Conversion of Bound Muons: Lepton Flavour and Number Violation

Tanja Geib

+ Alexander Merle: *Phys. Rev. D93 (2016) 055039* → technical details on $\mu^- \rightarrow e^-$
+ Alexander Merle: *arXiv:1612.00452* → technical details on $\mu^- \rightarrow e^+$

Max Planck Institute for Physics

PSI Seminar, December 16, 2016
Today’s Agenda:

- What happens in a $\mu^− - e^+$ conversion?
- What are similarities and differences when considering $\mu^− - e^−$ and $\mu^− - e^+$ conversion?
- How to tackle $\mu^− - e^−$ conversion (using the example of a realisation via doubly charged scalars)?
- Employing the complementarity between collider and low energy physics to increase the testability \rightarrow Results based on the example case
- How to tackle $\mu^− - e^+$ conversion (using the example of a realisation via doubly charged scalars)?
- Discovery potential for $\mu^− - e^+$ conversion
- Open issues \rightarrow where do we need to improve in order to get reliable predictions?
- Summary and Outlook
Today’s Agenda:

- What happens in a $\mu^− e^+$ conversion?
- What are similarities and differences when considering $\mu^− e^−$ and $\mu^− e^+$ conversion?
- How to tackle $\mu^− e^−$ conversion (using the example of a realisation via doubly charged scalars)?
- Employing the complementarity between collider and low energy physics to increase the testability → Results based on the example case
- How to tackle $\mu^− e^+$ conversion (using the example of a realisation via doubly charged scalars)?
- Discovery potential for $\mu^− e^+$ conversion
- Open issues → where do we need to improve in order to get reliable predictions?
- Summary and Outlook
Today’s Agenda:

- What happens in a $\mu^- - e^-$ conversion?
- What are similarities and differences when considering $\mu^- - e^-$ and $\mu^- - e^+$ conversion?
- How to tackle $\mu^- - e^-$ conversion (using the example of a realisation via doubly charged scalars)?
- Employing the complementarity between collider and low energy physics to increase the testability → Results based on the example case
- How to tackle $\mu^- - e^+$ conversion (using the example of a realisation via doubly charged scalars)?
- Discovery potential for $\mu^- - e^+$ conversion
- Open issues → where do we need to improve in order to get reliable predictions?

Summary and Outlook
Today’s Agenda:

- What happens in a $\mu^−-e^+$ conversion?
- What are similarities and differences when considering $\mu^−-e^−$ and $\mu^−-e^+$ conversion?
- How to tackle $\mu^−-e^−$ conversion (using the example of a realisation via doubly charged scalars)?
- Employing the complementarity between collider and low energy physics to increase the testability → Results based on the example case
- How to tackle $\mu^−-e^+$ conversion (using the example of a realisation via doubly charged scalars)?
- Discovery potential for $\mu^−-e^+$ conversion
- Open issues → where do we need to improve in order to get reliable predictions?
- Summary and Outlook
μ−e Conversion

What happens in a $\mu^- e^{\pm}$ conversion? → experimentally a two-step process

First Step: μ^- is captured in an ‘outer’ atomic shell, and subsequently de-excites to the 1s ground state.

Second Step: μ^- is captured by the nucleus and reemits an e^{\pm}.

→ we only consider "coherent" conversion: initial and final state nucleus are in ground state.
μ-e Conversion

What happens in a $\mu^- e^\pm$ conversion? → experimentally a two-step process

First Step: μ^- is captured in an ‘outer’ atomic shell, and subsequently de-excites to the 1s ground state.

Second Step: μ^- is captured by the nucleus and reemits an e^\pm.

→ we only consider "coherent" conversion: initial and final state nucleus are in ground state.
What happens in a $\mu^− - e^\pm$ conversion?? → experimentally a two-step process

First Step: $\mu^−$ is captured in an ‘outer’ atomic shell, and subsequently de-excites to the 1s ground state

Second Step: $\mu^−$ is captured by the nucleus and reemits an e^\pm

→ we only consider "coherent" conversion: initial and final state nucleus are in ground state
μ−e Conversion

What happens in a **μ− e± conversion**?? → experimentally a two-step process

![Diagram](mu-e_conversion_diagram.png)

- **First Step**: \(\mu^- \) is captured in an ‘outer’ atomic shell, and subsequently de-excites to the 1s ground state

- **Second Step**: \(\mu^- \) is captured by the nucleus and reemits an \(e^\pm \)

→ we only consider "**coherent**" conversion: initial and final state nucleus are in ground state
Energy Scales of the Process

- muon **bound** in **1s state** with binding energy
 \[\epsilon_B \approx \frac{m_\mu}{m_e} \cdot 13.6 \text{ eV} \cdot Z \ll m_\mu \xrightarrow{Z \leq 100} \text{non-relativistic} \]

- consider "coherent" process \(\rightarrow\) initial and final nucleus in **ground state**
 + in good approximation: both nuclei at rest
 \[
 \Rightarrow E_e = m_\mu - \epsilon_B + E_i - E_f \sim \mathcal{O}(100 \text{ MeV})
 \]
 \[
 \Rightarrow E_\mu \sim \mathcal{O}(\text{MeV}) \\
 \sim \mathcal{O}(100 \text{ MeV})
 \]

- \(\Rightarrow e^{\pm}\) is **relativistic** particle under influence of Coulomb potential:
 \[E_e \approx E_\mu \approx m_\mu \text{ and } m_e \approx 0 \]

- for 4-momentum transfer \(q' = p_e - p_\mu\)
 In this set-up \(\Rightarrow q'^2 \approx -m_\mu^2\)
Energy Scales of the Process

- muon **bound** in **1s state** with binding energy
 \[\epsilon_B \approx \frac{m_\mu}{m_e} \cdot 13.6 \text{ eV} \cdot Z \ll m_\mu \stackrel{Z \leq 100}{\rightarrow} \text{non-relativistic} \]

- consider "**coherent**" process \(\rightarrow\) initial and final nucleus in **ground state**
 + in good approximation: both nuclei at rest

 \[\Rightarrow E_e = m_\mu - \epsilon_B + E_i - E_f \sim \mathcal{O}(100 \text{ MeV}) \]
 \[\Rightarrow E_\mu \sim \mathcal{O}(\text{MeV}) \]
 \[\Rightarrow E_\mu \sim \mathcal{O}(100 \text{ MeV}) \]

 \[\Rightarrow e^\pm \text{ is **relativistic** particle under influence of Coulomb potential:} \]
 \[E_e \sim E_\mu \sim m_\mu \text{ and } m_e \approx 0 \]

- for 4-momentum transfer \(q' = p_e - p_\mu\)
 \[\Rightarrow q'^2 \approx -m_\mu^2 \]
Energy Scales of the Process

- **muon bound in 1s state** with binding energy
 \[\epsilon_B \approx \frac{m_\mu}{m_e} \cdot 13.6 \text{ eV} \cdot Z \ll m_\mu \xrightarrow{Z \leq 100} \text{non-relativistic} \]

- consider "coherent" process \(\rightarrow \) initial and final nucleus in **ground state**
 + in good approximation: both nuclei at rest

\[\Rightarrow E_e = m_\mu - \epsilon_B + E_i - E_f \sim \mathcal{O}(100 \text{ MeV}) \]

\[\Rightarrow E_\mu \sim \mathcal{O}(\text{MeV}) \]

\[\Rightarrow E_e \sim E_\mu \sim m_\mu \text{ and } m_e \approx 0 \]

- for 4-momentum transfer \(q' = p_e - p_\mu \)

 In this set-up \(\Rightarrow q'^2 \approx -m_\mu^2 \)

[Diagram of the process]
Energy Scales of the Process

- muon **bound** in **1s state** with binding energy
 \[\epsilon_B \approx \frac{m_\mu}{m_e} \cdot 13.6 \text{ eV} \cdot Z \ll m_\mu \overset{Z \leq 100}{\longrightarrow} \text{non-relativistic} \]

- consider "**coherent**" process → initial and final nucleus in **ground state**
 + in good approximation: both nuclei at rest

 \[\Rightarrow E_e = m_\mu - \epsilon_B + E_i - E_f \sim \mathcal{O}(100 \text{ MeV}) \]
 \[E_\mu \sim \mathcal{O}(\text{MeV}) \]
 \[\sim \mathcal{O}(100 \text{ MeV}) \]

 \[\Rightarrow e^\pm \text{ is **relativistic** particle under influence of Coulomb potential: } E_e \sim E_\mu \sim m_\mu \text{ and } m_e \approx 0 \]

- for 4-momentum transfer \(q' = p_e - p_\mu \)
 In this set-up \(q'^2 \approx -m_\mu^2 \)
\[\mu^- - e^- \text{ vs } \mu^- - e^+ \text{ Conversion} \]

\[0\nu\beta\beta \]

\[\mu^- - e^- \text{ conv.} \]

LNV-Alternatives:
- \[\mu^- - \mu^+ \text{ conversion} \]
- \[K^+ \rightarrow \pi^+ \mu^+ \mu^- \]

LFV-Alternatives:
- \[\mu \rightarrow e + \gamma \]
- \[\mu \rightarrow 3e \]

from

\[\mu^- - e^+ \]

- needs to occur at two nucleons to achieve \(\Delta Q = 2 \) → similar to \(0\nu\beta\beta \)
- around 40% of the process’ total are g.s. → g.s.

\[\mu^- - e^- \]

- occurs at single nucleon \((\Delta Q = 0)\)
- dominated by coherent process

\[\mu^- - e^- \]

Further investigations needed:
- confirm/obtain the percentage that takes place "coherently"
- derive a more involved spectrum for the positrons
μʻ− eʻ vs μʻ− eʻ+ Conversion

LNV-Alternatives:
μʻ−μʻ+ conversion
Kʻ→ πʻμʻμʻ

LFV-Alternatives:
μʻ→ e+γ
μʻ→ 3e

μʻ− eʻ+

needs to occur at two nucleons to achieve \(\Delta Q = 2 \) → similar to \(0νββ \)

around 40% of the process’ total are g.s. → g.s.

μʻ− eʻ−

occurs at single nucleon
\((\Delta Q = 0) \)

dominated by coherent process

from

further investigations needed:
→ confirm/obtain the percentage that takes place "coherently"
→ derive a more involved spectrum for the positrons
\(\mu^- e^- \) vs \(\mu^- e^+ \) Conversion

- \(0\nu\beta\beta \): Analogous EFT treatment
- \(\mu^- e^+ \) conversion
- LNV-Alternatives: \(\mu^- \mu^+ \) conversion
 - \(K^+ \rightarrow \pi^+ \mu^- \mu^- \)
- LFV-Alternatives: "Mixing angles" (flavour structure)
 - \(\mu \rightarrow e + \gamma \)
 - \(\mu \rightarrow 3e \)

From

- \(\mu^- e^- \) occurs at single nucleon \((\Delta Q = 0)\)
- dominated by coherent process

- \(\mu^- e^+ \) needs to occur at two nucleons to achieve \(\Delta Q = 2 \) → similar to \(0\nu\beta\beta \)
- around 40% of the process’ total are g.s. → g.s.

Further investigations needed:
- confirm/obtain the percentage that takes place "coherently"
- derive a more involved spectrum for the positrons
\(\mu^- \rightarrow e^- \text{ vs } \mu^- \rightarrow e^+ \text{ Conversion} \)

LNV-Alternatives:
- \(\mu^-\mu^+ \) conversion
- \(K^+ \rightarrow \pi^+\mu^+\mu^- \)

LFV-Alternatives:
- \(\mu \rightarrow e+\gamma \)
- \(\mu \rightarrow 3e \)

\(0\nu\beta\beta \text{ from } TG, \text{ Merle, Zuber Phys.Lett. B764 (2017) 157} \)

- \(\mu^- \rightarrow e^- \)
 - occurs at single nucleon (\(\Delta Q = 0 \))
 - dominated by coherent process

- \(\mu^- \rightarrow e^+ \)
 - needs to occur at two nucleons to achieve \(\Delta Q = 2 \) → similar to \(0\nu\beta\beta \)
 - around 40% of the process’ total are g.s. → g.s.

Further investigations needed:
- confirm/obtain the percentage that takes place “coherently”
- derive a more involved spectrum for the positrons
Improvements from Upcoming Experiments

Snapshot on current limits and sensitivities of upcoming experiments:

past: SINDRUM II for ^{48}Ti (1993), ^{208}Pb (1995), ^{197}Au (2006)

future: DeeMee for ^{28}Si, COMET and Mu2e (taking data ~ 2018) for ^{27}Al, PRISM/PRIME for ^{48}Ti

\rightarrow improvements can be transferred to $\mu^-\rightarrow e^+$ conversion

\rightarrow sensitivities on both processes will increase by several orders of magnitude in the foreseeable future

\rightarrow target both processes with the same experimental setup

\Rightarrow it’s time to investigate these bound muon conversions to describe them within a general framework independent of the respective particle physics realisation
Improvements from Upcoming Experiments

Snapshot on current limits and sensitivities of upcoming experiments:

- **past:** SINDRUM II for ^{48}Ti (1993), ^{208}Pb (1995), ^{197}Au (2006)
- **future:** DeeMee for ^{28}Si, COMET and Mu2e (taking data \sim 2018) for ^{27}Al, PRISM/PRIME for ^{48}Ti

→ improvements can be transferred to $\mu^- \to e^+$ conversion
→ sensitivities on both processes will increase by **several orders of magnitude** in the foreseeable future
→ target both processes with the **same experimental setup**

⇒ it’s time to investigate these bound muon conversions to describe them within a **general framework** independent of the respective particle physics realisation
Improvements from Upcoming Experiments

Snapshot on **current limits** and **sensitivities of upcoming experiments**:

Future sensitivity for $\mu^-\rightarrow e^+$ conversion

<table>
<thead>
<tr>
<th></th>
<th>Pb-208</th>
<th>Au-197</th>
<th>Ti-48</th>
<th>Si-28</th>
<th>Al-27</th>
</tr>
</thead>
<tbody>
<tr>
<td>present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>future</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>true experimental figures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Past:** SINDRUM II for 48Ti (1993), 208Pb (1995), 197Au (2006)
- **Future:** DeeMee for 28Si, COMET and Mu2e (taking data ~ 2018) for 27Al, PRISM/PRIME for 48Ti

→ improvements can be transferred to $\mu^-\rightarrow e^+$ conversion
→ sensitivities on both processes will increase by **several orders of magnitude** in the foreseeable future
→ target both processes with the **same experimental setup**

⇒ it’s time to investigate these bound muon conversions to describe them within a **general framework** independent of the respective particle physics realisation
How to tackle $\mu^– e^–$ conversion (using the example of a realisation via \textit{doubly charged scalars})?
Effective theory of a doubly charged scalar singlet
based on King, Merle, Panizzi JHEP 1411 (2014) 124

Minimal extension of SM:

- only **one** extra particle: S^{++}
 - lightest of possible new particles (UV completion e.g. Cocktail model)
 - reduction of input parameters
- tree-level coupling to SM (to charged right-handed leptons)
 - LNV and LFV!
- effective Dim-7 operator (necessary to generate neutrino mass)

$$\mathcal{L} = \mathcal{L}_{\text{SM}} - V(H, S)$$
$$+ (D_\mu S)^\dagger (D^\mu S) + f_{ab} \overline{\ell_{Ra}}^c \ell_{Rb} S^{++} + \text{h.c.} - \frac{g^2 v^4 \xi}{4 A^3} S^{++} W^- W^- + \text{h.c.}$$
Effective theory of a doubly charged scalar singlet
based on King, Merle, Panizzi JHEP 1411 (2014) 124

Minimal extension of SM:

- only **one** extra particle: S^{++}
 - lightest of possible new particles (UV completion e.g. Cocktail model)
 - reduction of input parameters

- **tree-level coupling** to SM (to charged right-handed leptons)
 - **LNV and LFV**!

