Simplified models of quark-flavoured dark matter beyond Minimal Flavour Violation

Monika Blanke

Theory seminar PSI – July 11, 2017

Introduction

Introduction

... but what is it?

- non-baryonic
- gravitational interactions
- \Box relic density $\Omega_{DM}h^2 = 0.119$
- \Box stable
- $\hfill\square$ neutral no em. charge and no colour
- □ cold (or warm...), non-relativistic

Theory prejudice: expect new particles at the weak scale

"WIMP miracle": weak scale annihilation cross section automatically gives correct relic density

Flavoured dark matter?

Why should we care about dark flavours?

Flavoured dark matter?

Why should we care about dark flavours?

Flavoured dark matter?

unknown DM properties

- coupling to SM particles?
- single particle or entire sector?
- analogy to ordinary SM matter
- flavoured?

Assumption:

Dark matter carries flavour and comes in multiple copies

> New coupling to quarks:

e.g.
$$\lambda^{ij} \bar{q}_i \chi_j \phi$$

 q_i quark

- χ_j DM particle, flavoured
- ϕ new scalar, coloured

Signatures of flavoured dark matter

SM

SM

SM

SM

The idea is not new...

Flavoured DM received a lot of attention in recent years, see e.g.

- Flavoured Dark Matter in Direct Detection Experiments and at LHC J. KILE, A. SONI (APRIL 2011)
- Dark Matter from Minimal Flavor Violation B. BATELL, J. PRADLER, M. SPANNOWSKY (MAY 2011)
- Discovering Dark Matter Through Flavor Violation at the LHC J. F. KAMENIK, J. ZUPAN (JULY 2011)
- Flavored Dark Matter, and Its Implications for Direct Detection and Colliders P. AGRAWAL, S. BLANCHET, Z. CHACKO, C. KILIC (SEP. 2011)
- \bullet Top-flavored dark matter and the forward-backward asymmetry A. KUMAR, S. TULIN (MAR. 2013)
- Flavored Dark Matter and R-Parity Violation B. BATELL, T. LIN, L.-T. WANG (SEP. 2013)

Ο...

common to most studies: Minimal Flavour Violation

Going beyond MFV

MFV

≻ HARMLESS

But not very exciting.

Going beyond MFV

MFV

≻ HARMLESS

But not very exciting.

non-MFV

DANGEROUS

But interesting if you know how to handle it!

Taking one step beyond MFV

Minimal flavour violation (MFV)

- \bullet quark flavour symmetry $U(3)_q \times U(3)_u \times U(3)_d$ only broken by SM Yukawa couplings Y_u,Y_d
- FCNC processes governed by the same CKM factors as in the SM

Dark Minimal Flavour Violation (DMFV)

- flavour symmetry $U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\chi$ only broken by the SM Yukawa couplings and the DM-quark coupling λ^{-1}
- new source of flavour violation $\lambda \succ$ potentially interesting non-MFV effects in the flavour sector

> various possibilities for model building

CHEN, HUANG, TAKHISTOV (2015)

¹also coupling to leptons can be assumed

DMFV model building

- DM introduced as Dirac fermion χ that carries no gauge quantum numbers, but transforms as $U(3)_{\chi}$ flavour triplet
- coupling to SM quarks via scalar mediator ϕ , carrying the gauge quantum numbers of the respective quark
- \bullet phenomenologically: lightest χ flavour (stable, DM) couples dominantly to third generation

b-DMFV: $\lambda_{ij} \phi \bar{d}_R^i \chi^j$ Agrawal, MB, Gemmler, JHEP 10 (2014) 72 **t-DMFV**: $\lambda_{ij} \phi \bar{u}_R^i \chi^j$ MB, Kast, JHEP 05 (2017) 162 **q-DMFV**: $\lambda_{ij} \phi \bar{q}_L^i \chi^j$ MB, Das, Kast, work in progress

➤ each (simplified) model has distinct phenomenology

General features of DMFV

Dark matter mass

- $\bullet~U(3)_{\chi}$ symmetry ensures equal mass for all flavours at tree level
- special form of mass splitting at higher order (loop level)

$$m_{\chi_i} = m_{\chi} (\mathbb{1} + \eta \,\lambda^{\dagger} \lambda + \dots)_{ii}$$

