}\right]} \stackrel{\operatorname{div}}{\longrightarrow} \frac{2 i}{(4 \pi)^{2} \varepsilon} \frac{Q_{\mu}-}{m_{\mu}^{2}} P_{L} \not p_{e}\left(\not p_{e}+m_{\mu}\right) \gamma^{\nu} \\
& 4 Q_{e}-\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\gamma^{\nu} \not p_{\mu} P_{L} \not k}{\left[p_{\mu}^{2}\right]\left[\left(p_{\mu}-k\right)^{2}-M_{S}^{2}\right]\left[k^{2}-m_{a}^{2}\right]} \stackrel{\operatorname{div}}{\longrightarrow} \frac{-2 i}{(4 \pi)^{2} \varepsilon} \frac{Q_{e}-}{m_{\mu}^{2}} \gamma^{\nu} \not p_{\mu} P_{L} \not p_{\mu} \\
& \Rightarrow \sum \mathcal{I}^{\nu}=\frac{i}{(4 \pi)^{2} \varepsilon}\left[\left(2 Q_{S}+2 Q_{1+}-Q_{e}-Q_{\mu}-\right) P_{L} \gamma^{\nu}\right]=0
\end{aligned}
$$

Photonic Contribution: Cross Check via UV Divergences

 In form of $i \mathcal{M}=e f_{e a}^{*} f_{a \mu} A_{\nu}\left(q^{\prime}\right) \bar{u}_{e}\left(p_{e}\right) \mathcal{I}^{\nu} u_{\mu}\left(p_{\mu}\right)$:

$$
\begin{aligned}
& -4 Q_{S} \int \frac{\mathrm{~d}^{d} k}{(2 \pi)^{d}} \frac{P_{L} k\left(2 p_{\mu}-2 k+q^{\prime}\right)^{\nu}}{\left[k^{2}-m_{a}^{2}\right]\left[\left(p_{\mu}-k+q^{\prime}\right)^{2}-M_{S}^{2}\right]\left[\left(p_{\mu}-k\right)^{2}-M_{S}^{2}\right]} \stackrel{\text { div }}{\longrightarrow} \frac{2 i}{(4 \pi)^{2} \varepsilon} Q_{S} P_{L} \gamma^{\nu} \\
& -4 Q_{I+} \int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \frac{P_{L}\left(k+\phi^{\prime}+m_{a}\right) \gamma^{\nu}\left(k+m_{a}\right) P_{R}}{\left[k^{2}-m_{a}^{2}\right]\left[\left(p_{\mu}-k\right)^{2}-M_{S}^{2}\right]\left[\left(k+q^{\prime}\right)^{2}-m_{a}^{2}\right]} \stackrel{\operatorname{div}}{\xrightarrow{(4 \pi)^{2} \varepsilon}} \frac{-i}{I+} P_{L} \gamma^{\rho} \gamma^{\nu} \gamma_{\rho} P_{R} \\
& -4 Q_{\mu}-\int \frac{\mathrm{d}^{d} k}{(2 \pi)^{d}} \frac{P_{L} k\left(\phi_{e}+m_{\mu}\right) \gamma^{\nu}}{\left[p_{e}^{2}-m_{\mu}^{2}\right]\left[\left(p_{e}-k\right)^{2}-M_{S}^{2}\right]\left[k^{2}-m_{a}^{2}\right]} \xrightarrow{\text { div }} \frac{2 i}{(4 \pi)^{2} \varepsilon} \frac{Q_{\mu}-}{m_{\mu}^{2}} P_{L \phi_{e}}\left(\phi_{e}+m_{\mu}\right) \gamma^{\nu} \\
& 4 Q_{e}-\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{\gamma^{\nu} \phi_{\mu} P_{L} k}{\left[p_{\mu}^{2}\right]\left[\left(p_{\mu}-k\right)^{2}-M_{S}^{2}\right]\left[k^{2}-m_{a}^{2}\right]} \xrightarrow{\text { div }} \frac{-2 i}{(4 \pi)^{2} \varepsilon} \frac{Q_{e}-}{m_{\mu}^{2}} \gamma^{\nu} \phi_{\mu} P_{L \phi_{\mu}} \\
& \Rightarrow \Sigma \mathcal{I}^{\nu}=\frac{i}{(4 \pi)^{2} \varepsilon}\left[\left(2 Q_{S}+2 Q_{H_{+}}-Q_{e^{-}}-Q_{\mu^{-}}\right) P_{L} \gamma^{\nu}\right]=0
\end{aligned}
$$