- effective **Dim-7 operator** (necessary to generate neutrino mass)

\[
\mathcal{L} = \mathcal{L}_{SM} - V(H, S)
\]

\[
+ (D_\mu S)^\dagger (D^\mu S) + f_{ab} \left(\ell^c_{Ra} \right) \ell^c_{Rb} S^{++} + \text{h.c.} - \frac{g^2 v^4 \xi}{4 \Lambda^3} S^{++} W^- \mu W^- \mu + \text{h.c.}
\]
Effective theory of a doubly charged scalar singlet
based on King, Merle, Panizzi JHEP 1411 (2014) 124

Minimal extension of SM:

- only one extra particle: \(S^{++} \)
 - lightest of possible new particles (UV completion e.g. Cocktail model)
 - reduction of input parameters

- tree-level coupling to SM (to charged right-handed leptons)
 - LNV and LFV!

- effective Dim-7 operator (necessary to generate neutrino mass)

\[
\mathcal{L} = \mathcal{L}_\text{SM} - V(H, S) + (D_\mu S)^\dag (D^\mu S) + f_{ab} (\overline{\ell_{Ra}})^c \ell_{Rb} S^{++} + \text{h.c.} - \frac{g^2 v^4 \xi}{4 \Lambda^3} S^{++} W^- W^{-\mu} + \text{h.c.}
\]
\(\mu^- - e^- \) Conversion: Universally Valid for Models Involving Doubly Charged Singlet Scalars \(\text{based on TG, Merle Phys.Rev. D93 (2016) 055039} \)

\(\mu^- - e^- \) conversion realised at **one-loop** level

\(\mu^- e^- \) conversion realised at one-loop level

relevant diagrams
Different Contributions to $\mu^- e^-$ Conversion

- estimate nuclear radius: $R = r_0 A^{1/3} \sim \mathcal{O}(10^{-15} \text{ m})$
- reduced Bohr radius: $a_0 \frac{m_e}{m_\mu} \sim \mathcal{O}(10^{-13} \text{ m})$
- estimate interaction range: $r_\gamma \rightarrow \infty$ and $r_Z \leq 10^{-18} \text{ m}$
 \Rightarrow for Z-exchange: μ^- has to be within nucleus! Probability?!

\Rightarrow contributions need to be treated qualitatively differently!!
Different Contributions to $\mu^- \rightarrow e^-$ Conversion

- **Estimate nuclear radius:** $R = r_0 A^{1/3} \sim \mathcal{O}(10^{-15} \text{ m})$

- **Reduced Bohr radius:** $a_0 \frac{m_e}{m_\mu} \sim \mathcal{O}(10^{-13} \text{ m})$

- **Estimate interaction range:** $r_\gamma \rightarrow \infty$ and $r_Z \leq 10^{-18} \text{ m}$

 ⇒ for Z-exchange: μ^- has to be within nucleus! Probability?!

⇒ contributions need to be treated qualitatively differently!!
Different Contributions to $\mu^- \rightarrow e^-$ Conversion

- estimate nuclear radius: $R = r_0 A^{1/3} \sim \mathcal{O}(10^{-15} \text{ m})$
- reduced Bohr radius: $a_0 \frac{m_e}{m_\mu} \sim \mathcal{O}(10^{-13} \text{ m})$
- estimate interaction range: $r_\gamma \rightarrow \infty$ and $r_Z \leq 10^{-18} \text{ m}$
 \Rightarrow for Z-exchange: μ^- has to be within nucleus! Probability?!

\Rightarrow contributions need to be treated qualitatively differently!!
Different Contributions to $\mu^- - e^-$ Conversion

- estimate nuclear radius: $R \approx \frac{r_0 A^{1/3}}{2} \sim \mathcal{O}(10^{-15} \text{ m})$
- reduced Bohr radius: $a_0 \frac{m_e}{m_\mu} \sim \mathcal{O}(10^{-13} \text{ m})$
- estimate interaction range: $r_\gamma \to \infty$ and $r_Z \leq 10^{-18} \text{ m}$

\Rightarrow for Z-exchange: μ^- has to be within nucleus! Probability?!

- photonic contribution: "long range"
- non-photonic contribution: "short range"

\Rightarrow contributions need to be treated qualitatively differently!!
Different Contributions to $\mu^- - e^-$ Conversion

- estimate nuclear radius: $R = r_0 A^{1/3} \sim \mathcal{O}(10^{-15} \text{ m})$
- reduced Bohr radius: $a_0 \frac{m_e}{m_\mu} \sim \mathcal{O}(10^{-13} \text{ m})$

- estimate interaction range: $r_\gamma \rightarrow \infty$ and $r_Z \leq 10^{-18} \text{ m}$
 \Rightarrow for Z-exchange: μ^- has to be within nucleus! Probability?!

\Rightarrow contributions need to be treated qualitatively differently!!
Different Contributions to μ^--e^- Conversion

- estimate nuclear radius: $R = r_0 \frac{A^{1/3}}{10^{15} \text{ m}}$
- reduced Bohr radius: $a_0 \frac{m_e}{m_\mu} \sim O(10^{-10} \text{ m})$
- estimate interaction range: $r_\gamma \to \infty$ and $r_Z \leq 10^{-18} \text{ m}$
 \(\Rightarrow \) for Z-exchange: μ^- has to be within nucleus! Probability?!

\[\begin{array}{c}
\mu^- \xrightarrow{\gamma} l^+ S^- S^- e^- \\
\mu^- \xrightarrow{Z, \gamma} q q \\
\mu^- \xrightarrow{Z, \gamma} q q \\
\mu^- \xrightarrow{Z, \gamma} q q
\end{array} \]

\[\begin{array}{c}
\text{photonic contribution:} \\
\text{"long range"}
\end{array} \]

\[\begin{array}{c}
\text{non-photonic contribution:} \\
\text{"short range"} \\
\Rightarrow \text{suppressed}
\end{array} \]

\(\Rightarrow \) contributions need to be treated qualitatively differently!!
Photonic Contribution

\[M \propto \int d^3 r \bar{\psi}_{jlm}^e(p_e, r) \Gamma^\nu \psi_{j\mu l\mu}^\mu(p_\mu, r) \langle N|\bar{q}\gamma_\nu q|N\rangle \]

\[Z \rho^{(P)}(r) \delta_{\nu 0} \]

→ wave functions for μ^- and e^- obtained by solving modified Dirac equation (+ Coulomb potential)

→ Most general (Lorentz-) invariant expression for Γ^ν:

\[\Gamma^\nu = \left(\gamma^\nu - \frac{q'^\nu}{q'^2} \right) F_1(q'^2) + \frac{i \sigma^{\nu \rho} q'^\rho}{m_\mu} F_2(q'^2) + \left(\gamma^\nu - \frac{q'^\nu}{q'^2} \right) \gamma_5 G_1(q'^2) + \frac{i \sigma^{\nu \rho} q'^\rho}{m_\mu} \gamma_5 G_2(q'^2) \]

with $q' = p_e - p_\mu$.

In non-relativistic limit:

$\Rightarrow \psi_{jlm}$ and $Z \rho^{(P)}(r)$ factorise from Γ^0 on matrix element level
→ *wave functions* for μ^- and e^- obtained by solving modified Dirac equation (+ Coulomb potential)

→ Most *general* (Lorentz-) invariant expression for Γ^ν:

$$
\Gamma^\nu = \left(\gamma^\nu - \frac{q'^2 q^\nu}{q'^2} \right) F_1(q'^2) + \frac{i \sigma^{\nu p}}{m_\mu} \frac{q'^p}{q'^2} F_2(q'^2) + \left(\gamma^\nu - \frac{q'^2 q^\nu}{q'^2} \right) \gamma_5 G_1(q'^2) + \frac{i \sigma^{\nu p}}{m_\mu} \gamma_5 \frac{q'^p}{m_\mu} G_2(q'^2)
$$

with $q' = p_e - p_\mu$.

In non-relativistic limit:

$\Rightarrow \psi_{jlm}$ and $Ze\rho^{(P)}(r)$ factorise from Γ^0 on matrix element level
\[\mathcal{M} \propto \int d^3 r \overline{\psi}_{jlm}(p_e, r) \Gamma^\nu \psi_{j\mu l\mu}^\mu (p_\mu, r) \langle N| \overline{q} \gamma^\nu q | N \rangle \]

\[Z \rho^{(P)}(r) \delta_{\nu 0} \]

→ wave functions for \(\mu^- \) and \(e^- \) obtained by solving modified Dirac equation (+ Coulomb potential)

→ Most general (Lorentz-) invariant expression for \(\Gamma^\nu \):

\[\Gamma^\nu = \left(\gamma^\nu - \frac{q' q''^\nu}{q'^2} \right) F_1(q'^2) + \frac{i \sigma^{\nu\rho} q'_\rho}{m_\mu} F_2(q'^2) + \left(\gamma^\nu - \frac{q' q''^\nu}{q'^2} \right) \gamma_5 G_1(q'^2) + \frac{i \sigma^{\nu\rho} q'_\rho}{m_\mu} \gamma_5 G_2(q'^2) \]

with \(q' = p_e - p_\mu \).

In non-relativistic limit:

\[\Rightarrow \psi_{jlm} \text{ and } Z \rho^{(P)}(r) \text{ factorise from } \Gamma^0 \text{ on matrix element level} \]
Photonic Contribution

Write **branching ratio** as product of **nuclear** and **particle physics parts**

\[
\text{BR}(\mu^- N \to e^- N) = \frac{8\alpha^5 m_\mu Z_{\text{eff}}^4 Z F_p^2}{\Gamma_{\text{capt}}} \Xi^2
\]

→ **factorisation** works perfectly for **photonic** contributions
→ \(\Xi\) has to be modified for **non-photonic** contributions to be a function of the nuclear characteristics \((A,Z)\)

Particle physics information absorbed into

\[
\Xi^2 = \left| - F_1(-m_\mu^2) + F_2(-m_\mu^2) \right|^2 + \left| G_1(-m_\mu^2) + G_2(-m_\mu^2) \right|^2
\]

see Kuno, Okada
Rev. Mod. Phys. 73 (2001) 151-202
Write **branching ratio** as product of **nuclear** and **particle physics** parts

\[
\text{BR}(\mu^- N \rightarrow e^- N) = \frac{8\alpha^5 m_\mu Z_{\text{eff}}^4 Z F_p^2}{\Gamma_{\text{capt}}} \Xi^2
\]

→ **factorisation** works perfectly for **photonic** contributions
→ \(\Xi \) has to be modified for **non-photonic** contributions to be a function of the nuclear characteristics (A,Z)

Particle physics information absorbed into

\[
\Xi^2 = \left| -F_1(-m_\mu^2) + F_2(-m_\mu^2) \right|^2 + \left| G_1(-m_\mu^2) + G_2(-m_\mu^2) \right|^2
\]

Photonic Contribution

Write **branching ratio** as product of nuclear and particle physics parts

\[
\text{BR}(\mu^- N \to e^- N) = \frac{8\alpha^5 m_\mu Z_{\text{eff}}^4 ZF_p^2}{\Gamma_{\text{capt}}} \Xi^2
\]

see Kuno, Okada
Rev. Mod. Phys.
73 (2001) 151-202

→ **factorisation** works perfectly for **photonic** contributions
→ \(\Xi \) has to be modified for **non-photonic** contributions to be a function of the nuclear characteristics \((A,Z)\)

Particle physics information absorbed into

\[
\Xi^2 = \left| -F_1(-m_\mu^2) + F_2(-m_\mu^2) \right|^2 + \left| G_1(-m_\mu^2) + G_2(-m_\mu^2) \right|^2
\]

⇒ determine **form factors** from amputated diagrams with off-shell photon with help of Mathematica package Package–X (Patel,
Photonic Contribution

Write **branching ratio** as product of nuclear and **particle physics** parts

\[
\text{BR}(\mu^- N \rightarrow e^- N) = \frac{8\alpha^5 m_\mu Z_{\text{eff}}^4 Z F_p^2}{\Gamma_{\text{capt}}^2} \Xi^2
\]

See Kuno, Okada
Rev. Mod. Phys.
73 (2001) 151-202

→ factorisation works perfectly for **photonic** contributions
→ \(\Xi \) has to be modified for **non-photonic** contributions to be a function of the nuclear characteristics \((A,Z)\)

Particle physics information absorbed into

\[
\Xi^2 = \left| -F_1(-m_\mu^2) + F_2(-m_\mu^2) \right|^2 + \left| G_1(-m_\mu^2) + G_2(-m_\mu^2) \right|^2
\]