Dark matter stability

• DM stability is guaranteed if DMFV is exact (unbroken \mathbb{Z}_3 symmetry)

Parametrisation of DM-quark coupling

• $U(3)_{\chi}$ symmetry helps to remove 9 parameters

$$\lambda = U_{\lambda} D_{\lambda}$$

 U_{λ} unitary matrix, 3 mixing angles s_{12}^{λ} , s_{13}^{λ} , s_{23}^{λ} and 3 phases D_{λ} real diagonal matrix, e.g. $D_{\lambda} = \lambda_0 \cdot \mathbb{1} + \text{diag}(\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2))$

b-DMFV

Bottom-flavoured DM beyond MFV

Agrawal, MB, Gemmler (2014)

b-DMFV: simplified model of flavoured Dirac-fermionic DM χ_j coupling to down-type quarks via a coloured scalar mediator

$$\mathcal{L}_{\rm NP} = i\bar{\chi}\partial\!\!\!/ \chi - m_{\chi}\bar{\chi}\chi + (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - m_{\phi}^{2}\phi^{\dagger}\phi - \lambda^{ij}\bar{d}_{Ri}\chi_{j}\phi + \lambda_{H\phi}\phi^{\dagger}\phi H^{\dagger}H + \lambda_{\phi\phi}\phi^{\dagger}\phi\phi^{\dagger}\phi$$

Assumptions:

- Dark Minimal Flavour Violation (DMFV) flavour symmetry $U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\chi$ only broken by the SM Yukawa couplings and the DM-quark coupling λ
- DM is bottom-flavoured: $m_{\chi_b} < m_{\chi_d}, m_{\chi_s}$

rich and interesting phenomenology

New contributions to meson-antimeson mixing

 $\bullet\,$ new box diagram for $K^0-\bar{K}^0$ mixing

• dominant NP mixing amplitude for the K meson system

 $M_{12}^{K,\mathsf{new}} \sim (\xi_K^*)^2 F(x) \quad \text{where} \quad \xi_K = (\lambda \lambda^{\dagger})_{sd} = \sum_{i=1}^3 \lambda_{si} \lambda_{di}^*$

• analogous contributions to $B_{d,s} - \bar{B}_{d,s}$ mixing

Lessons from K and $B_{d,s}$ meson mixing

Large contributions to $K^0 - \bar{K}^0$ and $B_{d,s} - \bar{B}_{d,s}$ mixing

> λ has to be non-generic

- 3-flavour universality (black): $\lambda_1 = \lambda_2 = 0$
- 2-flavour universalities (blue): $\lambda_1 = \lambda_2$ (red): $\lambda_2 = -2\lambda_1$ (green): $\lambda_2 = -1/2\lambda_1$
- small mixing (yellow): arbitrary D_λ

$$\begin{split} D_\lambda &= \lambda_0 \cdot \mathbbm{1} + \operatorname{diag}(\lambda_1,\lambda_2,-(\lambda_1+\lambda_2)) \\ \text{fixed:} \ m_\phi &= 850 \, \mathrm{GeV}, m_\chi = 200 \, \mathrm{GeV}, \lambda_0 = 1 \end{split}$$

AGRAWAL, MB, GEMMLER (2014)

What about rare B and K decays?

> negligible effects in $b
ightarrow s \gamma$

Figure from Altmannshofer, Straub (2013)

No new one-loop contribution to Z penguin and boxes:

▶ negligible effects also in $B_{s,d} \to \mu^+ \mu^-$, $B \to K^{(*)} \mu^+ \mu^-$, $K \to \pi \nu \bar{\nu} \dots$

Agrawal, MB, Gemmler (2014)

Dark matter as thermal relic

- WIMP production and annihilation in equilibrium in the early universe
- dark matter "freezes out" when annihilation rate $\langle \sigma v \rangle$ drops below Hobble expansion rate
- relic abundance determined by solving Boltzmann equation for DM number density *n* at late times

$$\frac{dn}{dt} + 3Hn = -\underbrace{\langle \sigma v \rangle_{eff}}_{2.2 \times 10^{-26} \text{cm}^3/\text{s}} \left(n^2 - n_{eq}^2\right)$$