Photonic Contribution: Results I

Determine form factors with help of Mathematica package Package-X (Patel, arXiv:1503.01469):

$$
\begin{aligned}
& F_{1}\left(-m_{\mu}^{2}\right)=G_{1}\left(-m_{\mu}^{2}\right)= \\
& =-\frac{1}{128 \pi^{2} m_{\mu}^{4}} \sum_{a=e, \mu, \tau} f_{e a}^{*} f_{a \mu}\left[2 m_{\mu}^{2}\left(-5 m_{a}^{2}+6 m_{\mu}^{2}+5 M_{S}^{2}\right)-2 S_{a} m_{\mu}^{2}\left(m_{a}^{2}+3 m_{\mu}^{2}-M_{S}^{2}\right)\right. \\
& \ln \left[\frac{2 m_{a}^{2}}{2 m_{a}^{2}+m_{\mu}^{2}\left(1+S_{a}\right)}\right]+4 S_{S} m_{\mu}^{2}\left(m_{a}^{2}+m_{\mu}^{2}-M_{S}^{2}\right) \ln \left[\frac{2 M_{S}^{2}}{2 M_{S}^{2}+m_{\mu}^{2}\left(1+S_{S}\right)}\right]+\left(3 m _ { a } ^ { 2 } \left(2 m_{a}^{2}-m_{\mu}^{2}\right.\right. \\
& \left.\left.-4 M_{S}^{2}\right)+5 m_{\mu}^{4}-7 m_{\mu}^{2} M_{S}^{2}+6 M_{S}^{4}\right) \ln \left[\frac{m_{a}^{2}}{M_{S}^{2}}\right]+2 T_{a}\left(-6 m_{a}^{2}+m_{\mu}^{2}+6 M_{S}^{2}\right) \ln \left[\frac{2 m_{2} M_{S}}{m_{a}^{2}-m_{\mu}^{2}+M_{S}^{2}-T_{a}}\right] \\
& +2 m_{\mu}^{2}\left[\left(m_{a}^{4}+8 m_{a}^{2} m_{\mu}^{2}+M_{S}^{4}-2 M_{S}^{2}\left(m_{a}^{2}+2 m_{\mu}^{2}\right)\right) C_{0}\left[0,-m_{\mu}^{2}, m_{\mu}^{2} ; m_{a}, M_{S}, m_{a}\right]\right. \\
& \left.\left.+2\left(m_{a}^{4}-2 M_{S}^{2}\left(m_{a}^{2}-2 m_{\mu}^{2}\right)+M_{S}^{4}\right) C_{0}\left[0,-m_{\mu}^{2}, m_{\mu}^{2} ; M_{S}, m_{a}, M_{S}\right]\right]\right]
\end{aligned}
$$

Photonic Contribution: Results I

Determine form factors with help of Mathematica package Package-X (Patel, arXiv:1503.01469):