Photonic Contribution: Results

In good approximation (up to a few per cent), we use

\[
F_1(q'^2) = G_1(q'^2) = -f_{e\alpha} f_{\alpha \mu} \left[\frac{2m_a^2 + m_\mu^2 \log (\frac{m_\mu}{M_S})}{12\pi^2 M_S^2} + \frac{\sqrt{m_\mu^2 + 4m_a^2} (m_\mu^2 - 2m_a^2)}{12\pi^2 m_\mu M_S^2} \text{Arctanh} \left(\frac{m_\mu}{\sqrt{m_\mu^2 + 4m_a^2}} \right) \right]
\]

\[
F_2(q'^2) = -G_2(q'^2) = f_{e\alpha} f_{\alpha \mu} \frac{m_\mu^2}{24\pi^2 M_S^2}
\]

with \(q'^2 = -m_\mu^2\) for the particle physics factor:

\[
\Xi_{\text{photonic}}^2 = \frac{1}{288 \pi^4 m_\mu^2 M_S^4} \left| \sum_{a=e, \mu, \tau} f_{e\alpha} f_{\alpha \mu} \left(4m_a^2 m_\mu - m_\mu^3 + 2(-2m_a^2 + m_\mu^2) \sqrt{4m_a^2 + m_\mu^2} \right) \text{Arctanh} \left(\frac{m_\mu}{\sqrt{4m_a^2 + m_\mu^2}} \right) + m_\mu^3 \ln \left(\frac{m_a^2}{M_S^2} \right) \right|^2
\]

→ while \(F_2\) is independent of \(m_a\), \(|F_1|\) decreases with increasing \(m_a\)

→ hierarchy: \(|F_2| < |F_1|\) but for \(M_S \sim 10 \text{ GeV}\) of order 10 %

→ compare to \(\mu \rightarrow e\gamma\): \(F_1(q'^2 = 0) = G_1(q'^2 = 0) = 0\) and

\(F_2(q'^2 = 0) = -G_2(q'^2 = 0) = F_2(q'^2 = -m_\mu^2) \Rightarrow \mu^- \rightarrow e^- \) conversion enhanced by \(F_1\) contribution
Photonic Contribution: Results

In good approximation (up to a few per cent), we use

\[
F_1(q'^2) = G_1(q'^2) = -f_{ea} f_{a\mu} \left[\frac{2m_a^2 + m_\mu^2}{12\pi^2 M_S^2} \log\left(\frac{m_\mu}{M_S} \right) + \frac{\sqrt{m_\mu^2 + 4m_a^2(m_\mu^2 - 2m_a^2)}}{12\pi^2 m_\mu M_S^2} \arctanh \left(\frac{m_\mu}{\sqrt{m_\mu^2 + 4m_a^2}} \right) \right]
\]

\[
F_2(q'^2) = -G_2(q'^2) = f_{ea} f_{a\mu} \frac{m_\mu^2}{24\pi^2 M_S^2}
\]

with \(q'^2 = -m_\mu^2 \) for the particle physics factor:

\[
\Xi_{\text{photonic}}^2 = \frac{1}{288 \pi^4 m_\mu^2 M_S^4} \left| \sum_{a=e, \mu, \tau} f_{ea} f_{a\mu} \left(4m_a^2 m_\mu - m_\mu^3 + 2 \left(-2m_a^2 + m_\mu^2 \right) \sqrt{4m_a^2 + m_\mu^2} \right) \right|^2
\]

\[
\text{Arctanh} \left(\frac{m_\mu}{\sqrt{4m_a^2 + m_\mu^2}} \right) + m_\mu^3 \ln \left[\frac{m_a^2}{M_S^2} \right]
\]

\[\rightarrow\] while \(F_2 \) is independent of \(m_a \), \(|F_1| \) decreases with increasing \(m_a \)

\[\rightarrow\] hierarchy: \(|F_2| < |F_1| \) but for \(M_S \sim 10 \text{ GeV} \) of order 10 %

\[\rightarrow\] compare to \(\mu \rightarrow e\gamma : F_1(q'^2 = 0) = G_1(q'^2 = 0) = 0 \) and

\(F_2(q'^2 = 0) = -G_2(q'^2 = 0) = F_2(q'^2 = -m_\mu^2) \Rightarrow \mu^- \rightarrow e^- \) conversion enhanced by \(F_1 \) contribution
Photonic Contribution: Results

In good approximation (up to a few per cent), we use

\[F_1(q'^2) = G_1(q'^2) = -f_{ea}^* f_{a\mu} \left[\frac{2m_a^2 + m_\mu^2}{12\pi^2 M_S^2} \log\left(\frac{m_\mu}{M_S} \right) + \frac{\sqrt{m_\mu^2 + 4m_a^2(m_\mu^2 - 2m_a^2)}}{12\pi^2 m_\mu M_S^2} \text{Arctanh} \left(\frac{m_\mu}{\sqrt{m_\mu^2 + 4m_a^2}} \right) \right] \]

\[F_2(q'^2) = -G_2(q'^2) = f_{ea}^* f_{a\mu} \frac{m_\mu^2}{24\pi^2 M_S^2} \]

with \(q'^2 = -m_\mu^2 \) for the particle physics factor:

\[
\Xi^2_{\text{photonic}} = \left. \frac{1}{288\pi^4 m_\mu^2 M_S^4} \right| \sum_{a=e, \mu, \tau} f_{ea}^* f_{a\mu} \left(4m_a^2 m_\mu - m_\mu^3 + 2(-2m_a^2 + m_\mu^2) \sqrt{4m_a^2 + m_\mu^2} \right. \\
\text{Arctanh} \left(\frac{m_\mu}{\sqrt{4m_a^2 + m_\mu^2}} \right) + m_\mu^3 \ln \left(\frac{m_a^2}{M_S^2} \right) \left. \right| ^2
\]

→ while \(F_2 \) is independent of \(m_a \), \(|F_1| \) decreases with increasing \(m_a \)
→ hierarchy: \(|F_2| < |F_1| \) but for \(M_S \sim 10 \) GeV of order 10 %
→ compare to \(\mu \rightarrow e\gamma \): \(F_1(q'^2 = 0) = G_1(q'^2 = 0) = 0 \) and

\[F_2(q'^2 = 0) = -G_2(q'^2 = 0) = F_2(q'^2 = -m_\mu^2) \Rightarrow \mu^- \rightarrow e^- \text{ conversion enhanced by } F_1 \text{ contribution} \]
Non-Photonic Contribution

Short-range ↔ takes place inside the nucleus:

EFT treatment ⇒ **Integrating out** the Z-boson:

→ four-point vertices
→ consider operators up to **dimension six**
→ for the coherent $\mu^−− e^−$ conversion, the only vertex realised in this model is described by

\[
\mathcal{L}_{\text{short-range}} = -\frac{G_F}{\sqrt{2}} \left(2(1 + k_q \sin^2 \theta_W) \cos \theta_W \right) \frac{A_R(q'^2)}{g} \frac{e_R \gamma_\nu \mu_R \bar{q} \gamma^\nu q}{g_{RV(q)}}
\]

in terms of the chiral form factor $A_R(q'^2)$.
Non-Photonic Contribution

Short-range ↔ takes place inside the nucleus:

EFT treatment ⇒ **Integrating out** the Z-boson:

→ four-point vertices
→ consider operators up to **dimension six**
→ for the coherent $\mu^- - e^-$ conversion, the only vertex realised in this model is described by

$$
\mathcal{L}_{\text{short-range}} = - \frac{G_F}{\sqrt{2}} \frac{2(1 + k_q \sin^2 \theta_W) \cos \theta_W}{g} \underbrace{A_R(q'^2) \overline{e_R} \gamma_\nu \mu_R \bar{q} \gamma^\nu q}_{g_{RV}(q)}
$$

in terms of the chiral form factor $A_R(q'^2)$
Non-Photonic Contribution

We can write the branching ratio as

\[
BR(\mu^- N \to e^- N) = \frac{8\alpha^5 m_\mu Z_{\text{eff}}^4 Z F^2_{\text{p}}}{\Gamma_{\text{capt}}} \Xi^2_{\text{non-photonic}}(Z, N, A_R(q'^2))
\]

→ no perfect factorisation anymore: \(\Xi\) modified to be function of nuclear characteristics
→ instead of lines we do have bands with finite widths for \(\Xi\)
⇒ determine form factors from amputated diagrams with off-shell Z-Boson

Combining photonic and non-photonic contributions:

\(\Xi_{\text{particle}} \rightarrow \Xi_{\text{combined}}(Z, N) = \Xi_{\text{photonic}} + \Xi_{\text{non-photonic}}(Z, N)\)

→ dependence on nuclear characteristics
Non-Photonic Contribution

We can write the **branching ratio** as

\[
BR(\mu^- N \rightarrow e^- N) = \frac{8\alpha^5 m_\mu Z_{\text{eff}}^4 ZF_p^2}{\Gamma_{\text{capt}}} \Xi_{\text{non-photonic}}^2(Z, N, A_R(q'^2))
\]

→ **no perfect factorisation** anymore: \(\Xi\) modified to be function of **nuclear characteristics**

→ instead of lines we do have **bands with finite widths** for \(\Xi\)

⇒ determine **form factors** from amputated diagrams with off-shell Z-Boson

Combining photonic and non-photonic contributions:

\[
\Xi_{\text{particle}} \rightarrow \Xi_{\text{combined}}(Z, N) = \Xi_{\text{photonic}} + \Xi_{\text{non-photonic}}(Z, N)
\]

→ dependence on **nuclear characteristics**
Non-Photonic Contribution

We can write the branching ratio as

\[
\text{BR}(\mu^- N \to e^- N) = \frac{8\alpha^5 m_\mu Z_{\text{eff}}^4 Z F_p^2}{\Gamma_{\text{capt}}} \Xi_{\text{non-photonic}}^2 (Z, N, A_R(q'^2))
\]

→ no perfect factorisation anymore: \(\Xi \) modified to be function of nuclear characteristics

→ instead of lines we do have bands with finite widths for \(\Xi \)

⇒ determine form factors from amputated diagrams with off-shell Z-Boson

Combining photonic and non-photonic contributions:

\[
\Xi_{\text{particle}} \to \Xi_{\text{combined}}(Z, N) = \Xi_{\text{photonic}} + \Xi_{\text{non-photonic}}(Z, N)
\]

→ dependence on nuclear characteristics
Combining the Contributions: Results
see TG, Merle Phys.Rev. D93 (2016) 055039

Benchmark Points:

f_{ab} such that LFV/LNV bounds fulfilled + suitable neutrino mass matrix reproduced

- 'red': $f_{ee} \approx 0$ and $f_{e\tau} \approx 0$
- 'purple': $f_{ee} \approx 0$ and $f_{e\mu} \approx \frac{f_{\mu\tau}^*}{f_{\mu\mu}^*} f_{e\tau}$
- 'blue': $f_{e\mu} \approx \frac{f_{\mu\tau}^*}{f_{\mu\mu}^*} f_{e\tau}$

choose representative 'average' set for each scenario to display M_S dependence
Combining the Contributions: Results
see TG, Merle Phys.Rev. D93 (2016) 055039

→ widths of the bands so small that appear as lines
→ non-photonic (DASHED) contributions negligibly small
→ approximate process by its purely photonic (SOLID) contribution
→ factorisation: dependence on isotope only in width of limit
Results: Photonic Contribution vs $\mu \rightarrow e\gamma$

For $\mu^+ \rightarrow e^+ \gamma$:
strongest bound for red, weakest for blue points

$$A \propto \left| f_{ee} f_{e\mu}^* + f_{e\mu} f_{\mu\mu}^* + f_{e\tau} f_{\tau\mu}^* \right| \cdot C$$

\rightarrow some amount of cancellation

For $\mu^- \rightarrow e^- \gamma$ conversion:
!! other way around !!

$$A \propto \left| C_e f_{ee} f_{e\mu} + C_\mu f_{e\mu} f_{\mu\mu} + C_\tau f_{e\tau} f_{\tau\mu} \right|$$

\rightarrow flavour-dependent coefficients:
prevent similar cancellations
shape of amplitude leads to drastical change (not mainly off-shell contributions)
Results: Photonic Contribution vs $\mu \rightarrow e\gamma$

For $\mu^+ \rightarrow e^+\gamma$: strongest bound for red, weakest for blue points

$$A \propto \left| f_{ee} f_{e\mu}^* + f_{e\mu} f_{\mu\mu}^* + f_{e\tau} f_{\tau\mu}^* \right| \cdot C$$

\rightarrow some amount of cancellation

For $\mu^-\rightarrow e^-\gamma$:!! other way around !!

$$A \propto \left| C_e f_{ee} f_{e\mu}^* + C_\mu f_{e\mu} f_{\mu\mu}^* + C_\tau f_{e\tau} f_{\tau\mu}^* \right|$$

\rightarrow flavour-dependent coefficients: prevent similar cancellations

\rightarrow shape of amplitude leads to drastic change (not mainly off-shell contributions)
Results: Photonic Contribution vs $\mu \rightarrow e \gamma$

For $\mu^+ \rightarrow e^+ \gamma$: strongest bound for red, weakest for blue points

$$A \propto \left| f_{e e} f_{e \mu}^* + f_{e \mu} f_{\mu \mu}^* + f_{e \tau} f_{\tau \mu}^* \right| \cdot C$$

\rightarrow some amount of cancellation

For $\mu^- \rightarrow e^- \gamma$: !! other way around !!

$$A \propto \left| C_e f_{ee} f_{e \mu}^* + C_{\mu} f_{e \mu} f_{\mu \mu}^* + C_{\tau} f_{e \tau} f_{\tau \mu}^* \right|$$

\rightarrow flavour-dependent coefficients: prevent similar cancellations

\rightarrow shape of amplitude leads to drastical change (not mainly off-shell contributions)
Results: Photonic Contribution vs $\mu \rightarrow e \gamma$

For $\mu^+ \rightarrow e^+ \gamma$:
strongest bound for red, weakest for blue points

$A \propto |f_{ee} f_{e\mu}^* + f_{e\mu} f_{\mu\mu}^* + f_{e\tau} f_{\tau\mu}^*| \cdot C$

→ some amount of cancellation

For $\mu^- \rightarrow e^- \gamma$ conversion:
!! other way around !!

