paul scherrer institut

Rare B decays \& new physics

Rusa Mandal
Institute of mathematical sciences, Chennai
on arXiv: 1603.04355, 1706.08437

Outline

- Introduction
- Rare semileptonic mode $B \rightarrow K^{*} \ell^{+} \ell^{-}$
- Model independent framework
- Evidence of new physics
- Lepton flavor non-universality
- Summary

Introduction

Introduction

Angular analysis in well known helicity frame [Kruger, Sehgal, Sinha, Sinha '99]

The differential distribution $\frac{d^{4} \Gamma\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)}{d q^{2} d \cos \theta_{l} d \cos \theta_{k} d \phi}$

$$
\begin{array}{r}
=\frac{9}{32 \pi}\left[I_{1}^{s} \sin ^{2} \theta_{K}+I_{1}^{c} \cos ^{2} \theta_{K}+\left(I_{2}^{s} \sin ^{2} \theta_{K}+I_{2}^{c} \cos ^{2} \theta_{K}\right) \cos 2 \theta_{l}+I_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \phi\right. \\
+I_{4} \sin 2 \theta_{K} \sin 2 \theta_{l} \cos \phi+I_{5} \sin 2 \theta_{K} \sin \theta_{l} \cos \phi+I_{6}^{s} \sin ^{2} \theta_{K} \cos \theta_{l} \\
\left.+I_{7} \sin 2 \theta_{K} \sin \theta_{l} \sin \phi+I_{8} \sin 2 \theta_{K} \sin 2 \theta_{l} \sin \phi+I_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \sin 2 \phi\right]
\end{array}
$$

Motivation

ק $I_{i}=$ short distance + long distance

Motivation

ק $\quad I_{i}=$ short distance + long distance

Wilson coefficients:
perturbatively calculable

Motivation

* $I_{i}=$ short distance + long distance

Wilson coefficients: perturbatively calculable

Form-factors:
non-perturbative estimates
from LCSR, HQET, Lattice ...
tremendous effort since past

Motivation

B $\quad I_{i}=$ short distance + long distance

Wilson coefficients:
perturbatively calculable
Form-factors:
non-perturbative estimates from LCSR, HQET, Lattice ...
tremendous effort since past
Non-factorizable contributions:

no quantitative computation

Challenge: either estimate accurately or eliminate

Model Independent Framework

(The amplitude $\mathcal{A}\left(B(p) \rightarrow K^{*}(k) \ell^{+} \ell^{-}\right)$
[RM, Sinha, Das '14]

$$
\begin{aligned}
=\frac{G_{F} \alpha}{\sqrt{2} \pi} V_{t b} V_{t s}^{*}[\{ & C_{9}\left\langle K^{*}\right| \bar{s} \gamma^{\mu} P_{L} b|\bar{B}\rangle-\frac{2 C_{7}}{q^{2}}\left\langle K^{*}\right| \bar{s} i \sigma^{\mu \nu} q_{\nu}\left(m_{b} P_{R}+m_{s} P_{L}\right) b|\bar{B}\rangle \\
& \left.\left.-\frac{16 \pi^{2}}{q^{2}} \sum_{i=\{1-6,8\}} C_{i} \mathcal{H}_{i}^{\mu}\right\} \bar{\ell} \gamma_{\mu} \ell+C_{10}\left\langle K^{*}\right| \bar{s} \gamma^{\mu} P_{L} b|\bar{B}\rangle \bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right]
\end{aligned}
$$

Model Independent Framework

(The amplitude $\mathcal{A}\left(B(p) \rightarrow K^{*}(k) \ell^{+} \ell^{-}\right)$

$$
\begin{gathered}
=\frac{G_{F} \alpha}{\sqrt{2} \pi} V_{t b} V_{t s}^{*}\left[\left\{\begin{array}{l}
C_{9}\left\langle K^{*}\right| \bar{s} \gamma^{\mu} P_{L} b|\bar{B}\rangle-\frac{2 C_{7}}{q^{2}}\left\langle K^{*}\right| \bar{s} i \sigma^{\mu \nu} q_{\nu}\left(m_{b} P_{R}+m_{s} P_{L}\right) b|\bar{B}\rangle \\
\left.\left./ \int_{i=\{1-6,8\}}-\frac{16 \pi^{2}}{q^{2}} \sum_{i} C_{i} \mathcal{H}_{i}^{\mu}\right\} \bar{\ell} \gamma_{\mu} \ell+C_{10}\left\langle K^{*}\right| \bar{s} \gamma^{\mu} P_{L} b|\bar{B}\rangle \bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right]
\end{array}, ~\right.\right.
\end{gathered}
$$