$$
\begin{aligned}
& \mathrm{F}_{1}\left(-m_{\mu}^{2}\right)=\mathrm{G}_{1}\left(-m_{\mu}^{2}\right)= \\
& =-\frac{1}{128 \pi^{2} m_{\mu}^{4}} \sum_{a=e, \mu, \tau} f_{e a}^{*} f_{a \mu}\left[2 m_{\mu}^{2}\left(-5 m_{a}^{2}+6 m_{\mu}^{2}+5 M_{S}^{2}\right)-2 S_{a} m_{\mu}^{2}\left(m_{a}^{2}+3 m_{\mu}^{2}-M_{S}^{2}\right)\right. \\
& \ln \left[\frac{2 m_{2}^{2}}{2 m_{a}^{2}+m_{\mu}^{2}\left(1+S_{a}\right)}\right]+4 S_{S} m_{\mu}^{2}\left(m_{a}^{2}+m_{\mu}^{2}-M_{S}^{2}\right) \ln \left[\frac{2 M_{S}^{S}}{2 M_{S}^{2}+m_{\mu}^{2}\left(1+S_{S}\right)}\right]+\left(3 m _ { a } ^ { 2 } \left(2 m_{a}^{2}-m_{\mu}^{2}\right.\right. \\
& \left.\left.-4 M_{S}^{2}\right)+5 m_{\mu}^{4}-7 m_{\mu}^{2} M_{S}^{2}+6 M_{S}^{4}\right) \ln \left[\frac{m_{a}^{2}}{M_{S}^{2}}\right]+2 T_{a}\left(-6 m_{a}^{2}+m_{\mu}^{2}+6 M_{S}^{2}\right) \ln \left[\frac{2 m_{a} M_{S}}{m_{a}^{2}-m_{\mu}^{2}+M_{S}^{2}-T_{a}}\right] \\
& +2 m_{\mu}^{2}\left[\left(m_{a}^{4}+8 m_{a}^{2} m_{\mu}^{2}+M_{S}^{4}-2 M_{S}^{2}\left(m_{a}^{2}+2 m_{\mu}^{2}\right)\right) C_{0}\left[0,-m_{\mu}^{2}, m_{\mu}^{2} ; m_{a}, M_{S}, m_{a}\right]\right. \\
& \left.\left.+2\left(m_{a}^{4}-2 M_{S}^{2}\left(m_{a}^{2}-2 m_{\mu}^{2}\right)+M_{S}^{4}\right) C_{0}\left[0,-m_{\mu}^{2}, m_{\mu}^{2} ; M_{S}, m_{a}, M_{S}\right]\right]\right] \\
& \xrightarrow{M_{S} \gg m_{a}} \longrightarrow-f_{e a}^{*} f_{a \mu}\left[\frac{2 m_{a}^{2}+m_{\mu}^{2} \log \left(\frac{m_{a}}{S_{S}}\right)}{12 \pi^{2} M_{S}^{2}}+\frac{\sqrt{m_{\mu}^{2}+4 m_{2}^{2}}\left(m_{\mu}^{2}-2 m_{a}^{2}\right)}{12 \pi^{2} m_{\mu} M_{S}^{2}} \operatorname{Arctanh}\left(\frac{m_{\mu}}{\sqrt{m_{\mu}^{2}+4 m_{a}^{2}}}\right)\right]+\mathcal{O}\left(M_{S}^{-4}\right)
\end{aligned}
$$

Photonic Contribution: Results I

Determine form factors with help of Mathematica package Package-X (Patel, arXiv:1503.01469):

$$
\begin{aligned}
& F_{1}\left(-m_{\mu}^{2}\right)=G_{1}\left(-m_{\mu}^{2}\right)= \\
& =-\frac{1}{128 \pi^{2} m_{\mu}^{4}} \sum_{a=e, \mu, \tau} f_{e a}^{*} f_{a \mu}\left[2 m_{\mu}^{2}\left(-5 m_{a}^{2}+6 m_{\mu}^{2}+5 M_{S}^{2}\right)-2 S_{a} m_{\mu}^{2}\left(m_{a}^{2}+3 m_{\mu}^{2}-M_{S}^{2}\right)\right. \\
& \ln \left[\frac{2 m_{a}^{2}}{2 m_{2}^{2}+m_{\mu}^{2}\left(1+S_{a}\right)}\right]+4 S_{S} m_{\mu}^{2}\left(m_{a}^{2}+m_{\mu}^{2}-M_{S}^{2}\right) \ln \left[\frac{2 M_{S}^{2}}{2 M_{S}^{2}+m_{\mu}^{2}\left(1+S_{S}\right)}\right]+\left(3 m _ { a } ^ { 2 } \left(2 m_{a}^{2}-m_{\mu}^{2}\right.\right. \\
& \left.\left.-4 M_{S}^{2}\right)+5 m_{\mu}^{4}-7 m_{\mu}^{2} M_{S}^{2}+6 M_{S}^{4}\right) \ln \left[\frac{m_{a}^{2}}{M_{S}^{2}}\right]+2 T_{a}\left(-6 m_{a}^{2}+m_{\mu}^{2}+6 M_{S}^{2}\right) \ln \left[\frac{2 m_{2} M_{S}}{m_{a}^{2}-m_{\mu}^{2}+M_{S}^{2}-T_{a}}\right] \\
& +2 m_{\mu}^{2}\left[\left(m_{a}^{4}+8 m_{a}^{2} m_{\mu}^{2}+M_{S}^{4}-2 M_{S}^{2}\left(m_{a}^{2}+2 m_{\mu}^{2}\right)\right) C_{0}\left[0,-m_{\mu}^{2}, m_{\mu}^{2} ; m_{a}, M_{S}, m_{a}\right]\right. \\
& \left.\left.+2\left(m_{a}^{4}-2 M_{S}^{2}\left(m_{a}^{2}-2 m_{\mu}^{2}\right)+M_{S}^{4}\right) C_{0}\left[0,-m_{\mu}^{2}, m_{\mu}^{2} ; M_{S}, m_{a}, M_{S}\right]\right]\right]
\end{aligned}
$$