- n dark matter number density
- H Hubble constant
- n_{eq} equilibrium number density of χ

Flavored dark matter freeze-out

Agrawal, MB, Gemmler (2014) MB, Kast (2017)

- freeze-out condition depends on life time of heavier dark flavours and on DM mass
- for significant mass splitting $\gtrsim 10\%$ heavy flavours decay fast > only χ_b contributes to relic abundance
- for small mass splittings ≤ 1% multiple flavours χ_{i,k} present at freeze-out temperature
 > sum over all DM flavours that are still present
- only sum over final states $q_{j,l}$ that are kinematically accessible (relevant mainly for *t*-DMFV)

Constraints from LUX & co.

constraints imposed: LUX only, flavour only , LUX & flavour

Constraints from LUX & co.

b-DMFV at the LHC

Agrawal, MB, Gemmler (2014)

DMFV > unbroken \mathbb{Z}_3 > new particles have to be pair-produced

dark matter fermion χ_b and the heavier flavours $\chi_{d,s}$

- nearly degenerate due to DMFV
- χ_{d,s} decay to χ_b produces soft particles (jets, photons) + missing E_T
 > LHC monojet+₽_T searches sensitive to χ pair production

coloured scalar mediator ϕ

- pair-produced through QCD and through *t*-channel χ_d exchange
- decay $\phi \to q_i \chi_i$ with branching ratios given by $D^2_{\lambda,ii}$ $\gg bb + \not\!\!\!E_T, bj + \not\!\!\!E_T, jj + \not\!\!\!E_T$ signatures

AGRAWAL, MB, GEMMLER (2014)

- bound on cross-section can be applied to DMFV
 - production cross section enhanced by *t*-channel χ_d exchange
 - $bb + \not\!\!E_T$ signal suppressed by $\phi \to b\chi_b$ branching ratio

M. Blanke Simplified models of quark-flavoured dark matter beyond MFV

Constraints from monojet searches I

- monojet searches sensitive to χ pair-production with ISR hard jet
- recasting exp. bounds ATLAS-CONF-2012-147 CMS-PAS-EXO-12-048
 - $\succ \begin{array}{l} \text{limit on } m_{\phi} \text{ depending} \\ \text{on couplings } D_{\lambda,ii} \end{array}$
- rather independent of m_{χ}

Constraints from monojet searches II

AGRAWAL, MB, GEMMLER (2014)

- monojet searches also sensitive to ϕ pair-production if decay products are soft
- constraint on the compressed region $m_\chi \lesssim m_\phi$

t-**DMFV**

Top-flavoured dark matter beyond MFV

Flavoured Dirac-fermionic DM χ_j and couples to up-type quarks via a coloured scalar mediator ϕ MB, KAST (2017)

$$\mathcal{L}_{\rm NP} = i\bar{\chi}\partial\!\!\!/ \chi - m_{\chi}\bar{\chi}\chi + (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - m_{\phi}^{2}\phi^{\dagger}\phi - \lambda^{ij}\bar{u}_{Ri}\chi_{j}\phi + \lambda_{H\phi}\phi^{\dagger}\phi H^{\dagger}H + \lambda_{\phi\phi}\phi^{\dagger}\phi\phi^{\dagger}\phi$$

Assumptions:

- DMFV: λ constitutes the *only* new source of flavour violation
- DM is top-flavoured: $m_{\chi_t} < m_{\chi_u}, m_{\chi_c}$

Parametrisation of DM-quark coupling: $\lambda = U_{\lambda}D_{\lambda}$

 U_{λ} unitary matrix, 3 mixing angles θ_{12} , θ_{13} , θ_{23} and 3 phases D_{λ} real diagonal matrix, e.g. $D_{\lambda} = \text{diag}(D_{\lambda,11}, D_{\lambda,22}, D_{\lambda,33})$

LHC constraints

- most stringent constraints from mediator pair production
- signatures similar to SUSY squarks
 tt̄ + ₽_T, jj + ₽_T
 > also tj + ₽_T

recall Flavoured Naturalness: MB,GIUDICE,PARADISI,PEREZ,ZUPAN (2014)