Wilson coefficients

Model Independent Framework

(The amplitude $\mathcal{A}\left(B(p) \rightarrow K^{*}(k) \ell^{+} \ell^{-}\right)$

lorentz \& gauge invariance allow general parametrization with form-factors $\mathcal{X}_{j}, \mathcal{Y}_{j}$

Model Independent Framework

The amplitude $\mathcal{A}\left(B(p) \rightarrow K^{*}(k) \ell^{+} \ell^{-}\right)$

lorentz \& gauge invariance allow general parametrization with form-factors $\mathcal{X}_{j}, \mathcal{Y}_{j}$ for non factorization contributions

Model Independent Framework

* Absorbing factorizable \& non-factorizable contributions into

$$
\begin{gathered}
C_{9} \longrightarrow \widetilde{C}_{9}^{(j)}=C_{9}+\Delta C_{9}^{(\mathrm{fac})}\left(q^{2}\right)+\Delta C_{9}^{(j),(\mathrm{non-fac})} \\
\underbrace{i}_{\sim} C_{i} \mathcal{Z}_{j}^{i} / \mathcal{X}_{j}
\end{gathered}
$$

Model Independent Framework

- Absorbing factorizable \& non-factorizable contributions into

$$
\begin{gathered}
C_{9} \longrightarrow \widetilde{C}_{9}^{(j)}=C_{9}+\Delta C_{9}^{(\mathrm{fac})}\left(q^{2}\right)+\Delta C_{9}^{(j),(\mathrm{non-fac})}\left(q^{2}\right) \\
\sim \sum_{i} C_{i} \mathcal{Z}_{j}^{i} / \mathcal{X}_{j} \\
\frac{2\left(m_{b}+m_{s}\right)}{q^{2}} C_{7} \mathcal{Y}_{j} \longrightarrow \widetilde{\mathcal{Y}}_{j}=\frac{2\left(m_{b}+m_{s}\right)}{q^{2}} C_{7} \mathcal{Y}_{j}+\cdots
\end{gathered}
$$

- Most general parametric form of amplitude in SM

$$
\mathcal{A}_{\lambda}^{L, R}=\left(\widetilde{C}_{9}^{\lambda} \mp C_{10}\right) \mathcal{F}_{\lambda}-\left.\widetilde{\mathcal{G}}_{\lambda} \quad \mathcal{A}_{t}\right|_{m_{\ell}=0}=0
$$

Form-factors: $\mathcal{F}_{\lambda} \equiv \mathcal{F}_{\lambda}\left(\mathcal{X}_{j}\right)$ and $\widetilde{\mathcal{G}}_{\lambda} \equiv \widetilde{\mathcal{G}}_{\lambda}\left(\widetilde{\mathcal{Y}}_{j}\right)$

Right-Handed Current

(Chirality flipped operators $\mathcal{O} \Leftrightarrow \mathcal{O}^{\prime}$

$$
\begin{gathered}
\bar{s} \gamma_{\mu} P_{L} b \Longleftrightarrow \bar{s} \gamma_{\mu} P_{R} b \\
\bar{s} i \sigma_{\mu \nu} P_{R} b \\
\stackrel{\rightharpoonup}{s} i \sigma_{\mu \nu} P_{L} b
\end{gathered}
$$

B In presence of right-handed gauge boson or other kind of new particles like leptoquarks etc..

RH Current

Amplitudes $\mathcal{A}_{\perp}^{L, R}=\left(\left(\widetilde{C}_{9}^{\perp}+C_{9}^{\prime}\right) \mp\left(C_{10}+C_{10}^{\prime}\right)\right) \mathcal{F}_{\perp}-\widetilde{\mathcal{G}}_{\perp}$

$$
\mathcal{A}_{\|, 0}^{L, R}=\left(\left(\widetilde{C}_{9}^{\|, 0}-C_{9}^{\prime}\right) \mp\left(C_{10}-C_{10}^{\prime}\right)\right) \mathcal{F}_{\|, 0}-\widetilde{\mathcal{G}}_{\|, 0}
$$