$A \propto |C_e f_{ee} f_{e\mu}^* + C_{\mu} f_{e\mu}^* f_{\mu\mu} + C_{\tau} f_{e\tau}^* f_{\tau\mu}|$

→ flavour-dependent coefficients: prevent similar cancellations

→ shape of amplitude leads to
drastical change (not mainly
off-shell contributions)
Results: Complementarity

see TG, King, Merle, No, Panizzi Phys.Rev. D93 (2016) 073007

From ‘average scenarios’ (depicted by lines), we can estimate the lower limits on M_S resulting from μ-e conversion:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>blue curve</td>
<td>$M_S > 131.9 - 447.1$</td>
<td>$M_S > 1031.5 - 13271.3$</td>
<td>$M_S > 1954.1$</td>
</tr>
<tr>
<td>purple curve</td>
<td>$M_S > 42.5 - 152.3$</td>
<td>$M_S > 360.7 - 4885.2$</td>
<td>$M_S > 694.5$</td>
</tr>
<tr>
<td>red curve</td>
<td>$M_S > 33.9 - 118.1$</td>
<td>$M_S > 276.3 - 3656.1$</td>
<td>$M_S > 528.0$</td>
</tr>
</tbody>
</table>

→ Limits from $\mu^-\text{-}e^-$ conversion can be stronger than from LHC (but indirect)
Results: Complementarity
see TG, King, Merle, No, Panizzi Phys.Rev. D93 (2016) 073007

From *average scenarios* (depicted by lines), we can estimate the **lower limits** on M_S resulting from μ^{-}-e^{-} conversion:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>blue</td>
<td>$M_S > 131.9 - 447.1$</td>
<td>$M_S > 1031.5 - 13271.3$</td>
<td>$M_S > 1954.1$</td>
</tr>
<tr>
<td>purple</td>
<td>$M_S > 42.5 - 152.3$</td>
<td>$M_S > 360.7 - 4885.2$</td>
<td>$M_S > 694.5$</td>
</tr>
<tr>
<td>red</td>
<td>$M_S > 33.9 - 118.1$</td>
<td>$M_S > 276.3 - 3656.1$</td>
<td>$M_S > 528.0$</td>
</tr>
</tbody>
</table>

→ Limits from μ^{-}-e^{-} conversion can be **stronger** than from LHC (but indirect)
How to tackle $\mu^- - e^+$ conversion (using the example of a realisation via doubly charged scalars)?
Motivation

In the following, we perform the computation for the decay rate for one particular short-range operator ϵ_{LLz}^3. But why?!

- There are a few earlier references available focusing on $\mu^{-} \rightarrow e^{+}$ conversion from Majorana neutrinos but no uniform formalism is used:
 \rightarrow has the nuclear matrix elements (for 48Ti) that we use: ϵ_{LLz}^3
 \rightarrow explicit computation focusing on the nuclear physics
 \Rightarrow includes the formalism that we want make accessible to the particle physics community

- many aspects do not change if another operator was realised

\rightarrow guideline how to use existing results and establish a general formalism to replicate such a computation for different scenarios
Motivation

In the following, we perform the computation for the decay rate for one particular short-range operator ϵ^{LLz}_3. But why?!

- There are a few earlier references available focussing on $\mu^- - e^+$ conversion from Majorana neutrinos but no uniform formalism is used:
 → has the nuclear matrix elements (for 48Ti) that we use: ϵ^{LLz}_3
 → explicit computation focussing on the nuclear physics
 ⇒ includes the formalism that we want make accessible to the particle physics community

- many aspects do not change if another operator was realised
 → guideline how to use existing results and establish a general formalism to replicate such a computation for different scenarios
Motivation

In the following, we perform the computation for the decay rate for one particular short-range operator ϵ^{LLz}_3. But why?!

- There are a few earlier references available focussing on $\mu^- - e^+$ conversion from Majorana neutrinos but no uniform formalism is used:
 → has the nuclear matrix elements (for 48Ti) that we use: ϵ^{LLz}_3
 → explicit computation focussing on the nuclear physics
 ⇒ includes the formalism that we want make accessible to the particle physics community
- many aspects do not change if another operator was realised

→ guideline how to use existing results and establish a general formalism to replicate such a computation for different scenarios
Motivation

In the following, we perform the computation for the decay rate for one particular short-range operator ϵ_{LLz}^3. But why?!

- There are a few earlier references available focussing on $\mu^- - e^+$ conversion from Majorana neutrinos but no uniform formalism is used:
- has the nuclear matrix elements (for 48Ti) that we use: ϵ_{LLz}^3
- explicit computation focussing on the nuclear physics
- includes the formalism that we want make accessible to the particle physics community
- many aspects do not change if another operator was realised

→ guideline how to use existing results and establish a general formalism to replicate such a computation for different scenarios
\(\mu^- \rightarrow e^+ \) Conversion from doubly charged scalars

- formalism to describe \(\mu^- \rightarrow e^+ \) conversions within general framework
- use EFT to neatly separate the nuclear physics from the respective particle physics realisation of the conversion \(\rightarrow \) factorisation

\(\rightarrow \) map the model onto short-range operators
\(\mu^- \to e^+ \) Conversion from doubly charged scalars

- formalism to describe \(\mu^- \to e^+ \) conversions within general framework
- use EFT to neatly separate the nuclear physics from the respective particle physics realisation of the conversion \(\to \) factorisation

\[\xi \ AU \]

\[\mu^- \to e^+ \]

\[\frac{Z}{A} \]

\[\xi \ LLR \]

\[\map \] map the model onto short-range operators
\(\mu^- \rightarrow e^+ \) Conversion from doubly charged scalars

- formalism to describe \(\mu^- \rightarrow e^+ \) conversions within **general framework**
- use **EFT** to neatly separate the **nuclear** physics from the respective **particle** physics realisation of the conversion \(\rightarrow \) **factorisation**

\[\xi f_{\mu e}^* \rightarrow \rightarrow \mu^- e^+ \]

\[W^- W^- \downarrow \text{nucleus} \]

\[\Leftrightarrow \]

\[\mu^- \rightarrow e^+ \]

\[(Z, A) \quad (Z-2, A) \quad \varepsilon_{LLR}^3 \rightarrow \rightarrow \]

\[\text{\rightarrow map the model onto short-range operators} \]

Employ **EFT formalism** to generally describe $\mu^– e^+$ conversion \Rightarrow dim-9 short-range operators:

$$
\mathcal{L}_{\text{short-range}}^{\mu e} = \frac{G^2_F}{2m_p} \sum_{x,y,z=L,R} \left[\epsilon_1^{xyz} J_x J_y j_z + \epsilon_2^{xyz} J_x J_y,\nu j_z + \epsilon_3^{xyz} J_x J_y,\nu j_z + \epsilon_4^{xyz} J_x J_y,\nu_j^\rho j_z^\sigma + \epsilon_5^{xyz} J_x j_y,\nu_j^\nu + \epsilon_6^{xyz} J_x j_y,\nu j_z^\rho + \epsilon_7^{xyz} J_x j_y j_z,\nu_j^\nu + \epsilon_8^{xyz} J_x,\nu_j^\nu j_y,\nu_j^\rho \right]
$$

using the hadronic currents:

$$
J_{R,L} = \bar{d}(1 \pm \gamma_5)u, \quad J_{R,L}^{\nu} = \bar{d} \gamma^\nu (1 \pm \gamma_5)u, \quad J_{R,L}^{\nu,\rho} = \bar{d} \sigma^{\nu,\rho} (1 \pm \gamma_5)u,
$$

and the leptonic currents:

$$
J_{R,L} = \bar{e^c}(1 \pm \gamma_5)\mu = 2(\bar{e_{R,L}})^c \mu_{R,L}, \quad J_{R,L}^{\nu} = \bar{e^c} \gamma^\nu (1 \pm \gamma_5)\mu = 2(\bar{e_{L,R}})^c \gamma^\nu \mu_{R,L},
$$

and

$$
J_{R,L}^{\nu,\rho} = \bar{e^c} \sigma^{\nu,\rho} (1 \pm \gamma_5)\mu = 2(\bar{e_{R,L}})^c \sigma^{\nu,\rho} \mu_{R,L}.
$$

\Rightarrow derive the decay rate using the example of doubly charged scalars
Employ **EFT formalism** to generally describe $\mu^- - e^+$ conversion \Rightarrow dim-9 short-range operators:

\[
\mathcal{L}_{\text{short-range}}^{\mu e} = \frac{G_F^2}{2m_p} \sum_{x,y,z=L,R} \left[\epsilon_1^{xyz} J_x j_y j_z + \epsilon_2^{xyz} J_x J_y,\nu \rho j_z + \epsilon_3^{xyz} J_x J_y,\nu j_z + \epsilon_4^{xyz} J_x J_y,\nu \rho j_z^\rho + \epsilon_5^{xyz} J_x j_y j_z,\nu + \epsilon_6^{xyz} J_x J_y,\nu \rho j_z,\nu + \epsilon_7^{xyz} J_x J_y,\nu \rho j_z,\nu + \epsilon_8^{xyz} J_x,\nu \rho j_y,\nu \right]
\]

using the hadronic currents:

\[
J_{R,L} = \bar{d}(1 \pm \gamma_5) u, \quad J_{R,L}^\nu = \bar{d} \gamma^\nu (1 \pm \gamma_5) u, \quad J_{R,L}^{\nu \rho} = \bar{d} \sigma^{\nu \rho} (1 \pm \gamma_5) u,
\]

and the leptonic currents:

\[
j_{R,L} = \bar{e}c(1 \pm \gamma_5) \mu = 2(\bar{e}_{R,L})^c \mu_{R,L}, \quad J_{R,L}^\nu = \bar{e}c \gamma^\nu (1 \pm \gamma_5) \mu = 2(\bar{e}_{L,R})^c \gamma^\nu \mu_{R,L}, \quad J_{R,L}^{\nu \rho} = \bar{e}c \sigma^{\nu \rho} (1 \pm \gamma_5) \mu = 2(\bar{e}_{R,L})^c \sigma^{\nu \rho} \mu_{R,L}.
\]

\Rightarrow derive the **decay rate** using the example of doubly charged scalars.
Deriving the Decay Rate for ϵ_3 based on TG, Merle arXiv:1612.00452

Start with the **amplitude** obtained from EFT diagram

\[
\langle N', f | S_{\text{eff}}^{(1)} | N, i \rangle = -i \langle N', f | \int d^4x \hat{T}\{\mathcal{L}_{\text{eff}}(x)\} | N, i \rangle \\
= -i \frac{G_F^2}{2m_p} \epsilon_3^{\text{LLR}} \int d^4x \langle N', f | \hat{T}\{J_{L,\nu}(x)J_{L}^{\nu}(x)j_{R}(x)\} | N, i \rangle
\]
Deriving the Decay Rate for ϵ_3 based on TG, Merle arXiv:1612.00452

Start with the **amplitude** obtained from EFT diagram

\[\langle N', f \mid S^{(1)}_{\text{eff}} \mid N, i \rangle = -i \langle N', f \mid \int d^4x \, \hat{T}\{ \mathcal{L}_{\text{eff}}(x) \} \mid N, i \rangle \]

\[= -i \frac{G_F^2}{2m_p} \epsilon_{3}^{LLR} \int d^4x \langle N', f \mid \hat{T}\{ J_{L\nu}(x) J'_{L}(x) j_R(x) \} \mid N, i \rangle \]

which is
Deriving the Decay Rate for ϵ_3 based on TG, Merle arXiv:1612.00452

Structure can be split into hadronic and leptonic parts:

$$\langle N', f|\hat{T}\{J_{L,\nu}(x)J'_{L}(x)j_{R}(x)\}|N, i\rangle = \langle N'|\hat{T}\{J_{L,\nu}(x)J'_{L}(x)\}|N\rangle\langle f|j_{R}(x)|i\rangle$$

Leptonic part:

- muon is bound in 1s state
- positron propagates freely under the influence of the nucleus’ Coulomb potential

\Rightarrow need to modify the free spinors u and ν respectively

$$\langle f|j_{R}(x)|i\rangle = 2e^{ik_{e}\cdot x}e^{-iE_{\mu}\cdot x^0}\sqrt{F(Z-2,E_{e})}\phi_{\mu}(\vec{x})\overline{\nu_{e}}(k_{e})P_{R}u_{\mu}(k_{\mu})$$

with bound muon wave function $\phi_{\mu}(\vec{x})$ and the Fermi function $F(Z, E)$
Structure can be split into hadronic and leptonic parts:

\[
\langle N', f \mid \hat{T} \{ J_{L,\nu}(x) J_{L}^{\nu}(x) j_{R}(x) \} \mid N, i \rangle = \langle N' \mid \hat{T} \{ J_{L,\nu}(x) J_{L}^{\nu}(x) \} \mid N \rangle \langle f \mid j_{R}(x) \mid i \rangle
\]

Leptonic part:
- muon is bound in 1s state
- positron propagates freely under the influence of the nucleus’ Coulomb potential

⇒ need to modify the free spinors \(u \) and \(v \) respectively

\[
\langle f \mid j_{R}(x) \mid i \rangle = 2 e^{i k_{e} \cdot x} e^{-i E_{\mu} \cdot x^0} \sqrt{F(Z - 2, E_{e})} \phi_{\mu}(\vec{x}) \bar{v}_{e}(k_{e}) P_{R} u_{\mu}(k_{\mu})
\]

with bound muon wave function \(\phi_{\mu}(\vec{x}) \) and the Fermi function \(F(Z, E) \)
Deriving the Decay Rate for ϵ_3 based on TG, Merle arXiv:1612.00452

Structure can be split into hadronic and leptonic parts:

$$\langle N', f | \hat{T} \{ J_{L,\nu}(x) J_{L'}(x) j_{R}(x) \} | N, i \rangle = \langle N' | \hat{T} \{ J_{L,\nu}(x) J_{L'}(x) \} | N \rangle \langle f | j_{R}(x) | i \rangle$$

Leptonic part:

- muon is bound in $1s$ state
- positron propagates freely under the influence of the nucleus’ Coulomb potential

\Rightarrow need to modify the free spinors u and v respectively

$$\langle f | j_{R}(x) | i \rangle = 2 e^{ik_{e} \cdot x} e^{-iE_{\mu} \cdot x^0} \sqrt{F(Z - 2, E_{e})} \phi_{\mu}(\vec{x}) \overline{\nu_{e}}(k_{e}) P_{R} u_{\mu}(k_{\mu})$$

with bound muon wave function $\phi_{\mu}(\vec{x})$ and the Fermi function $F(Z, E)$
Deriving the Decay Rate for ϵ_3 based on TG, Merle arXiv:1612.00452

Hadronic part:

- hadronic currents can be approximated by their non-relativistic versions $J_{\nu}(\vec{x})$

- need to account for quarks’ distribution within the nucleus
 → dipole parametrisation factor $\tilde{F}(k^2, \Lambda_i)$

- two nucleon interactions → take place with finite distance
 → introduce second location \tilde{x} over which we also "sum" $\int d^3\tilde{x}$

\Rightarrow need to modify hadronic currents J_{ν} respectively

$$\langle N' | \hat{T} \{ J_{L,\nu}(x) J_L^{\nu}(x) \} | N \rangle \rightarrow \int d^3\tilde{x} \int \frac{d^3k}{(2\pi)^3} \langle N' | e^{i\vec{k} \cdot (\vec{x} - \tilde{x})} \tilde{F}^2(k^2, \Lambda_i) J_{L,\nu}(\tilde{x}) J_L^{\nu}(\tilde{x}) | N \rangle$$
Hadronic part:

- hadronic currents can be approximated by their non-relativistic versions $J_\nu(\vec{x})$

- need to account for quarks’ distribution within the nucleus → dipole parametrisation factor $\tilde{F}(k^2, \Lambda_i)$

- two nucleon interactions → take place with finite distance → introduce second location \tilde{x} over which we also ”sum” $\int d^3\tilde{x}$

\Rightarrow need to modify hadronic currents J_ν respectively
Hadronic part:

- Hadronic currents can be approximated by their non-relativistic versions $J_\nu(\vec{x})$
- Need to account for quarks' distribution within the nucleus → dipole parametrisation factor $\tilde{F}(k^2, \Lambda_i)$
- Two nucleon interactions → take place with finite distance → introduce second location \tilde{x} over which we also "sum" $\int d^3\tilde{x}$

⇒ Need to modify hadronic currents J_ν respectively

$$\langle N' \mid \hat{T} \{ J_{L,\nu}(x) J_{L'}^{\nu}(x) \} \mid N \rangle \rightarrow \int d^3\tilde{x} \int \frac{d^3k}{(2\pi)^3} \langle N' \mid e^{i\vec{k}\cdot(\vec{x}-\tilde{x})} \tilde{F}^2(k^2, \Lambda_i) J_{L,\nu}(\tilde{x}) J_{L'}^{\nu}(\tilde{x}) \mid N \rangle$$
Deriving the Decay Rate for ϵ_3 based on TG, Merle arXiv:1612.00452

Hadronic part:

- hadronic currents can be approximated by their *non-relativistic* versions $J_\nu(\vec{x})$
- need to account for *quarks’ distribution* within the nucleus
 → *dipole parametrisation* factor $\tilde{F}(k^2, \Lambda_i)$
- two nucleon interactions → take place with finite distance
 → introduce *second location* \tilde{x} over which we also ”sum” $\int d^3\tilde{x}$

\Rightarrow need to modify hadronic currents J_ν respectively

\[\langle N' | \hat{T} \{ J_{L,\nu}(x) J_L^{\nu}(x) \} | N \rangle \rightarrow \int d^3\tilde{x} \int \frac{d^3k}{(2\pi)^3} \langle N' | e^{i\vec{k} \cdot (\vec{x} - \tilde{x})} \tilde{F}^2(k^2, \Lambda_i) J_{L,\nu}(\tilde{x}) J_L^{\nu}(\vec{x}) | N \rangle \]
Deriving the Decay Rate for ϵ_3 based on TG, Merle arXiv:1612.00452

Next:

- perform x^0 integration
 \[\rightarrow \text{conservation of external energies} \quad 2\pi \delta(E_i + E_{\mu} - E_f - E_e) \]
- write non-relativistic currents in term of effective transition operators:

\[
\tilde{F}(\vec{k}^2, \Lambda_i) J_{\nu}(\vec{x}) = \sum_m \tau^m_{-} \left(g_{\nu} \tilde{F}(\vec{k}^2, \Lambda_{\nu}) g_{\nu 0} + g_{A} \tilde{F}(\vec{k}^2, \Lambda_{A}) g_{\nu j} \sigma^j_m \right) \delta^{(3)}(\vec{x} - \vec{r}_m)
\]

with nuclear isospin raising operator τ^m_{-} and the dominant spin structures given by the Fermi operator and the Gamow-Teller operator.

\[\Rightarrow \text{allows for factorisation of nuclear physics from respective particle physics model:} \]

\[
\mathcal{M} = \frac{G^2_F \epsilon^{LLR}_3 g^2_A m_e}{2R} \sqrt{F(Z - 2, E_e)} \delta(E_f - E_i + E_e - E_{\mu}) \overline{v}_e(k_e) P_R u_\mu(k_\mu) \mathcal{M}(\mu^-, e^+) \phi
\]

with $\mathcal{M}(\mu^-, e^+) \phi$ being the nuclear matrix element.
Deriving the Decay Rate for ϵ_3 based on TG, Merle arXiv:1612.00452

Next:

- perform x^0 integration
 - \Rightarrow conservation of external energies $2\pi \delta(E_i + E_\mu - E_f - E_e)$
- write non-relativistic currents in term of **effective transition operators**:

$$\tilde{F}(\vec{k}^2, \Lambda_i) J_{L\nu}(\vec{x}) = \sum_m \tau_m^- \left(g_V \tilde{F}(\vec{k}^2, \Lambda_V) g_{\nu 0} + g_A \tilde{F}(\vec{k}^2, \Lambda_A) g_{\nu j} \sigma_m^j \right) \delta^3(\vec{x} - \vec{r}_m)$$

with nuclear isospin raising operator τ_m^- and the dominant spin structures given by the **Fermi operator** and the **Gamow-Teller operator**

\Rightarrow allows for **factorisation** of nuclear physics from respective particle physics model:

$$\mathcal{M} = \frac{G_F^2 \epsilon_3^{LLR} g_A^2 m_e}{2R} \sqrt{F(Z - 2, E_e)} \delta(E_f - E_i + E_e - E_\mu) \bar{v}_e(k_e) P_R u_\mu(k_\mu) \mathcal{M}(\mu^-, e^+) \phi$$

with $\mathcal{M}(\mu^-, e^+) \phi$ being the **nuclear matrix element**.
Deriving the Decay Rate for ϵ_3 based on TG, Merle arXiv:1612.00452

Next:

- perform x^0 integration

 \rightarrow conservation of external energies $2\pi \delta(E_i + E_\mu - E_f - E_e)$

- write non-relativistic currents in term of effective transition operators:

$$\tilde{F}(\vec{k}^2, \Lambda_i) J_{L\nu}(\vec{x}) = \sum_m \tau_m^- \left(g_V \tilde{F}(\vec{k}^2, \Lambda_V) g_{\nu 0} + g_A \tilde{F}(\vec{k}^2, \Lambda_A) g_{\nu j} \sigma_m^j \right) \delta^{(3)}(\vec{x} - \vec{r}_m)$$

with nuclear isospin raising operator τ_m^- and the dominant spin structures given by the Fermi operator and the Gamow-Teller operator

\Rightarrow allows for factorisation of nuclear physics from respective particle physics model:

$$\mathcal{M} = \frac{G_F^2 \epsilon_3^{LLR} g_A^2 m_e}{2R} \sqrt{F(Z - 2, E_e)} \delta(E_f - E_i + E_e - E_\mu) \overline{v}_e(k_e) P_R u_\mu(k_\mu) \mathcal{M}(\mu^-, e^+) \phi$$

with $\mathcal{M}(\mu^-, e^+) \phi$ being the nuclear matrix element.
Deriving the Decay Rate for ϵ_3 based on TG, Merle arXiv:1612.00452

From amplitude to decay rate using **Fermi’s Golden rule**:

$$\Gamma = 2\pi \frac{1/T}{(2\pi)^3} \int d^3 k_e |M|^2$$

So, we need to

- spin sum/average $\rightarrow 1/4$
- rewrite *nuclear matrix element* using that the muon wave function varies only slowly within nucleus: $|M(\mu^-,e^+)\phi|^2 = \langle \phi_\mu \rangle^2 |M(\mu^-,e^+)|^2$
- square delta-function: “$\delta(E_f - E_i + E_e - E\mu)^2$” $= \frac{T}{2\pi} \delta(E_f - E_i + E_e - E\mu)$

and obtain the **decay rate**:

$$\Gamma = \frac{g_A^4 G_F^4 m_e^2 m_\mu^2 |\epsilon_3^{LLR}|^2}{32\pi^2 R^2} |F(Z-2,E_e)| \langle \phi_\mu \rangle^2 |M(\mu^-,e^+)|^2$$

\rightarrow can be generalised to ϵ_3^{xyz} for $x = y$

\rightarrow for $x \neq y$ there is a relative sign switched in the nuclear matrix element
From amplitude to decay rate using **Fermi’s Golden rule**:

\[\Gamma = 2\pi \frac{1/T}{(2\pi)^3} \int d^3k_e |\mathcal{M}|^2 \]

So, we need to

- spin sum/average → 1/4
- rewrite *nuclear matrix element* using that the muon wave function varies only slowly within nucleus:
 \[|\mathcal{M}(\mu^- , e^+)\phi|^2 = \langle \phi_\mu \rangle^2 |\mathcal{M}(\mu^- , e^+)|^2 \]
- square delta-function:
 \[\delta(E_f - E_i + E_e - E_\mu)^2 = \frac{T}{2\pi} \delta(E_f - E_i + E_e - E_\mu) \]

and obtain the **decay rate**:

\[
\Gamma = \frac{g_A^4 G_F^4 m_e^2 m_\mu^2 |\epsilon_3^{LLR}|^2}{32\pi^2 R^2} |F(Z - 2, E_e)| \langle \phi_\mu \rangle^2 |\mathcal{M}(\mu^- , e^+)|^2
\]

→ can be generalised to \(\epsilon_3^{xyz} \) for \(x = y \)

→ for \(x \neq y \) there is a relative sign switched in the **nuclear matrix element**
Deriving the Decay Rate for ϵ_3 based on TG, Merle arXiv:1612.00452

From amplitude to decay rate using Fermi’s Golden rule:

$$\Gamma = 2\pi \frac{1/T}{(2\pi)^3} \int d^3k_e |M|^2$$

So, we need to

- spin sum/average $\rightarrow 1/4$
- rewrite nuclear matrix element using that the muon wave function varies only slowly within nucleus: $|\mathcal{M}(\mu^-,e^+)\phi|^2 = \langle \phi_\mu \rangle^2 |\mathcal{M}(\mu^-,e^+)|^2$
- square delta-function: $\delta(E_f - E_i + E_e - E_\mu)^2 = \frac{T}{2\pi} \delta(E_f - E_i + E_e - E_\mu)$

and obtain the decay rate:

$$\Gamma = \frac{g_A^4 G_F^4 m_e^2 m_\mu^2 |\epsilon_3^{LLR}|^2}{32\pi^2 R^2} |F(Z - 2, E_e)| \langle \phi_\mu \rangle^2 |\mathcal{M}(\mu^-,e^+)|^2$$

\rightarrow can be generalised to ϵ_3^{xyz} for $x = y$

\rightarrow for $x \neq y$ there is a relative sign switched in the nuclear matrix element
Further Realisations of ϵ_3

Cheng-Geng-Ng model
Cheng, Geng, Ng Phys.Rev. D75 (2007) 053004

EFT with doubly charged scalar
King, Merle, Panizzi JHEP 1411 (2014) 124

Heavy Majorana neutrinos

Left-Right symmetric models
Pritimita, Dash, Patra JHEP 1610 (2016) 147
Further Realisations of ϵ_3

EFT with doubly charged scalar King, Merle, Panizzi
JHEP 1411 (2014) 124

Cheng-Geng-Ng model
Cheng, Geng, Ng Phys.Rev.
D75 (2007) 053004

Heavy Majorana neutrinos
Domin, Kovalenko, Faessler, Simkovic

Left-Right symmetric models Pritimita, Dash, Patra
JHEP 1610 (2016) 147
Further Realisations of ϵ_3

EFT with doubly charged scalar King, Merle, Panizzi
JHEP 1411 (2014) 124

Cheng-Geng-Ng model
Cheng, Geng, Ng Phys.Rev. D75 (2007) 053004

Heavy Majorana neutrinos

Left-Right symmetric models Pritimita, Dash, Patra JHEP 1610 (2016) 147
Further Realisations of ϵ_3

Cheng-Geng-Ng model
Cheng, Geng, Ng Phys.Rev. D75 (2007) 053004

EFT with doubly charged scalar
King, Merle, Panizzi JHEP 1411 (2014) 124

Heavy Majorana neutrinos

Left-Right symmetric models
Pritimita, Dash, Patra JHEP 1610 (2016) 147
Further Realisations of ε_3

Cheng-Geng-Ng model
Cheng, Geng, Ng Phys.Rev. D75 (2007) 053004

EFT with doubly charged scalar King, Merle, Panizzi
JHEP 1411 (2014) 124

Heavy Majorana neutrinos

Left-Right symmetric models Pritimita, Dash, Patra JHEP 1610 (2016) 147
Reach of Future Experiments for ϵ_3

- obvious: limits on $0\nu\beta\beta$ are superior to those of $\mu^- - e^+$ conversion by orders of magnitude
- but also apparent: there are models where LNV is much more prominent in $e\mu$ instead of ee sector
- there are much more settings/operators which are likely to sit within reach for the next generation of experiments

⇒ valuable new information from $\mu^- - e^+$ conversion experiments
obvious: limits on $0\nu\beta\beta$ are superior to those of $\mu^- - e^+$ conversion by orders of magnitude

but also apparent: there are models where LNV is much more prominent in $e\mu$ instead of ee sector

there are much more settings/operators which are likely to sit within reach for the next generation of experiments

⇒ valuable new information from $\mu^- - e^+$ conversion experiments
Reach of Future Experiments for ϵ_3

- obvious: limits on $0\nu\beta\beta$ are superior to those of μ^--e^+ conversion by orders of magnitude

- but also apparent: there are models where LNV is much more prominent in $e\mu$ instead of ee sector

- there are much more settings/operators which are likely to sit within reach for the next generation of experiments

⇒ valuable new information from μ^--e^+ conversion experiments
obvious: limits on $0\nu\beta\beta$ are superior to those of $\mu^- - e^+$ conversion by orders of magnitude

but also apparent: there are models where LNV is much more prominent in $e\mu$ instead of ee sector

there are much more settings/operators which are likely to sit within reach for the next generation of experiments

⇒ valuable new information from $\mu^- - e^+$ conversion experiments
obvious: limits on $0\nu\beta\beta$ are superior to those of $\mu^- - e^+$ conversion by orders of magnitude

but also apparent: there are models where LNV is much more prominent in $e\mu$ instead of ee sector

there are much more settings/operators which are likely to sit within reach for the next generation of experiments

⇒ valuable new information from $\mu^- - e^+$ conversion experiments

However: several **key pieces of information are missing!!**

We are in dire need of **improvements** from **different areas**:

- **Experiment**: more detailed sensitivity studies for $\mu^- - e^+$ conversion
- **Nuclear Matrix Elements**:
 - Detailed study on percentage of process that is "coherent"
 - Hardly any **nuclear matrix elements** (NMEs) are available
 - \rightarrow need for NMEs for further element, e.g. 27Al, and for other operators like $\epsilon_{1,2}$
 - \Rightarrow there are promising models but we cannot judge them properly
- **Particle Physics**: for many models there are no (detailed) studies on LNV in the $e\mu$ sector and no information on which effective operators are realised

\Rightarrow Only if all three communities pull **together**, advances will be achieved!!