• imposing ATLAS run 1 cross-section limits on our model, we find

 $m_\phi\gtrsim 850\,{
m GeV}$

for DM couplings $D_{\lambda,ii} \leq 2$

MB, KAST (2017)

Flavour constraints

MB, Kast (2017)

- no impact on K and B meson decays
- contribution to $D^0 \bar{D}^0$ mixing

Constraint from observed relic abundance

MB, Kast (2017)

- annihilation cross-section relates mediator mass m_{ϕ} , DM mass m_{χ} , and DM couplings $D_{\lambda,ii}$
- for fixed mediator mass, smaller DM mass implies larger couplings
- $D_{\lambda,ii} > 2$ causes problems with LHC constraints

Iower bound on DM mass from combination of thermal relic condition and LHC data

Constraints from direct detection experiments

• with top-flavoured DM, Z-penguin contribution becomes relevant

➤ realisation of xenophobic DM scenario FENG, KUMAR, SANFORD (2013)

- cancellation between tree-level and Z-penguin contribution requires non-zero mixing angle θ₁₃
- for future experiments, cancellation not sufficiently effective for all xenon isotopes
 - ➤ upper bound on coupling

MB, Kast (2017)

Results of combined analysis

Putting everything together:

- interesting interplay of different constraints
- non-trivial constraints on parameter space, i. e. masses, couplings, and mixing angles

MB, KAST (2017)

• increasingly stringent lower bound on DM mass from future liquid xenon experiments

Conclusions

• mechanism generating the flavour structure of the SM is unknown, assuming a similar mechanism in the dark sector suggests

"Dark Minimal Flavour Violation" additional $U(3)_{\chi}$ flavour symmetry only broken by the new coupling matrix λ

- DMFV (if exact) ensures stability of lightest dark flavour
- various simplified models possible, depending on coupling to SM quarks
- rich and interesting phenomenology

Backup slides

Dark matter stability (for *b*-DMFV)

AGRAWAL, MB, GEMMLER (2014) similar proof in MFV: BATELL, PRADLER, SPANNOWSKY (2011)

Consider $\mathcal{O} \sim \chi \dots \bar{\chi} \dots \phi \dots \phi^{\dagger} \dots q_L \dots \bar{q}_L \dots u_R \dots \bar{u}_R \dots d_R \dots \bar{d}_R \dots$

invariant under ...

- QCD if the number of $SU(3)_c$ triplet minus the number of $SU(3)_c$ antitriplets is a multiple of three
- flavour symmetry: include $Y_u \dots Y_u^{\dagger} \dots Y_d \dots Y_d^{\dagger} \dots \lambda \dots \lambda^{\dagger} \dots$

$$\begin{array}{lll} & SU(3)_c & (N_{\phi} - N_{\phi^{\dagger}} + N_q + N_u + N_d - N_{\bar{q}} - N_{\bar{u}} - N_{\bar{d}}) \mod 3 = 0 \\ \mathrm{II} & U(3)_q & (N_q - N_{\bar{q}} + N_{Y_u} - N_{Y_u^{\dagger}} + N_{Y_d} - N_{Y_d^{\dagger}}) \mod 3 = 0 \\ \mathrm{III} & U(3)_u & (N_u - N_{\bar{u}} - N_{Y_u} + N_{Y_u^{\dagger}}) \mod 3 = 0 \\ \mathrm{IV} & U(3)_d & (N_d - N_{\bar{d}} - N_{Y_d} + N_{Y_d^{\dagger}} + N_{\lambda} - N_{\lambda^{\dagger}}) \mod 3 = 0 \\ \mathrm{V} & U(3)_{\chi} & (N_{\chi} - N_{\bar{\chi}} - N_{\lambda} + N_{\lambda^{\dagger}}) \mod 3 = 0 \end{array}$$

 $\sum \text{II} + \text{III} + \text{IV} + \text{V} - \text{I} \quad (N_{\chi} - N_{\bar{\chi}} - N_{\phi} + N_{\phi^{\dagger}}) \mod 3 = 0$

 $\succ \mathbb{Z}_3$ symmetry forbids χ and ϕ decays into SM fields

MB, Kast (2017)

t-DMFV and $t\bar{t} + ot\!\!\!/ E_T$ at LHC8

MB, Kast (2017)