Notation $\quad r_{\lambda}=\frac{\operatorname{Re}\left(\widetilde{\mathcal{G}}_{\lambda}\right)}{\mathcal{F}_{\lambda}}-\operatorname{Re}\left(\widetilde{C}_{9}^{\lambda}\right) \quad \xi=\frac{C_{10}^{\prime}}{C_{10}} \quad \xi^{\prime}=\frac{C_{9}^{\prime}}{C_{10}}$
Variables $R_{\perp}=\frac{\frac{r_{\perp}}{C_{10}}-\xi^{\prime}}{1+\xi}, R_{\|}=\frac{\frac{r_{\|}}{C_{10}}+\xi^{\prime}}{1-\xi}, R_{0}=\frac{\frac{r_{0}}{C_{10}}+\xi^{\prime}}{1-\xi}$.
HQET limit $\frac{\widetilde{\mathcal{G}}_{\|}}{\mathcal{F}_{\|}}=\frac{\widetilde{\mathcal{G}}_{\perp}}{\mathcal{F}_{\perp}}=\frac{\widetilde{\mathcal{G}}_{0}}{\mathcal{F}_{0}}=-\kappa \frac{2 m_{b} m_{B} C_{7}}{q^{2}}$,

$$
r_{0}=r_{\|}=r_{\perp} \equiv r \quad \text { ignoring non-factorisable } \underset{\text { corrections }}{ }
$$

$$
R_{0}=R_{\|} \neq R_{\perp}
$$

RH Current

V exact HQET limit
Vpolarization independent non-factorisable correction

Observables $F_{L}\left(q_{\max }^{2}\right)=\frac{1}{3}, F_{\|}\left(q_{\max }^{2}\right)=\frac{2}{3}, A_{4}\left(q_{\max }^{2}\right)=\frac{2}{3 \pi}$,

$$
F_{\perp}\left(q_{\max }^{2}\right)=0, A_{\mathrm{FB}}\left(q_{\max }^{2}\right)=0, A_{5,7,8,9}\left(q_{\max }^{2}\right)=0
$$

[Hiller, Zwicky '14]
Taylor series expansion around $\delta \equiv q_{\max }^{2}-q^{2}$

$$
\begin{aligned}
F_{L} & =\frac{1}{3}+F_{L}^{(1)} \delta+F_{L}^{(2)} \delta^{2}+F_{L}^{(3)} \delta^{3} \\
F_{\perp} & =F_{\perp}^{(1)} \delta+F_{\perp}^{(2)} \delta^{2}+F_{\perp}^{(3)} \delta^{3} \\
A_{\mathrm{FB}} & =A_{\mathrm{FB}}^{(1)} \delta^{\frac{1}{2}}+A_{\mathrm{FB}}^{(2)} \delta^{\frac{3}{2}}+A_{\mathrm{FB}}^{(3)} \delta^{\frac{5}{2}} \\
A_{5} & =A_{5}^{(1)} \delta^{\frac{1}{2}}+A_{5}^{(2)} \delta^{\frac{3}{2}}+A_{5}^{(3)} \delta^{\frac{5}{2}},
\end{aligned}
$$

RH Current

Fit to 14 bin LHCb data including correlation among observables

RH Current

Fit to 14 bin LHCb data including correlation among observables

RH Current

- Limiting analytic expressions

$$
\begin{gathered}
R_{\perp}\left(q_{\max }^{2}\right)=\frac{\omega_{2}-\omega_{1}}{\omega_{2} \sqrt{\omega_{1}-1}}, \quad R_{\|}\left(q_{\max }^{2}\right)=\frac{\sqrt{\omega_{1}-1}}{\omega_{2}-1}=R_{0}\left(q_{\max }^{2}\right) \\
\omega_{1}=\frac{3}{2} \frac{F_{\perp}^{(1)}}{A_{\mathrm{FB}}^{(1)}} \text { or } \frac{3}{8} \frac{F_{\perp}^{(1)}}{A_{5}^{(1) 2}} \text { and } \omega_{2}=\frac{4\left(2 A_{5}^{(2)}-A_{\mathrm{FB}}^{(2)}\right)}{3 A_{\mathrm{FB}}^{(1)}\left(3 F_{L}^{(1)}+F_{\perp}^{(1)}\right)} \text { or } \frac{4\left(2 A_{5}^{(2)}-A_{\mathrm{FB}}^{(2)}\right)}{6 A_{5}^{(1)}\left(3 F_{L}^{(1)}+F_{\perp}^{(1)}\right)}
\end{gathered}
$$