However: several key pieces of information are missing!!
We are in dire need of improvements from different areas:

- **Experiment:** more detailed sensitivity studies for $\mu^- - e^+$ conversion

- **Nuclear Matrix Elements:**
 - detailed study on percentage of process that is "coherent"
 - hardly any nuclear matrix elements (NMEs) are available
 \rightarrow need for NMEs for further element, e. g. 27Al, and for other operators like $\epsilon_{1,2}$
 \Rightarrow there are promising models but we cannot judge them properly

- **Particle Physics:** for many models there are no (detailed) studies on LNV in the $e\mu$ sector and no information on which effective operators are realised

\Rightarrow Only if all three communities pull together, advances will be achieved!!

However: several **key pieces of information are missing**!!

We are in dire need of **improvements** from different areas:

- **Experiment**: more detailed sensitivity studies for $\mu^- e^+$ conversion

- **Nuclear Matrix Elements**:
 - detailed study on percentage of process that is "coherent"
 - hardly any **nuclear matrix elements** (NMEs) are available
 → need for NMEs for further element, e.g. 27Al, and for other operators like $\epsilon_{1,2}$

 ⇒ there are promising models but we cannot judge them properly

- **Particle Physics**: for many models there are no (detailed) studies on LNV in the $e\mu$ sector and no information on which effective operators are realised

⇒ Only if all three communities pull **together**, advances will be achieved!!

However: several **key pieces of information are missing!!**

We are in dire need of **improvements** from different areas:

- **Experiment:** more detailed sensitivity studies for $\mu^- - e^+$ conversion
- **Nuclear Matrix Elements:**
 - detailed study on percentage of process that is "coherent"
 - hardly any *nuclear matrix elements* (NMEs) are available
 → need for NMEs for further element, e.g. 27Al, and for other operators like $\epsilon_{1,2}$

 ⇒ there are promising models but we cannot judge them properly
- **Particle Physics:** for many models there are no (detailed) studies on LNV in the $e\mu$ sector and no information on which effective operators are realised

⇒ Only if all three communities pull **together**, advances will be achieved!!

However: several **key pieces of information are missing!!**
We are in dire need of **improvements** from **different areas**:

- **Experiment**: more detailed sensitivity studies for $\mu^- - e^+$ conversion

- **Nuclear Matrix Elements**:
 - detailed study on percentage of process that is "coherent"
 - hardly any **nuclear matrix elements** (NMEs) are available
 \Rightarrow need for NMEs for further element, e.g. 27Al, and for other operators like $\epsilon_{1,2}$

 \Rightarrow there are promising models but we cannot judge them properly

- **Particle Physics**: for many models there are no (detailed) studies on LNV in the $e\mu$ sector and no information on which effective operators are realised

\Rightarrow Only if all three communities pull together, advances will be achieved!!
Open Issues of $\mu^{-} \rightarrow e^{+}$ based on TG, Merle, Zuber Phys.Lett. B764 (2017) 157

However: several **key pieces of information are missing**!!
We are in dire need of **improvements** from **different areas**:

- **Experiment**: more detailed sensitivity studies for $\mu^{-} \rightarrow e^{+}$ conversion

- **Nuclear Matrix Elements**:
 - detailed study on percentage of process that is ”coherent”
 - hardly any **nuclear matrix elements** (NMEs) are available
 → need for NMEs for further element, e. g. 27Al, and for other operators like $\epsilon_{1,2}$

 ⇒ there are promising models but we cannot judge them properly

- **Particle Physics**: for many models there are no (detailed) studies on LNV in the $e\mu$ sector and no information on which effective operators are realised

 ⇒ Only if all three communities pull **together**, advances will be achieved!!
Summary and Outlook

- **orders of magnitude** improvement of sensitivities in near-future experiments

- μ^-–e^- conversion:
 - **FIRST work** that treats μ^-–e^- conversion in such detail, i.e. beyond previous EFT treatment/approximations → analytic expression for Ξ_{particle}
 - **complementarity**: rich phenomenology of loop models → high- and low-energy processes → μ^-–e^- conversion important part of study

- μ^-–e^+ conversion:
 - complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator ϵ_3
 - pointed out open issues and further models/operators
 - LNV possibly more prominent in $e\mu$ sector → experiments could make a countable physics impact
 - open issues need to be addressed in order to proceed

- **COMET**: expecting to take first data in 2018
orders of magnitude improvement of sensitivities in near-future experiments

\(\mu^{-} \rightarrow e^{-}\) conversion:
- FIRST work that treats \(\mu^{-} \rightarrow e^{-}\) conversion in such detail, i.e. beyond previous EFT treatment/approximations
 \(\rightarrow\) analytic expression for \(\Xi_{\text{particle}}\)
- complementarity: rich phenomenology of loop models \(\rightarrow\) high- and low-energy processes \(\rightarrow\) \(\mu^{-} \rightarrow e^{-}\) conversion important part of study

\(\mu^{-} \rightarrow e^{+}\) conversion:
- complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the effective operator \(\epsilon_3\)
- pointed out open issues and further models/operators
- LNV possibly more prominent in \(e\mu\) sector \(\rightarrow\) experiments could make a countable physics impact
- open issues need to be addressed in order to proceed

COMET: expecting to take first data in 2018
Summary and Outlook

- **orders of magnitude** improvement of sensitivities in near-future experiments

- **$\mu^- \rightarrow e^-$ conversion**:
 - **FIRST work** that treats $\mu^- \rightarrow e^-$ conversion in such detail, i.e. beyond previous EFT treatment/approximations
 - \rightarrow analytic expression for Ξ_{particle}
 - **complementarity**: rich phenomenology of loop models \rightarrow high- and low-energy processes \rightarrow $\mu^- \rightarrow e^-$ conversion important part of study

- **$\mu^- \rightarrow e^+$ conversion**:
 - complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the **effective operator ϵ_3**
 - pointed out **open issues** and further models/operators
 - LNV possibly more prominent in $e\mu$ sector \rightarrow experiments could make a countable physics impact
 - open issues need to be addressed in order to proceed

- **COMET**: expecting to take first data in **2018**
Summary and Outlook

- **orders of magnitude** improvement of sensitivities in near-future experiments

- $\mu^- \rightarrow e^-$ conversion:
 - **FIRST work** that treats $\mu^- \rightarrow e^-$ conversion in such detail, i.e. beyond previous EFT treatment/approximations
 → analytic expression for Ξ_{particle}
 - **complementarity**: rich phenomenology of loop models → high- and low-energy processes → $\mu^- \rightarrow e^-$ conversion important part of study

- $\mu^- \rightarrow e^+$ conversion:
 - **complete computation** of the rate for the lepton flavour and number violating conversion process, mediated by the **effective operator** ϵ_3
 - pointed out **open issues** and further models/operators
 - LNV possibly more prominent in $e\mu$ sector → experiments could make a countable physics impact
 - open issues need to be addressed in order to proceed

- **COMET**: expecting to take first data in **2018**
Summary and Outlook

- **orders of magnitude** improvement of sensitivities in near-future experiments

- **$\mu^\rightarrow e^\rightarrow$ conversion:**
 - **FIRST work** that treats $\mu^\rightarrow e^\rightarrow$ conversion in such **detail**, i.e. beyond previous EFT treatment/approximations
 - \rightarrow analytic expression for Ξ_{particle}

- **complementarity**: rich phenomenology of loop models \rightarrow high- and low-energy processes \rightarrow $\mu^\rightarrow e^\rightarrow$ conversion important part of study

- **$\mu^\rightarrow e^+$ conversion:**
 - **complete computation** of the rate for the lepton flavour and number violating conversion process, mediated by the **effective operator** ϵ_3
 - pointed out **open issues** and further models/operators
 - LNV possibly more prominent in $e\mu$ sector \rightarrow experiments could make a **countable physics impact**

- **open issues need to be addressed in order to proceed**

- **COMET**: expecting to take first data in **2018**
Summary and Outlook

- **orders of magnitude** improvement of sensitivities in near-future experiments

- $\mu^- e^-$ **conversion**:
 - **FIRST work** that treats $\mu^- e^-$ conversion in such **detail**, i.e. beyond previous EFT treatment/approximations
 - \rightarrow analytic expression for Ξ_{particle}
 - **complementarity**: rich phenomenology of loop models \rightarrow high- and low-energy processes \rightarrow $\mu^- e^-$ conversion important part of study

- $\mu^- e^+$ **conversion**:
 - **complete computation** of the rate for the lepton flavour and number violating conversion process, mediated by the **effective operator** ϵ_3
 - pointed out **open issues** and further models/operators
 - LNV possibly more prominent in $e\mu$ **sector** \rightarrow experiments could make a **countable physics impact**
 - open issues need to be addressed in order to proceed

- **COMET**: expecting to take first data in **2018**
Summary and Outlook

- **orders of magnitude** improvement of sensitivities in near-future experiments

- **$\mu^− – e^−$ conversion**:
 - **FIRST work** that treats $\mu^− – e^−$ conversion in such detail, i. e. beyond previous EFT treatment/approximations
 \rightarrow analytic expression for Ξ_{particle}
 - **complementarity**: rich phenomenology of loop models \rightarrow high- and low-energy processes \rightarrow $\mu^− – e^−$ conversion important part of study

- **$\mu^− – e^+$ conversion**:
 - complete computation of the rate for the lepton flavour and number violating conversion process, mediated by the **effective operator ϵ_3**
 - pointed out **open issues** and further models/operators
 - LNV possibly more prominent in $e\mu$ sector \rightarrow experiments could make a countable physics impact
 - open issues need to be addressed in order to proceed

- **COMET**: expecting to take first data in 2018
Thank you for your attention!!

Any questions?
Backup Slides
Generating the Neutrino Mass

The mass is generated at two-loop level via the diagram

which leads to the neutrino mass

\[\mathcal{M}_{\nu,ab}^{2\text{-loop}} = \frac{2 \xi m_a m_b M_S^2 g_{ab}(1+\delta_{ab})}{\Lambda^3} \mathcal{I}[M_W, M_S, \mu] \]

\[\rightarrow \text{ Majorana mass term} \]
\[\rightarrow \text{ further LNV processes} \]
Selection of interesting processes: **low energy physics**

- neutrinoless double beta decay:
 \[
 \frac{\xi f_{ee}}{M_S^2 \Lambda^3} < 4.0 \cdot 10^{-3} \frac{\text{TeV}^5}{M_S^2 \Lambda^3}
 \]

- \(\mu^- \rightarrow e^- \gamma \):
 \[
 |f_{ee}^* f_{e\mu} + f_{e\mu}^* f_{\mu\mu} + f_{e\tau}^* f_{\mu\tau}| < 3.2 \cdot 10^{-4} M_S^2 \text{[TeV]}
 \]
Testing the Model
based on King, Merle, Panizzi arXiv:1406.4137

benchmark points:

\[f_{ab} \text{ such that bounds fulfilled } + \text{ suitable light neutrino mass matrix reproduced} \]

- 'red': \(f_{ee} \approx 0 \) and \(f_{e\tau} \approx 0 \)
- 'purple': \(f_{ee} \approx 0 \) and \(f_{e\mu} \approx \frac{f_{\mu\tau}^{*}}{f_{\mu\mu}^{*}} f_{e\tau} \)
- 'blue': \(f_{e\mu} \approx \frac{f_{\mu\tau}^{*}}{f_{\mu\mu}^{*}} f_{e\tau} \)

\[\downarrow \]

complementary check with high energy experiments:
compute cross sections for e.g.

- \(S^{\pm\pm} \rightarrow W^{\pm\pm} \)
- \(S^{\pm\pm} \rightarrow l_a^{\pm\pm} l_b^{\pm\pm} \)
- ...

\[\rightarrow \text{ some of the benchmark points already excluded by LHC data (7 TeV run) } \]
Testing the Model
based on King, Merle, Panizzi arXiv:1406.4137

benchmark points:

f_{ab} such that bounds fulfilled + suitable light neutrino mass matrix reproduced

- 'red': $f_{ee} \simeq 0$ and $f_{e\tau} \simeq 0$
- 'purple': $f_{ee} \simeq 0$ and $f_{e\mu} \simeq \frac{f_{\mu\tau}^*}{f_{\mu\mu}^*} f_{e\tau}$
- 'blue': $f_{e\mu} \simeq \frac{f_{\mu\tau}^*}{f_{\mu\mu}^*} f_{e\tau}$

↓

complementary check with **high energy experiments**:
compute cross sections for e.g.

- $S^{\pm\pm} \rightarrow W^{\pm\pm}$
- $S^{\pm\pm} \rightarrow l_a^{\pm\pm} l_b^{\pm\pm}$
- ...