$$
\xrightarrow{M_{s} \gg m_{a}}-f_{e a}^{*} f_{a \mu}\left[\frac{2 m_{a}^{2}+m_{\mu}^{2} \log \left(\frac{m_{a}}{M_{S}}\right)}{12 \pi^{2} M_{S}^{2}}+\frac{\sqrt{m_{\mu}^{2}+4 m_{2}^{2}}\left(m_{\mu}^{2}-2 m_{a}^{2}\right)}{12 \pi^{2} m_{\mu} M_{s}^{2}} \operatorname{Arctanh}\left(\frac{m_{\mu}}{\sqrt{m_{\mu}^{2}+4 m_{a}^{2}}}\right)\right]+\mathcal{O}\left(M_{S}^{-4}\right)
$$

Note: $\mathcal{O}\left(M_{S}^{-4}\right)$ gives corrections of up to a few per cent

Photonic Contribution: Results I

Determine form factors with help of Mathematica package Package-X (Patel, arXiv:1503.01469):

$$
\begin{aligned}
& F_{2}\left(-m_{\mu}^{2}\right)=-G_{2}\left(-m_{\mu}^{2}\right)= \\
& =-\frac{1}{128 \pi^{2} m_{\mu}^{4}} \sum_{a=e, \mu, \tau} f_{e a}^{*} f_{a \mu}\left[2 m_{\mu}^{2}\left(-m_{a}^{2}+6 m_{\mu}^{2}+M_{S}^{2}\right)+2 S_{a} m_{\mu}^{2}\left(3 m_{a}^{2}+m_{\mu}^{2}-3 M_{S}^{2}\right)\right. \\
& \ln \left[\frac{2 m_{2}^{2}}{2 m_{a}^{2}+m_{\mu}^{2}\left(1+S_{a}\right)}\right]+4 S_{S} m_{\mu}^{2}\left(-3 m_{a}^{2}+m_{\mu}^{2}+3 M_{S}^{2}\right) \ln \left[\frac{2 M_{S}^{2}}{2 M_{S}^{2}+m_{\mu}^{\prime}\left(1+S_{S}\right)}\right] \\
& +\left(m_{a}^{2}\left(-2 m_{a}^{2}-7 m_{\mu}^{2}+4 M_{S}^{2}\right)+m_{\mu}^{4}+5 m_{\mu}^{2} M_{S}^{2}-2 M_{S}^{4}\right) \ln \left[\frac{m_{a}^{2}}{M_{S}^{2}}\right]+2 T_{a}\left(2 m_{a}^{2}-3 m_{\mu}^{2}-2 M_{S}^{2}\right) \\
& \ln \left[\frac{2 m_{a} M_{S}}{m_{a}^{2}-m_{\mu}^{2}+M_{S}^{2}-T_{a}}\right]+2 m_{\mu}^{2}\left[\left(-3 m_{a}^{4}-3 M_{S}^{4}+2 M_{S}^{2}\left(3 m_{a}^{2}+2 m_{\mu}^{2}\right)\right) C_{0}\left[0,-m_{\mu}^{2}, m_{\mu}^{2} ; m_{a}, M_{S}, m_{a}\right]\right. \\
& \left.\left.+2\left(-3 m_{a}^{4}+2 m_{a}^{2}\left(3 M_{S}^{2}+2 m_{\mu}^{2}\right)-3 M_{S}^{4}\right) C_{0}\left[0,-m_{\mu}^{2}, m_{\mu}^{2} ; M_{S}, m_{a}, M_{S}\right]\right]\right]
\end{aligned}
$$