Results in $C_{10}^{\prime} / C_{10}-C_{9}^{\prime} / C_{10}$
(

Results in $C_{10}^{\prime} / C_{10}-C_{9}^{\prime} / C_{10}$

reduced significance of deviation for lowered r / C_{10} value

Other kind of NP like Z^{\prime} as hinted in global fits
[Altmannshofer, Straub '14]

Results in $C_{10}^{\prime} / C_{10}-C_{9}^{\prime} / C_{10}$

Fit to form factor observables

Fit to form factor observables

Convergence of coefficients

Rusa Mandal, IMSc

Convergence of coefficients

Shows a good convergence with variation in polynomial order \& no. of bins used for the data fit

Resonances

$c \bar{c}$ bound states added: $J / \psi, \psi(2 S), \psi(3770), \psi(4040), \psi(4160), \psi(4415)$.
Observable $=$ Form-factors + Kruger \& Sehgal parametrization

Asymmetries decrease in high q^{2} region makes observable
ω_{1} unphysical

Random variation of each strong phases

Resonances

$c \bar{c}$ bound states added: $J / \psi, \psi(2 S), \psi(3770), \psi(4040), \psi(4160), \psi(4415)$.
Observable $=$ Form-factors + Kruger \& Sehgal parametrization

Asymmetries decrease in high q^{2} region makes observable
ω_{1} unphysical

Random variation of each strong phases

Resonances

$c \bar{c}$ bound states added: $J / \psi, \psi(2 S), \psi(3770), \psi(4040), \psi(4160), \psi(4415)$.
Observable $=$ Form-factors + Kruger \& Sehgal parametrization

Asymmetries decrease in high q^{2} region makes observable
ω_{1} unphysical

Random variation of each strong phases

Resonances

$c \bar{c}$ bound states added: $J / \psi, \psi(2 S), \psi(3770), \psi(4040), \psi(4160), \psi(4415)$.
Observable $=$ Form-factors + Kruger \& Sehgal parametrization

Asymmetries decrease in high q^{2} region makes observable
ω_{1} unphysical

Random variation of each strong phases

Resonances

$c \bar{c}$ bound states added: $J / \psi, \psi(2 S), \psi(3770), \psi(4040), \psi(4160), \psi(4415)$.
Observable $=$ Form-factors + Kruger \& Sehgal parametrization

Asymmetries decrease in high q^{2} region
makes observable
ω_{1} unphysical

Random variation of each strong phases

Resonances

$c \bar{c}$ bound states added: $J / \psi, \psi(2 S), \psi(3770), \psi(4040), \psi(4160), \psi(4415)$.
Observable $=$ Form-factors + Kruger \& Sehgal parametrization

Asymmetries decrease in high q^{2} region
makes observable
ω_{1} unphysical

Random variation of each strong phases

Lepton non-universality

Bxciting discrepancies observed in charged current B decays

$$
\begin{aligned}
& \frac{c}{b_{\tau}} \mathcal{H}^{\mathrm{eff}}=\frac{4 G_{F}}{\sqrt{2}} V_{c b}\left(1+C^{\mathrm{NP}}\right)\left(\bar{c}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma^{\mu} \nu_{\tau}\right) \\
& R\left(D^{(*)}\right) \equiv \frac{\mathrm{BR}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathrm{BR}\left(B \rightarrow D^{(*)} \ell \nu\right)}, \quad \ell \in\{e, \mu\}
\end{aligned}
$$

Lepton non-universality

Discrepancies in neutral current B decays also

$$
R_{K^{(*)}} \equiv \frac{\operatorname{BR}\left(B \rightarrow K^{(*)} \mu \mu\right)}{\operatorname{BR}\left(B \rightarrow K^{(*)} e e\right)}
$$

$$
\begin{array}{rlll}
R_{K} & =0.745_{-0.074}^{+0.090} \pm 0.036 & q^{2} \in[1: 6] \mathrm{GeV}^{2} & \longrightarrow 2.6 \sigma \\
R_{K^{*}}^{\text {low }} & =0.660_{-0.070}^{+0.110} \pm 0.024 & q^{2} \in[0.045: 1.1] \mathrm{GeV}^{2} \rightarrow 2.1 \sigma \\
R_{K^{*}}^{\text {cntr }} & =0.685_{-0.069}^{+0.113} \pm 0.047 & q^{2} \in[1.1: 6] \mathrm{GeV}^{2} \longrightarrow 2.4 \sigma
\end{array}
$$

$$
\begin{align*}
\Phi & \equiv d \operatorname{BR}\left(B_{s} \rightarrow \phi \mu \mu\right) /\left.d q^{2}\right|_{q^{2} \in[1: 6] \mathrm{GeV}^{2}} \\
& =\left(2.58_{-0.31}^{+0.33} \pm 0.08 \pm 0.19\right) \times 10^{-8} \mathrm{GeV}^{-2} \\
& =(4.81 \pm 0.56) \times 10^{-8} \mathrm{GeV}^{-2} \tag{SM}
\end{align*}
$$

