PAUL SCHERRER INSTITUT

Dr. Tim Grüne :: Paul Scherrer Institut :: tim.gruene@psi.ch

Seeing the Small with Electron Crystallography

Center for Chemistry and Biomedicine Innsbruck 31st May 2017

1 - Seeing the small

Microscopy

Microscopes

- Light has a wavelength: 800nm = red ... 400nm = blue
- Resolution (possibility to distinguish between two neighbouring points) $\approx \lambda$
- Size of interest for molecules: $\approx 1 \text{\AA} = 0.1 nm$
- No lenses = no microscopes available for such short wavelengths!

Workaround I: Electron Microscopy

- Light / Electromagnetic waves: no microscopes
- Use electrons as wave and use **magnetic** lenses: even at very short wavelength
- Since quantum mechanics: electrons are waves, de Broglie wavelength

$$\frac{m_e v}{\sqrt{1 - (v/c)^2}} = \frac{h}{\lambda}$$

• Commonly used: Electron energies 200–300keV, wavelength $\lambda = 0.025 - 0.017$ Å.

Electron Microscope: Imaging Mode

Workaround II: Crystallography

Crystallography in Brief

- Crystals amplify the signals from atoms so that the signal can be detected.
- Data are spot positions and spot intensities
- Data **are not** atoms, some calculations are required
- Crystal structures provide high level of detail insight

Photoactive Yellow Protein (2ZOI): Turns light into molecular movement. PDB Molecule of the Month March 2017

Electron Crystallography

Combining Electron Radiation (and Microscopes) with Crystallography

typical protein crystal size for X-rays (0.2mm = $200\mu m$)

The combination of **electron radiation** (as in EM) with **crystallography** permits crystallographic data collection from tiny crystals.

volumes compare like 6 bath tubs of water *vs.* a $10\mu l$ drop from a pipette

Typical Protein Crystallisation Trials

Luft, Wolfley, Snell, Crystal Growth& Design (2011), 11, 651-663

Drops viewed through TEM

Stevenson,..., Calero, PNAS (2014) 111, 8470–8475 / Calero, ..., Snell, Acta Cryst (2014) F70, 993–1008

CCB Innsbruck

Drug Research: The Novartis Library

- 2,000,000 compounds of potential drug targets
- 30-40% suitable for X–ray powder analysis
- 10% suitable for single crystal X–ray analysis
- Dr. Trixie Wagner (2012)

Powders contains Single Crystals

Novartis IRELOH: $\emptyset = 1,700 nm = 1.7 \mu m$

Novartis EPICZA: $\emptyset = 500nm = 0.5 \mu m$ **Zeolite (Prof. Bokhoven)**: $\emptyset = 300nm = 0.3\mu m$

2 - Structures

Macromolecular Structures

- Protein Data Bank (PDB, www.pdb.org) contains about 13 protein structures from 3D electron diffraction
- Started 2013 (PDB ID 2013)
- (Mostly) commonly known protein not a new structure to date.

Structures from Test Proteins

Sample (PDB id; EMDB id)	Tau peptide (5k7n; EMD-8216)	Lysozyme (5k7o; EMD-8217)	TGF-βm:TβRII (5ty4; EMD-8472)	Xylanase (5k7p; EMD-8218)	Thaumatin (5k7q; EMD-8219)	Trypsin (5k7r; EMD-8220)	Proteinase K (5k7s; EMD-8221)	Thermolysin (5k7t; EMD-8222)		
	Data collection	Data collection								
Resolution (Å)	14.70-1.10	30.58-1.50	26.64-2.90	25.55-1.90	27.73-2.11	27.63-1.50	20.75-1.30	30.14-1.60		
# crystals	2	7	3	4	3	10	6	4		
<t<sub>exposure> (s)</t<sub>	159.9	127.7	140.8	172.7	179.7	155.8	122.2	187.6		
Molecular weight (kDa)	0.7	14.4	19.1	21.0	22.2	23.4	28.9	34.6		
	Data processing									
Resolution ¹ (Å)	14.70-1.10	30.58-1.80	26.64-2.90	25.55-2.30	27.73-2.51	27.63-1.70	20.75-1.60	30.14-2.50		
	(1.23–1.10)	(1.84–1.80)	(3.07-2.90)	(2.38–2.30)	(2.61–2.51)	(1.73–1.70)	(1.63-1.60)	(2.61–2.50)		
Space group	C121	P4 ₃ 2 ₁ 2	P212121	P212121	P41212	P212121	P4 ₃ 2 ₁ 2	P6122		
Unit cell										
a, b, c (Å)	29.42, 4.99, 37.17	76.23, 76.23, 37.14	41.53, 71.33, 79.51	48.16, 59.75, 69.81	58.12, 58.12, 150.31	53.18, 56.43, 64.67	67.06, 67.06, 100.71	92.07, 92.07, 128.50		
0 (0)	00 111 55 00	00 00 00	00 00 00	00 00 00	00 00 00	00 00 00	00 00 00	00 00 100		