→ some of the benchmark points already excluded by LHC data (7 TeV run)
Photonic Contribution: Cross Check via UV Divergences

In form of \(i \mathcal{M} = e f_{ea}^* f_{a\mu} A_\nu(q') \overline{u}_e(p_e) \mathcal{I}_\nu u_\mu(p_\mu) \):

\[
-4 Q_S \int \frac{d^d k}{(2\pi)^d} \frac{P_L \gamma^\nu (2p_\mu - 2k + q')^\nu}{[k^2 - m_a^2][(p_\mu - k + q')^2 - M_S^2][(p_\mu - k)^2 - M_S^2]} \xrightarrow{\text{div}} 2i \frac{Q_S P_L \gamma^\nu}{(4\pi)^2 \epsilon}
\]

\[
-4 Q_+ \int \frac{d^d k}{(2\pi)^d} \frac{P_L (k + q' + m_a) \gamma^\nu (k + m_a) P_R}{[k^2 - m_a^2][(p_\mu - k)^2 - M_S^2][(k + q')^2 - m_a^2]} \xrightarrow{\text{div}} -i \frac{Q_+ P_L \gamma^\nu \gamma^\rho P_R}{(4\pi)^2 \epsilon}
\]

\[
-4 Q_- \int \frac{d^d k}{(2\pi)^d} \frac{P_L (\phi_e + m_\mu) \gamma^\nu}{[p_e^2 - m_\mu^2][(p_e - k)^2 - M_S^2][k^2 - m_a^2]} \xrightarrow{\text{div}} 2i \frac{Q_-}{(4\pi)^2 \epsilon} P_L \phi_e (\phi_e + m_\mu) \gamma^\nu
\]

\[
4 Q_e^- \int \frac{d^d k}{(2\pi)^d} \frac{\gamma^\nu \phi_\mu}{[p_\mu^2][(p_\mu - k)^2 - M_S^2][k^2 - m_a^2]} \xrightarrow{\text{div}} -2i \frac{Q_e^-}{(4\pi)^2 \epsilon} \gamma^\nu \phi_\mu P_L \phi_\mu
\]

\[
\Rightarrow \Sigma \mathcal{I}^\nu = \frac{i}{(4\pi)^2 \epsilon} \left[(2 Q_S + 2 Q_+ - Q_e^- - Q_-) P_L \gamma^\nu \right] = 0
\]
Photonic Contribution: Cross Check via UV Divergences

In form of

\[i \mathcal{M} = e f_{ea}^* f_{a\mu} A_\nu(q') \bar{u}_e(p_e) \mathcal{I}^\nu u_\mu(p_\mu) : \]

\[-4Q_S \int \frac{d^d k}{(2\pi)^d} \frac{P_L k (2p_\mu - 2k + q')^\nu}{[k^2 - m_a^2][(p_\mu - k + q')^2 - M_S^2][(p_\mu - k)^2 - M_S^2]} \quad \text{div} \rightarrow \frac{2i}{(4\pi)^2 \varepsilon} Q_S P_L \gamma^\nu \]

\[-4Q_I+ \int \frac{d^d k}{(2\pi)^d} \frac{P_L (k + q' + m_\rho) \gamma^\nu (k + m_\rho) P_R}{[k^2 - m_a^2][(p_\mu - k)^2 - M_S^2][(k + q')^2 - m_a^2]} \quad \text{div} \rightarrow -\frac{i}{(4\pi)^2 \varepsilon} Q_I+ P_L \gamma^\rho \gamma^\nu \gamma_\rho P_R \]

\[-4Q_I- \int \frac{d^d k}{(2\pi)^d} \frac{P_L (p_e + m_\mu) \gamma^\nu (p_e + m_\mu) P_R}{[p_e^2 - m_\mu^2][(p_e - k)^2 - M_S^2][(k + q')^2 - m_a^2]} \quad \text{div} \rightarrow \frac{2i}{(4\pi)^2 \varepsilon} \frac{\mu}{m_\mu^2} P_L p_e (p_e + m_\mu) \gamma^\nu \]

\[4Q_e- \int \frac{d^d k}{(2\pi)^d} \frac{\gamma^\nu \phi_\mu P_L k}{[p_\mu^2][(p_\mu - k)^2 - M_S^2][k^2 - m_a^2]} \quad \text{div} \rightarrow -\frac{2i}{(4\pi)^2 \varepsilon} \frac{e}{m_\mu^2} \gamma^\nu \phi_\mu P_L \phi_\mu \]

\[\Rightarrow \sum \mathcal{I}^\nu = \frac{i}{(4\pi)^2 \varepsilon} [(2Q_S + 2Q_{I+} - Q_{e-} - Q_{\mu-}) P_L \gamma^\nu] = 0 \quad \checkmark\]
Photonic Contribution: Cross Check via UV Divergences

In form of \(i\mathcal{M} = e f_{ea}^* f_{a\mu} A_\nu(q') \bar{u}_e(p_\mu) \mathcal{I}_\nu u_\mu(p_\mu) \):

\[
-4QS \int \frac{d^dk}{(2\pi)^d} \frac{P_L \bar{k}(2p_\mu - 2k + q')^\nu}{[k^2 - m_a^2][(p_\mu - k + q')^2 - M^2_S][(p_\mu - k)^2 - M^2_S]} \text{ div} \frac{2i}{(4\pi)^2 \varepsilon} QSP_L \gamma^\nu
\]

\[
-4Q I_+ \int \frac{d^dk}{(2\pi)^d} \frac{P_L (\bar{k} + q' + ma)^\nu (k + ma)p_R}{[k^2 - m_a^2][(p_\mu - k)^2 - M^2_S][(k + q')^2 - m_a^2]} \text{ div} \frac{-i}{(4\pi)^2 \varepsilon} QI_+ P_L \gamma^\rho \gamma^\nu \gamma^\rho P_R
\]

\[
-4Q_{\mu -} \int \frac{d^dk}{(2\pi)^d} \frac{P_L \bar{k} (\bar{p}_e + m_\mu)^\nu}{[p_e^2 - m_\mu^2][(p_e - k)^2 - M^2_S][k^2 - m_a^2]} \text{ div} \frac{2i}{(4\pi)^2 \varepsilon} \frac{\mu -}{m_\mu} P_L \bar{p}_e (\bar{p}_e + m_\mu) \gamma^\nu
\]

\[
4Q_{e -} \int \frac{d^dk}{(2\pi)^d} \frac{\gamma^\nu \bar{p}_\mu P_L \bar{k}}{[p_\mu^2][(p_\mu - k)^2 - M^2_S][k^2 - m_a^2]} \text{ div} \frac{-2i}{(4\pi)^2 \varepsilon} \frac{e -}{m_\mu} \gamma^\nu \bar{p}_\mu P_L \bar{p}_\mu
\]

\[
\Rightarrow \sum \mathcal{I}_\nu = \frac{i}{(4\pi)^2 \varepsilon} [(2QS + 2Q I_+ - Q_{e -} - Q_{\mu -}) P_L \gamma^\nu] = 0 \quad \checkmark
\]
Photonic Contribution: Cross Check via UV Divergences

In form of \(i \mathcal{M} = e f_{ea}^* f_{a\mu} A_\nu(q') \overline{u}_e(p_e) T^\nu u_\mu(p_\mu) : \)

\[
-4QS \int \frac{d^d k}{(2\pi)^d} \frac{P_L k(2p_\mu - 2k + q')^\nu}{[k^2 - m_a^2][(p_\mu - k + q')^2 - M_S^2][(p_\mu - k)^2 - M_S^2]} \quad \text{div} \rightarrow \frac{2i}{(4\pi)^2 \varepsilon} QS P_L \gamma^\nu
\]

\[
-4Q_I \int \frac{d^d k}{(2\pi)^d} \frac{P_L (k + q' + m_\alpha) \gamma^\nu (k + m_\alpha) P_R}{[k^2 - m_a^2][(p_\mu - k)^2 - M_S^2][(k + q')^2 - m_a^2]} \quad \text{div} \rightarrow -i \frac{Q_I + P_L \gamma^\rho \gamma^\nu \gamma^\rho P_R}{(4\pi)^2 \varepsilon}
\]

\[
-4Q_{\mu -} \int \frac{d^d k}{(2\pi)^d} \frac{P_L \tilde{k} \tilde{(p_e + m_\mu)} \gamma^\nu}{[p_e^2 - m_\mu^2][(p_e - k)^2 - M_S^2][k^2 - m_a^2]} \quad \text{div} \rightarrow \frac{2i}{(4\pi)^2 \varepsilon} \frac{Q_{\mu -}}{m_\mu^2} P_L p_e (p_e + m_\mu) \gamma^\nu
\]

\[
4Q_e^- \int \frac{d^d k}{(2\pi)^d} \frac{\gamma^\nu p_{\mu -} P_L \tilde{k}}{[p_{\mu -}^2][(p_\mu - k)^2 - M_S^2][k^2 - m_a^2]} \quad \text{div} \rightarrow -2i \frac{Q_e^-}{(4\pi)^2 \varepsilon} \frac{\gamma^\nu p_{\mu -} P_L \tilde{p}_{\mu -}}{m_\mu^2}
\]

\[\Rightarrow \sum T^\nu = \frac{i}{(4\pi)^2 \varepsilon} [(2QS + 2Q_I - Q_e^- - Q_{\mu -}) P_L \gamma^\nu] = 0 \quad \checkmark\]
Photonic Contribution: Cross Check via UV Divergences

In form of \(i \mathcal{M} = e f_{ea}^* f_{a\mu} A_\nu(q') \bar{u}_e(p_e) \mathcal{T}^\nu u_\mu(p_\mu) \):

\[
-4Q_S \int \frac{d^d k}{(2\pi)^d} \frac{P_L k (2p_\mu - 2k + q')^\nu}{[k^2 - m_a^2][(p_\mu - k + q')^2 - M_S^2][(p_\mu - k)^2 - M_S^2]} \xrightarrow{\text{div}} \frac{2i}{(4\pi)^2 \varepsilon} Q_S P_L \gamma^\nu
\]

\[
-4Q_I+ \int \frac{d^d k}{(2\pi)^d} \frac{P_L (k + q' + m_a) \gamma^\nu (k + m_a) P_R}{[k^2 - m_a^2][(p_\mu - k)^2 - M_S^2][(k + q')^2 - m_a^2]} \xrightarrow{\text{div}} \frac{-i}{(4\pi)^2 \varepsilon} Q_I+ P_L \gamma^\rho \gamma^\nu \gamma^\rho P_R
\]

\[
-4Q_\mu- \int \frac{d^d k}{(2\pi)^d} \frac{P_L (\phi_e + m_\mu) \gamma^\nu}{[p_e^2 - m_\mu^2][(p_e - k)^2 - M_S^2][k^2 - m_a^2]} \xrightarrow{\text{div}} \frac{2i}{(4\pi)^2 \varepsilon} \frac{Q_\mu}{m_\mu^2} P_L \phi_e (\phi_e + m_\mu) \gamma^\nu
\]

\[
4Q_e- \int \frac{d^d k}{(2\pi)^d} \frac{\gamma^\nu \phi_\mu P_L k}{[p_\mu^2][(p_\mu - k)^2 - M_S^2][k^2 - m_a^2]} \xrightarrow{\text{div}} \frac{-2i}{(4\pi)^2 \varepsilon} \frac{Q_e}{m_\mu^2} \gamma^\nu \phi_\mu P_L \phi_\mu
\]

\[
\Rightarrow \sum \mathcal{T}^\nu = \frac{i}{(4\pi)^2 \varepsilon} [(2Q_S + 2Q_I^+ - Q_e^- - Q_\mu^-) P_L \gamma^\nu] = 0 \quad \checkmark
\]
Photonic Contribution: Cross Check via UV Divergences

In form of \[i\mathcal{M} = e f_{ea}^* f_{a\mu} A_\nu(q') \bar{u}_e(p_e) \mathcal{I}^\nu u_{\mu}(p_{\mu}) : \]

\[-4Q_S \int \frac{d^d k}{(2\pi)^d} \frac{P_L k(2p_{\mu} - 2k + q')^\nu}{[k^2 - m_a^2][(p_{\mu} - k + q')^2 - M_S^2][(p_{\mu} - k)^2 - M_S^2]} \xrightarrow{\text{div}} \frac{2i}{(4\pi)^2 \varepsilon} Q_S P_L \gamma^\nu \]

\[-4Q_I^+ \int \frac{d^d k}{(2\pi)^d} \frac{P_L (k + q' - m_a) \gamma^\nu (k + m_a) P_R}{[k^2 - m_a^2][(p_{\mu} - k)^2 - M_S^2][(k + q')^2 - m_a^2]} \xrightarrow{\text{div}} -\frac{i}{(4\pi)^2 \varepsilon} Q_I^+ P_L \gamma^\rho \gamma^\nu \gamma^\rho P_R \]

\[-4Q_\mu^- \int \frac{d^d k}{(2\pi)^d} \frac{P_L \phi_{pe}^\nu + m_{\mu} \gamma^\nu}{[p_{pe}^2 - m_{\mu}^2][(p_{fe} - k)^2 - M_S^2][k^2 - m_a^2]} \xrightarrow{\text{div}} \frac{2i}{(4\pi)^2 \varepsilon} \frac{Q_\mu^-}{m_{\mu}^2} P_L \phi_{pe}(\phi_{pe} + m_{\mu}) \gamma^\nu \]

\[4Q_e^- \int \frac{d^d k}{(2\pi)^d} \frac{\gamma^\nu \phi_{\mu} P_L k}{[p_{\mu}^2][(p_{\mu} - k)^2 - M_S^2][k^2 - m_a^2]} \xrightarrow{\text{div}} -\frac{2i}{(4\pi)^2 \varepsilon} \frac{Q_e^-}{m_{\mu}^2} \gamma^\nu \phi_{\mu} P_L \phi_{\mu} \]

\[\Rightarrow \sum \mathcal{I}^\nu = \frac{i}{(4\pi)^2 \varepsilon} [(2Q_S + 2Q_I^+ - Q_e^- - Q_\mu^-)P_L \gamma^\nu] = 0 \]
Photonic Contribution: Cross Check via UV Divergences

In form of \(i\mathcal{M} = e f^*_e f_{a\mu} A_{\nu}(q') \bar{u}_e(p_e) T^\nu u_\mu(p_\mu) \):
Photonic Contribution: Results I

\[
F_1(-m^2_\mu) = G_1(-m^2_\mu) =
\]

\[
= -\frac{1}{128\,\pi^2m^4_\mu} \sum_{a=e,\mu,\tau} f^*_{ea} f_{a\mu} \left[2 m^2_\mu \left(-5m^2_a + 6m^2_\mu + 5M^2_S \right) - 2 S_a m^2_\mu \left(m^2_a + 3m^2_\mu - M^2_S \right) \right]
\]

\[
\ln \left[\frac{2m^2_a}{2m^2_a + m^2_\mu(1+S_a)} \right] + 4 S_S m^2_\mu \left(m^2_a + m^2_\mu - M^2_S \right) \ln \left[\frac{2M^2_S}{2M^2_S + m^2_\mu(1+S_S)} \right] + \left(3m^2_a \left(2m^2_a - m^2_\mu \right) - 4M^2_S \right) + 5m^4_\mu - 7m^2_\mu M^2_S + 6M^4_S \right) \ln \left[\frac{m^2_a}{M^2_S} \right] + 2 T_a \left(-6m^2_a + m^2_\mu + 6M^2_S \right) \ln \left[\frac{2m^2_a M_S}{m^2_a - m^2_\mu + M^2_S - T_a} \right]
\]

\[
+ 2 m^2_\mu \left[\left(m^4_a + 8m^2_a m^2_\mu + M^4_S - 2M^2_S \left(m^2_a + 2m^2_\mu \right) \right) C_0 \left[0, -m^2_\mu, m^2_\mu; m_a, M_S, m_a \right] \right]
\]

\[
+ 2 \left(m^4_a - 2M^2_S \left(m^2_a - 2m^2_\mu \right) + M^4_S \right) C_0 \left[0, -m^2_\mu, m^2_\mu; M_S, m_a, M_S \right] \right]
\]

\[
\frac{M_S \gg m_a}{\to} -f^*_{ea} f_{a\mu} \left[\frac{2m^2_a + m^2_\mu \ln \left(\frac{m_a}{M_S} \right)}{12\pi^2M^2_S} + \frac{\sqrt{m^2_\mu + 4m^2_a}(m^2_\mu - 2m^2_a)}{12\pi^2m_\mu M^2_S} \arctanh \left(\frac{m_\mu}{\sqrt{m^2_\mu + 4m^2_a}} \right) \right] + O(M^{-4}_S)
\]