Photonic Contribution: Results I

Determine form factors with help of Mathematica package Package-X (Patel, arXiv:1503.01469):

$$
\begin{aligned}
& \mathrm{F}_{2}\left(-m_{\mu}^{2}\right)=-G_{2}\left(-m_{\mu}^{2}\right)= \\
& =-\frac{1}{128 \pi^{2} m_{\mu}^{4}} \sum_{a=e, \mu, \tau} f_{e a}^{*} f_{a \mu}\left[2 m_{\mu}^{2}\left(-m_{a}^{2}+6 m_{\mu}^{2}+M_{S}^{2}\right)+2 S_{a} m_{\mu}^{2}\left(3 m_{a}^{2}+m_{\mu}^{2}-3 M_{S}^{2}\right)\right. \\
& \ln \left[\frac{2 m_{2}^{2}}{2 m_{a}^{2}+m_{\mu}^{2}\left(1+S_{a}\right)}\right]+4 S_{S} m_{\mu}^{2}\left(-3 m_{a}^{2}+m_{\mu}^{2}+3 M_{S}^{2}\right) \ln \left[\frac{2 M_{S}^{2}}{2 M_{S}^{2}+m_{\mu}^{2}\left(1+S_{S}\right)}\right] \\
& +\left(m_{a}^{2}\left(-2 m_{a}^{2}-7 m_{\mu}^{2}+4 M_{S}^{2}\right)+m_{\mu}^{4}+5 m_{\mu}^{2} M_{S}^{2}-2 M_{S}^{4}\right) \ln \left[\frac{m_{a}^{a}}{M_{S}^{2}}\right]+2 T_{a}\left(2 m_{a}^{2}-3 m_{\mu}^{2}-2 M_{S}^{2}\right) \\
& \ln \left[\frac{2 m_{a} M_{S}}{m_{a}^{2}-m_{\mu}^{2}+M_{S}^{2}-T_{a}}\right]+2 m_{\mu}^{2}\left[\left(-3 m_{a}^{4}-3 M_{S}^{4}+2 M_{S}^{2}\left(3 m_{a}^{2}+2 m_{\mu}^{2}\right)\right) C_{0}\left[0,-m_{\mu}^{2}, m_{\mu}^{2} ; m_{a}, M_{S}, m_{a}\right]\right. \\
& \left.\left.+2\left(-3 m_{a}^{4}+2 m_{a}^{2}\left(3 M_{S}^{2}+2 m_{\mu}^{2}\right)-3 M_{S}^{4}\right) C_{0}\left[0,-m_{\mu}^{2}, m_{\mu}^{2} ; M_{S}, m_{a}, M_{S}\right]\right]\right] \\
& \xrightarrow{M_{S} \gg m_{a}} f_{e a}^{*} f_{a \mu} \frac{m_{\mu}^{2}}{24 \pi^{2} M_{S}^{2}}+\mathcal{O}\left(M_{S}^{-4}\right)
\end{aligned}
$$

Photonic Contribution: Results I

Determine form factors with help of Mathematica package Package-X (Patel, arXiv:1503.01469):