Lepton non-universality

Constraints from other modes

$$
\begin{aligned}
& \operatorname{BR}\left(B_{s} \rightarrow \mu \mu\right)=\underbrace{\left(3.0 \pm 0.6_{-0.2}^{+0.3}\right) \times 10^{-9} \quad(\text { exp. })}_{\text {well in agreement }} \begin{array}{l}
(3.65 \pm 0.23) \times 10^{-9} \quad(\mathrm{SM})
\end{array} \\
& \operatorname{BR}\left(B \rightarrow K^{(*)} \nu \bar{\nu}\right)<1.6(2.7) \times 10^{-5} \\
& \operatorname{BR}\left(B^{+} \rightarrow K^{+} \mu^{ \pm} \tau^{\mp}\right)<4.5(2.8) \times 10^{-5} \\
& \operatorname{BR}\left(B_{s} \rightarrow \tau \tau\right)<6.8 \times 10^{-3}
\end{aligned}
$$

Quite challenging to explain all anomalies together by evading all the bounds.

Lepton non-universality

(NP operators with 2nd \& 3rd generation fields

$$
\mathcal{H}^{\mathrm{NP}}=A_{1}\left(\bar{Q}_{2 L} \gamma_{\mu} L_{3 L}\right)\left(\bar{L}_{3 L} \gamma^{\mu} Q_{3 L}\right)+A_{2}\left(\bar{Q}_{2 L} \gamma_{\mu} Q_{3 L}\right)\left(\bar{\tau}_{R} \gamma^{\mu} \tau_{R}\right)
$$

Directly contributes to $R\left(D^{(*)}\right)$

Diagonalisation of Hamiltonian for lepton part through small mixing angle θ : interaction basis \square mass basis

$$
\tau=\cos \theta \tau^{\prime}+\sin \theta \mu^{\prime}
$$

Contribution to $b \rightarrow s \mu \mu$ is generated

Lepton non-universality

Lepton non-universality

Allowing 20\% breaking

$$
A_{2}=4 A_{1} / 5
$$

from quantum corrections or unknown dynamics of the
$\square B^{+} \rightarrow K^{+} \mu^{-} \tau^{+}$ (allowed) UV completion of the model
$\square B_{s} \rightarrow \tau \tau$ (disallowed)

$$
\begin{aligned}
& l_{\sigma \text { lever }}^{\text {Within }} \quad R_{D(*)} \simeq 1.24, \Phi \simeq 3.8 \times 10^{-8} \mathrm{GeV}^{-2} .
\end{aligned}
$$

Summary

Popular approaches

Our approach

回 Combine all $b \rightarrow s$ transitions Most general parametric form of SM amplitude $+$
many decay modes i．e observables $\quad B \rightarrow K^{*} \ell^{+} \ell^{-}$observables $+$
more hadronic uncertainties

$$
+
$$

conservative assumption of
non－factorisable contributions

> no/minimal dependency on form-factors \& independent of non-factorisable contributions

『 Focusing on low q^{2} region
『 Conclusion derived at endpoint

Summary

IV Formalism developed to include all possible effects within SM
[Strong evidence of RH currents derived at endpoint limit -

* systematics studied by varying polynomial order \& bin no.
* finite K^{*} width effect is considered

8 resonance effects increase the deviation

Summary

I Several hints of lepton non universality are observed by various experimental groups

II In terms of effective operators we show a possible explanation to all the anomalies together

- The model has only two new parameters

B It predicts some interesting signatures both in the context of B decays as well as high-energy collisions

■ Opens up way to construct UV complete theory

V Fluctuation? Wait for more data to be accumulated!

Summary

[Several hints of lepton non universality are observed by various experimental groups

I In terms of effective operators we show a possible explanation to all the anomalies together

* The model has only two new parameters

B It predicts some interesting signatures both in the context of B decays as well as high-energy collisions
\square Opens up way to construct UV complete theory

『 Fluctuation? Wait for more data to be accumulated!