Note: \(O(M^{-4}_S) \) gives corrections of up to a **few per cent**
Photonic Contribution: Results I

\[
F_1(-m^2_\mu) = G_1(-m^2_\mu) = \\
= -\frac{1}{128 \pi^2 m^4_\mu} \sum_{a=e, \mu, \tau} f^*_{ea} f_{a\mu} \left[2 m^2_\mu \left(-5m^2_a + 6m^2_\mu + 5M^2_S \right) - 2 S_a m^2_\mu \left(m^2_a + 3m^2_\mu - M^2_S \right) \right. \\
\ln \left[\frac{2m^2_a}{2m^2_a + m^2_\mu (1+S_a)} \right] + 4 S_S m^2_\mu \left(m^2_a + m^2_\mu - M^2_S \right) \ln \left[\frac{2M^2_S}{2M^2_S + m^2_\mu (1+S_S)} \right] + \left(3m^2_a \left(2m^2_a - m^2_\mu - 4M^2_S \right) + 5m^4_\mu - 7m^2_\mu M^2_S + 6M^4_S \right) \ln \left[\frac{m^2_a}{M^2_S} \right] + 2 T_a \left(-6m^2_a + m^2_\mu + 6M^2_S \right) \ln \left[\frac{2m^2_a M_S}{m^2_a - m^2_\mu + M^2_S - T_a} \right] \\
+ 2 m^2_\mu \left[\left(m^4_a + 8m^2_a m^2_\mu + M^4_S - 2M^2_S \left(m^2_a + 2m^2_\mu \right) \right) C_0 \left[0, -m^2_\mu, m^2_\mu; m_a, M_S, m_a \right] \\
+ 2 \left(m^4_a - 2M^2_S \left(m^2_a - 2m^2_\mu \right) + M^4_S \right) C_0 \left[0, -m^2_\mu, m^2_\mu; M_S, m_a, M_S \right] \right] \\
\]

\[
\frac{M_S \gg m_a}{\rightarrow} - f^*_{ea} f_{a\mu} \left[\frac{2m^2_a + m^2_\mu}{12\pi^2 M^2_S} \log \left(\frac{m^2_a}{M^2_S} \right) + \frac{\sqrt{m^2_\mu + 4m^2_a \left(m^2_\mu - 2m^2_a \right)}}{12\pi^2 m_\mu M^2_S} \operatorname{Arctanh} \left(\frac{m^2_\mu}{\sqrt{m^2_\mu + 4m^2_a}} \right) \right] + O(M_S^{-4})
\]

Note: $O(M_S^{-4})$ gives corrections of up to a few per cent
Photonic Contribution: Results I

\[
F_1(-m^2_\mu) = G_1(-m^2_\mu) = \\
= -\frac{1}{128}\frac{2m^2_a}{\pi^2m^4_\mu}\sum_{a=e,\mu,\tau} f^*_{ea} f_{a\mu}\left[2m^2_\mu\left(-5m^2_a + 6m^2_\mu + 5M^2_S\right) - 2S_a m^2_\mu\left(m^2_\mu + 3m^2_a - M^2_S\right)\right] \\
\ln\left[\frac{2m^2_a}{2m^2_a + m^2_\mu(1+S_a)}\right] + 4S_a m^2_\mu\left(m^2_a + m^2_\mu - M^2_S\right) \ln\left[\frac{2M^2_S}{2M^2_S + m^2_\mu(1+S_a)}\right] + \left(3m^2_a\left(2m^2_a - m^2_\mu - 4M^2_S\right) + 5m^4_\mu - 7m^2_\mu M^2_S + 6M^4_S\right) \ln\left[\frac{m^2_a}{M^2_S}\right] + 2T_a\left(-6m^2_a + m^2_\mu + 6M^2_S\right) \ln\left[\frac{2m_a M_S}{m^2_a - m^2_\mu + M^2_S - T_a}\right] \\
+ 2m^2_\mu\left[\left(m^4_a + 8m^2_a m^2_\mu + M^4_S - 2M^2_S\left(m^2_a + 2m^2_\mu\right)\right) C_0\left[0, -m^2_\mu, m^2_\mu; m_a, M_S, m_a\right] \\
+ 2\left(m^4_a - 2M^2_S\left(m^2_a - 2m^2_\mu\right) + M^4_S\right) C_0\left[0, -m^2_\mu, m^2_\mu; M_S, m_a, M_S\right]\right] \\
M_S \gg m_a \\
\xrightarrow{M_S \gg m_a} -f^*_{ea} f_{a\mu}\left[\frac{2m^2_a + m^2_\mu}{12\pi^2 M^2_S}\log\left(\frac{m_a}{M^2_S}\right) + \sqrt{m^2_\mu + 4m^2_a\left(m^2_\mu - 2m^2_a\right)} \frac{\text{Arctanh}\left(\frac{m_\mu}{\sqrt{m^2_\mu + 4m^2_a}}\right)}{12\pi^2 m_\mu M^2_S}\right] + \mathcal{O}(M^{-4}_S)
\]

Note: \(\mathcal{O}(M^{-4}_S)\) gives corrections of up to a **few per cent**

\[
F_2(-m_{\mu}^2) = -G_2(-m_{\mu}^2) = \\
= -\frac{1}{128 \pi^2 m_\mu^4} \sum_{a=e, \mu, \tau} f^*_e f_a \mu \left[2 m_\mu^2 \left(-m_a^2 + 6 m_\mu^2 + M_S^2 \right) + 2 S_a m_\mu^2 \left(3 m_a^2 + m_\mu^2 - 3 M_S^2 \right) \right] \\
\ln \left[\frac{2 m_a^2}{2 m_a^2 + m_\mu^2 (1 + S_a)} \right] + 4 S_S m_\mu^2 \left(-3 m_a^2 + m_\mu^2 + 3 M_S^2 \right) \ln \left[\frac{2 M_S^2}{2 M_S^2 + m_\mu^2 (1 + S_S)} \right] \\
+ \left(m_a^2 \left(-2 m_a^2 - 7 m_\mu^2 + 4 M_S^2 \right) + m_\mu^4 + 5 m_\mu^2 M_S^2 - 2 M_S^4 \right) \ln \left[\frac{m_a^2}{M_S^2} \right] + 2 T_a \left(2 m_a^2 - 3 m_\mu^2 - 2 M_S^2 \right) \\
\ln \left[\frac{2 m_a M_S}{m_a^2 - m_\mu^2 + M_S^2 - T_a} \right] + 2 m_\mu^2 \left(-3 m_a^4 - 3 M_S^4 + 2 M_S^2 \left(3 m_a^2 + 2 m_\mu^2 \right) \right) C_0 \left[0, -m_\mu^2, m_\mu^2; m_a, M_S, m_a \right] \\
+ 2 \left(-3 m_a^4 + 2 m_a^2 \left(3 M_S^2 + 2 m_\mu^2 \right) - 3 M_S^4 \right) C_0 \left[0, -m_\mu^2, m_\mu^2; M_S, m_a, M_S \right] \right]
\]

\[
\frac{M_S \gg m_a}{\rightarrow} f^*_e f_a \mu \frac{m_\mu^2}{24 \pi^2 M_S^2} + \mathcal{O}(M_S^{-4})
\]

Note: \(\mathcal{O}(M_S^{-4}) \) gives corrections of up to a few per cent
Photonic Contribution: Results I

\[
F_2(-m^2_\mu) = -G_2(-m^2_\mu) =
\]

\[
= - \frac{1}{128 \pi^2 m^4_\mu} \sum_{a=e, \mu, \tau} f^*_a f_{a\mu} \left[2 m^2_\mu \left(- m^2_a + 6 m^2_\mu + M^2_S \right) + 2 S_a m^2_\mu \left(3 m^2_a + m^2_\mu - 3 M^2_S \right) \right]
\]

\[
\ln \left[\frac{2 m^2_a}{2 m^2_a + m^2_\mu (1 + S_a)} \right] + 4 S_S m^2_\mu \left(- 3 m^2_a + m^2_\mu + 3 M^2_S \right) \ln \left[\frac{2 M^2_S}{2 M^2_S + m^2_\mu (1 + S_S)} \right]
\]

\[
+ \left(m^2_a \left(- 2 m^2_a - 7 m^2_\mu + 4 M^2_S \right) + m^4_\mu + 5 m^2_\mu M^2_S - 2 M^4_S \right) \ln \left[\frac{m^2_a}{M^2_S} \right] + 2 T_a \left(2 m^2_a - 3 m^2_\mu - 2 M^2_S \right)
\]

\[
\ln \left[\frac{2 m a M_S}{m^2_a - m^2_\mu + M^2_S - T_a} \right] + 2 m^2_\mu \left[\left(- 3 m^4_a - 3 M^4_S + 2 M^2_S (3 m^2_a + 2 m^2_\mu) \right) C_0 \left[0, - m^2_\mu, m^2_\mu; m_a, M_S, m_a \right]
\]

\[
+ 2 \left(- 3 m^4_a + 2 m^2_a (3 M^2_S + 2 m^2_\mu) - 3 M^4_S \right) C_0 \left[0, - m^2_\mu, m^2_\mu; M_S, m_a, M_S \right] \right]
\]

\[
M_S \gg m_a \rightarrow f^*_a f_{a\mu} \frac{m^2_\mu}{24 \pi^2 M^2_S} + \mathcal{O}(M^{-4}_S)
\]

Note: \(\mathcal{O}(M^{-4}_S) \) gives corrections of up to a few per cent

\[
F_2(-m^2_\mu) = -G_2(-m^2_\mu) = \frac{1}{128 \pi^2 m^4_\mu} \sum_{a=e, \mu, \tau} f^*_{ea} f_{a\mu} \left[2 m^2_\mu \left(- m^2_a + 6 m^2_\mu + M^2_S \right) + 2 S_a m^2_\mu \left(3 m^2_a + m^2_\mu - 3 M^2_S \right) \right. \\
\left. \ln \left(\frac{2 m^2_a}{2 m^2_a + m^2_\mu (1 + S_a)} \right) \right] + 4 S_S m^2_\mu \left(- 3 m^2_a + m^2_\mu + 3 M^2_S \right) \ln \left[\frac{2 M^2_S}{2 M^2_S + m^2_\mu (1 + S_S)} \right] \\
+ \left(m^2_a \left(- 2 m^2_a - 7 m^2_\mu + 4 M^2_S \right) + m^4_\mu + 5 m^2_\mu M^2_S - 2 M^4_S \right) \ln \left[\frac{m^2_a}{M^2_S} \right] + 2 T_a \left(2 m^2_a - 3 m^2_\mu - 2 M^2_S \right) \\
\ln \left[\frac{2 m_a M_S}{m^2_a - m^2_\mu + M^2_S - T_a} \right] + 2 m^2_\mu \left[\left(- 3 m^4_a - 3 M^4_S + 2 M^2_S \left(3 m^2_a + 2 m^2_\mu \right) \right) C_0 [0, -m^2_\mu, m^2_\mu; m_a, M_S, m_a] \\
+ 2 \left(- 3 m^4_a + 2 m^2_a \left(3 M^2_S + 2 m^2_\mu \right) - 3 M^4_S \right) C_0 [0, -m^2_\mu, m^2_\mu; M_S, m_a, M_S] \right] \\

\frac{M_S \gg m_a}{\Rightarrow} f^*_{ea} f_{a\mu} \frac{m^2_\mu}{24 \pi^2 M^2_S} + \mathcal{O}(M^4_S)
\]

Note: \(\mathcal{O}(M^{-4}_S) \) gives corrections of up to a few per cent
'Average Scenario’ Couplings

<table>
<thead>
<tr>
<th></th>
<th>red</th>
<th>purple</th>
<th>blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{ee}</td>
<td>10^{-16}</td>
<td>10^{-15}</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>$f_{e\mu}$</td>
<td>10^{-2}</td>
<td>10^{-3}</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>$f_{e\tau}$</td>
<td>10^{-19}</td>
<td>10^{-2}</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>$f_{\mu\mu}$</td>
<td>10^{-4}</td>
<td>10^{-3}</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>$f_{\mu\tau}$</td>
<td>10^{-5}</td>
<td>10^{-4}</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>$f_{e\mu}$ $f_{e\mu}$</td>
<td>10^{-18}</td>
<td>10^{-18}</td>
<td>10^{-5}</td>
</tr>
<tr>
<td>$f_{e\mu}$ $f_{\mu\mu}$</td>
<td>10^{-6}</td>
<td>10^{-6}</td>
<td>10^{-7}</td>
</tr>
<tr>
<td>$f_{e\tau}$ $f_{\mu\tau}$</td>
<td>10^{-24}</td>
<td>10^{-6}</td>
<td>10^{-6}</td>
</tr>
</tbody>
</table>

Table: First part: 'average scenario’ couplings for the benchmark points as extracted from Tab. 7 in *King, Merle, Panizzi: arXiv:1406.4137*. Second part: combination of couplings that enter the μ–e conversion amplitude. The bold values indicate the dominant photonic contribution.
Non-Photonic Bands

- The amplitude that enters the non-photonic Ξ takes the form

$$A \propto |f_{ee}^* f_{e\mu} D(m_e) + f_{e\mu}^* f_{\mu\mu} D(m_\mu) + f_{e\tau}^* f_{\tau\mu} D(m_\tau)|.$$

- The function $D(m_a)$ strongly varies with m_a.
 - \rightarrow dominant term stems from the tau propagating within the loop, i.e. $D(m_\tau)$
 - \rightarrow exceeds the muon and electron contribution by three to four orders of magnitude

- blue/purple scenario: neither $f_{ee}^* f_{e\mu}$ nor $f_{e\mu}^* f_{\mu\mu}$ bypasses this difference
 + identical $f_{e\tau}^* f_{\tau\mu}$ in both scenarios
 - \rightarrow indistinguishable curves

- red/grey scenario:
 dominant contributions: $f_{e\mu}^* f_{\mu\mu} D(m_\mu) \sim f_{e\tau}^* f_{\tau\mu} D(m_\tau)$
 - \rightarrow same order of magnitude, i.e. comparable values of non-photonic contribution