$$
\begin{aligned}
& \mathrm{F}_{2}\left(-m_{\mu}^{2}\right)=-G_{2}\left(-m_{\mu}^{2}\right)= \\
& =-\frac{1}{128 \pi^{2} m_{\mu}^{4}} \sum_{a=e, \mu, \tau} f_{e a}^{*} f_{a \mu}\left[2 m_{\mu}^{2}\left(-m_{a}^{2}+6 m_{\mu}^{2}+M_{S}^{2}\right)+2 S_{a} m_{\mu}^{2}\left(3 m_{a}^{2}+m_{\mu}^{2}-3 M_{S}^{2}\right)\right. \\
& \ln \left[\frac{2 m_{a}^{2}}{2 m_{a}^{2}+m_{\mu}^{2}\left(1+S_{a}\right)}\right]+4 S_{S} m_{\mu}^{2}\left(-3 m_{a}^{2}+m_{\mu}^{2}+3 M_{S}^{2}\right) \ln \left[\frac{2 M_{S}^{2}}{2 M_{S}^{2}+m_{\mu}^{2}\left(1+S_{S}\right)}\right] \\
& +\left(m_{a}^{2}\left(-2 m_{a}^{2}-7 m_{\mu}^{2}+4 M_{S}^{2}\right)+m_{\mu}^{4}+5 m_{\mu}^{2} M_{S}^{2}-2 M_{S}^{4}\right) \ln \left[\frac{m_{a}^{a}}{M_{S}^{2}}\right]+2 T_{a}\left(2 m_{a}^{2}-3 m_{\mu}^{2}-2 M_{S}^{2}\right) \\
& \ln \left[\frac{2 m_{a} M_{S}}{m_{a}^{2}-m_{\mu}^{2}+M_{S}^{2}-T_{a}}\right]+2 m_{\mu}^{2}\left[\left(-3 m_{a}^{4}-3 M_{S}^{4}+2 M_{S}^{2}\left(3 m_{a}^{2}+2 m_{\mu}^{2}\right)\right) C_{0}\left[0,-m_{\mu}^{2}, m_{\mu}^{2} ; m_{a}, M_{S}, m_{a}\right]\right. \\
& \left.\left.+2\left(-3 m_{a}^{4}+2 m_{a}^{2}\left(3 M_{S}^{2}+2 m_{\mu}^{2}\right)-3 M_{S}^{4}\right) C_{0}\left[0,-m_{\mu}^{2}, m_{\mu}^{2} ; M_{S}, m_{a}, M_{S}\right]\right]\right] \\
& \xrightarrow{M_{S} \gg m_{a}} f_{e a}^{*} f_{a \mu} \frac{m_{\mu}^{2}}{24 \pi^{2} M_{S}^{2}}+\mathcal{O}\left(M_{S}^{-4}\right)
\end{aligned}
$$

Note: $\mathcal{O}\left(M_{S}^{-4}\right)$ gives corrections of up to a few per cent

'Average Scenario' Couplings

	red	purple	blue
$f_{e e}$	10^{-16}	10^{-15}	10^{-1}
$f_{e \mu}$	10^{-2}	10^{-3}	10^{-4}
$f_{e \tau}$	10^{-19}	10^{-2}	10^{-2}
$f_{\mu \mu}$	10^{-4}	10^{-3}	10^{-3}
$f_{\mu \tau}$	10^{-5}	10^{-4}	10^{-4}
$f_{e e} f_{e \mu}$	10^{-18}	10^{-18}	$\mathbf{1 0}^{-5}$
$f_{e \mu} f_{\mu \mu}$	$\mathbf{1 0}^{-6}$	$\mathbf{1 0}^{-6}$	10^{-7}
$f_{e \tau} f_{\mu \tau}$	10^{-24}	$\mathbf{1 0}^{-6}$	10^{-6}

Table: First part: 'average scenario' couplings for the benchmark points as extracted from Tab. 7 in King, Merle, Panizzi: arXiv:1406.4137. Second part: combination of couplings that enter the $\mu-e$ conversion amplitude. The bold values indicate the dominant photonic contribution.

Non-Photonic Bands

- The amplitude that enters the non-photonic इ takes the form

$$
\mathcal{A} \propto\left|f_{e e}^{*} f_{e \mu} D\left(m_{e}\right)+f_{e \mu}^{*} f_{\mu \mu} D\left(m_{\mu}\right)+f_{e \tau}^{*} f_{\tau \mu} D\left(m_{\tau}\right)\right| .
$$

- The function $D\left(m_{a}\right)$ strongly varies with m_{a}. \rightarrow dominant term stems from the tau propagating within the loop, i.e. $\boldsymbol{D}\left(\boldsymbol{m}_{\tau}\right)$
\rightarrow exeeds the muon and electron contribution by three to four orders of magnitude
- blue/purple scenario: neither $f_{e e}^{*} f_{e \mu}$ nor $f_{e \mu}^{*} f_{\mu \mu}$ bypasses this difference + identic $\boldsymbol{f}_{\boldsymbol{e} \tau}^{*} \boldsymbol{f}_{\tau \mu}$ in both scenarios
\rightarrow indistinguishable curves
- red/grey scenario:
dominant contributions: $f_{e \mu}^{*} f_{\mu \mu} D\left(m_{\mu}\right) \sim f_{e \tau}^{*} f_{\tau \mu} D\left(m_{\tau}\right)$
\rightarrow same order of magnitude, i.e. comparable values of non-photonic contribution