Cruz et al., "Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED", Nature Methods(2017), 14, 399–405

Thermolysin (sample courtesy Ilme Schlichting)

- Spacegroup *P*6₁22
- Unit Cell 94.3 94.3 130.4 $90^{\circ}~90^{\circ}~120^{\circ}$
- $d_{\min} = 3.5$ Å
- 72.4% completeness
- MR with 3DNZ poly Alanine: TFZ=26.4, LLG=433
- Buccaneer: side chain extension 315/316
- Refmac5: R1/"Rfree" = 28.0% / 29.9% (4N5P w/o water)

Lysozyme

	Single crystal	Merged data			
Data integration	Single crystar	Weiged data			
Data integration					
Space group	$P2_{1}2_{1}2$				
Unit cell dimensions					
a, b, c (Å)	a, b, c (Å) 104.56, 68.05, 32.05				
α, β, γ (°)	90.0, 90.0, 90.0				
Number of crystals	1	6			
Resolution (Å)	32.05-2.50 (2.57-2.50)	57.04-2.50 (2.57-2.50)			
R_{merge} (%)	31.7 (107.3)	35.7 (113.2)			
Ι/σΙ	2.92 (1.10)	2.87 (1.10)			
Completeness (%)	41.0 (40.5)	69.0 (51.3)			
Reflections	9518 (817)	25148 (1373)			
Unique reflections	3445 (236)	5808 (299)			
Redundancy	2.76 (3.46)	4.33 (4.59)			
Refinement					
R1 (%)	25.90	23.54			
R _{complete} (%) [4]	32.49	27.21			
$\langle B \rangle (A^2)$	33.08	36.49			
RmsZ bonds	0.779	0.765			
RmsZ angles	0.974	0.911			

After MR: difference density for bulky side

chains

- 1. MR (Phaser) from poly Ala monomer determines space group *P*2₁2₁2 (TFZ=19.8, LLG=335.3)
- 2. Side chain completion with Buccaneer all except 27 atoms
- 3. Refinement with refmac5

Organic Structures

- Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s)
- D Dorset (1995: Textbook Electron Crystallography)
- U Kolb (recording of 3D diffraction patterns, ADT, 1997+)
- X Zou, S Hovmóller (recording of 3D diffraction patterns with beam precession, RED, 2008+)

Pharmaceutical I: Visualisation of Hydrogen Atoms

H-atom positions can be refined against electron diffraction data CCDC: IRELOH, Dai et al., Eur. J. Org. Chem (2010), 6928-6937

Sample courtesy Novartis

- Field of view: $3\mu m$
- Crystal: $1.6\mu m \times 400nm$

- $d_{\min} < 0.8$ Å
- P2₁2₁2₁: 85% completeness with 3 crystals
- a=8.06Å b=10.00Å c=17.73Å

- Hydrogen atoms in difference map even with poor model
- 1334 reflections, 195 parameters, 156 restraints (RIGU)
- $R1 = 15.5\%, R_{\text{complete}} = 18.5\%$

Pharmaceutical II: Differentiation of Atom Types

Data quality: recognition of atom types, C vs. O vs. N etc. (CCDC: EPICZA)

- Field of view: $3\mu m$
- Crystal: 400nm diameter

- d_{min} = 0.87Å
 a=11.35Å, b=12.7Å, c=13.0Å
- *P*2₁2₁2₁: completeness with 4 crystals: 86%

- 2545 refl., 258 param., 267 restraints (RIGU)
- all data: R1 = 15.9%, $R_{\text{complete}} = 19.1\%$
- $R1 = 14.7\%, R_{\text{complete}} = 18.0\%$

Pharmaceutical II (EPICZA): Structure Solution Process

Summary: Electron Diffraction of Organic Compounds

- Structures can be solved with X-ray knowledge and methods.
- Radiation damage present, but not (always) limiting
- Kinematic approximation sufficient for high quality structures

3 - Technical Aspects

Dynamic Scattering

Data from SAPO-34: $I(-2, -1, 1) > I_{direct beam}$ (Eiger chip, 256x256 px)

Kinemtic (X–ray) and Dynamic (e^{-}) Scattering

- Kinematic Theory of Diffraction: Every photon / electron / neutron scatters once in the crystal
- $|F_{\text{ideal}}(hkl)| \propto \sqrt{I_{\text{exp}}(hkl)}$
- Dynamic Scattering: Multiple Scattering events occur
- Electron Diffraction: Multiple Scattering occurs even with nanocrystals
- For data from proteins: Currently no satisfactory treatment

Multiple (Dual) Scattering

- Outgoing ray \vec{S}_o^1 acts as incoming ray for reflection \vec{S}_o^2 .
- Probability of re-reflection thickness dependent

Multiple (Dual) Scattering

Multiple (Dual) Scattering

- Percentage similar for all reflections on frame $(2\theta \approx 0)$
- 10% of strong reflection affects weak reflection
- \Rightarrow Measured intensities "shifted" from strong to weak
- ⇒ Low resolution reflection under–, high resolution reflections overestimated

Electron Detectors for Diffraction

The Lens System

- Lenses C1–C3 shape beam
- Crystallography: Parallel beam
- Objective lens: sets effective detector distance to backfocal plane = diffraction mode
- C3 not present in all microscopes

Lenses cause distortions.

Garnet Andradite

- The garnet Andradite, $Ca_3Fe_2^{3+}(SiO_4)_3$, radiation hard
- 2 grids courtesy Xiaodong Zou (Stockholm)
- Space group $Ia\bar{3}d$, a = 12.06314(1)Å (ICSD No. 187908)

(Wikipedia)

- Summed images from Garnet (200keV)
- 66.8 $^{\circ}$ rotation
- good coverage of detector surface

Spatial Correction for the Detector Surface

• Spot positions **calculated** from Laue Conditions

$$\vec{S}.\vec{a} = h$$
$$\vec{S}.\vec{b} = k$$
$$\vec{S}.\vec{c} = l$$

- Data Processing: Deviations between **calculated** and **observed** positions
- *e.g.* XDS: per-pixel look-up tables for X- and Y-coordinates
- Independent of Source of Error

Spatial Correction for the Detector Surface

XDS Correction Table X–coordinate and Y–coordinate

Directly Visible Improvements

Garnet Data set processed before spatial correction:

BEAM_DIVERGENCE:	0.16°
REFLECTING_RANGE:	0.47°

Garnet Data set processed after spatial correction:

- BEAM_DIVERGENCE: 0.15°
- Reflecting_range: 0.28°

Improved Cell Accuracy with Look–up Tables

- 1. Collect data from garnet
- 2. Change as little as possible
- 3. Collect data from target sample
- 4. Process using garnet correction tables

Sample Courtesy Roche $C_{31}H_{29}Cl_2F_2N_3O_4$, SG $P2_1$

Data Collection and Processing: Max Clabbers

	а	b	С	α	β	γ
XRPD	6.405	18.206	25.829	90.000	92.180	90.000
XDS uncorrected	6.556	18.728	26.276	90.500	92.243	90.540
XDS corrected	6.564	18.721	26.254	90.064	92.171	90.137

4 - Conclusions

- Electron Diffraction = Structures from very small crystals $< 1 \mu m$
- Applications: Single Crystal Structures, where X-rays only see powder
- High quality data + structures for organic compounds
- Proteins: Radiaton damage currently limits competing data resolution: new ways of data collection required

5 - Acknowledgements

- Prof. J. P. Abrahams, Dr. E. van Genderen, M. Clabbers, Dr. T. Blum, C. Borsa, J. Heidler, Dr. R. Pantelic
- Novartis (Compounds)
- Roche (Compounds)
- Dr. I. Nederlof, ASI (Medipix / Timepix)
- Dr. B. Schmitt, PSI Detector group
- Prof. K. Diederichs (XDS)
- Dr. W. Kabsch (XDS)
- Dr. D. Waterman (DIALS)
- Prof. J. van Bokhoven, ETH Zürich
- Prof. X. Zou and S. Hovmöller, University Stockholm (garnet grids)