



Dr. Tim Grüne :: Paul Scherrer Institut :: tim.gruene@psi.ch

## Introduction to Structural Chemistry with (Electron) Crystallography

PSI — Center for Radiopharmaceutical Sciences 13<sup>th</sup> October 2017



# 1 - What is a "Structure"



#### 3D Coordinates aka 3D Conformation



Bioinorganic Chemistry:  $Cu_2^{II}(\mu - \eta^1 : \eta^1 - O_2)$  *cis*-peroxo (Dalle *et al.*, J. Am. Chem. Soc. (2014), 136, 7428–7434)



#### 3D Coordinates aka 3D Conformation

| SFAC | C N | O Na S Cu | Н        |          |          |          |
|------|-----|-----------|----------|----------|----------|----------|
| Na   | 4   | 0.876953  | 0.592795 | 0.604729 | 11.00000 | 0.07618  |
| С    | 1   | 0.774060  | 0.654005 | 1.000931 | 11.00000 | 0.04574  |
| AFIX | 43  |           |          |          |          |          |
| Н    | 7   | 0.757349  | 0.661067 | 1.053967 | 11.00000 | -1.20000 |
| AFIX | 0   |           |          |          |          |          |
| CuA  | 6   | 0.833839  | 0.782664 | 0.759284 | 11.00000 | 0.04565  |
| N1A  | 2   | 0.801899  | 0.692307 | 0.868151 | 11.00000 | 0.05391  |

Structure description in SHELX-format (http://shelx.uni-goettingen.de)

- 1. Molecules consist of atoms
- 2. Atom type (SFAC scattering factor)
- 3. Atom coordinate: X, Y, Z
- 4. Atomic displacement parameter (ADP): thermal vibration



# Crystal Structures

- A crystal structures is composed of one or multiple molecules
- The structure provides the coordinates of the atoms (and their "vibration")
- Precision of bond lengths, bond angles is low compared with e.g. spectroscopic methods
- The three dimensional information is rather unique.



#### Access to Crystal Structures

Many journals require deposition of model coordinates at a crystallographic data base. Common data bases:

Cambridge Structural Data Bank

Crystallography Open Database

**Inorganic Crystal Structure Database** 

**Protein Data Bank** 

**Nucleic Acids Data Bank** 

CRYSTMET (R)



# <u>CSD</u>

#### Cambridge Structural Database http://www.ccdc.cam.ac.uk

"The world repository of small molecule crystal structures" for organic und metallo-organic compounds

- Founded 1965
- Crystal structures from X-ray and neutron diffraction (some electron diffraction)
- Single crystal and powder diffraction structures
- Every structure is curated
- More than 800 000 entries, approximately 40 000 per year



#### CSD — Comprehensive and Comfortable Search Menu





# COD — Crystallography Open Database

- http://www.crystallography.net/search. html
- "Open-access collection of crystal structures of organic, inorganic, metal-organic compounds and minerals, excluding biopolymers "





# 2 - What is a "Crystal"?



### Periodic Packing and Crystal Lattice



- Crystal = Regular packing of one or more molecules
- Regularity expressed by "Unit Cell Vectors"  $\vec{a}, \vec{b}, \vec{c}$
- Angles between vectors can  $\neq 90^{\circ}$



### Unit Cell and Spacegroups

- Unit cell is a **concept** to describe the regularity of a crystal
- Unit cell can contain more than one copy of molecule
- Several copies lead to **Crystal Spacegroups** (total: 230)



- Both unit cell and spacegroup are experimental results (and thus can be wrong)
- Most frequent spacegroups for organic structures: P2<sub>1</sub>/c ≈ 34.5%, P1
  ≈ 24.7% (Cambridge Structural Database CSD, 2017)
- Most frequent spacegroups for protein structures: P2<sub>1</sub>2<sub>1</sub>2<sub>1</sub> ≈ 22.5%, P2<sub>1</sub> ≈ 16.3% (Protein Data Base PDB, 2017)



### Quality of Crystal Structures



| Ecomot: al ant-numbon A                      | FBT al ant-turna al a        | nt-lovel toxt    |              |            |
|----------------------------------------------|------------------------------|------------------|--------------|------------|
|                                              | LEIN_deene-cype_dee          | -LEVEL LEXL      |              |            |
| 029 ALERT 3 A diffra measu                   |                              | full value Low . | 0.891 Note   |            |
| 183_ALERT_1_A Missing _cell                  |                              |                  |              |            |
| 184_ALERT_1_A Missing _cell                  |                              |                  |              |            |
| 185_ALERT_1_A Missing_cell                   |                              | max value        | Please Do !  |            |
| 224_ALERI_1_A Urg(Rep) and                   | Ueq[Calc] Ulffer by          | -0.058 Ang**2 -  | 5_3 Check    |            |
| 224_HLENI_I_H Ueqthepj and                   | Uegilals Ulffer by           | -U.U52 Hng**2 .  | FJ_J Lheck   |            |
| 224_HELTT_I_H ded(Hep) and                   |                              |                  | 02 3 Check   |            |
| 224 ALEBT 1 A Lleg(Ben) and                  | Ueg(Calc) Differ by          | -0.028 And**2    | 03 3 Check   |            |
| 224 ALERT 1 A Ueg(Rep) and                   | Uea(Calc) Differ bu          | -0.034 Ang**2    | C 3 Check    |            |
| 224_ALERT_1_A Ueg(Rep) and                   | Ueg(Calc) Dlffer by          |                  |              |            |
| 701_ALERT_1_A Bond ' Calc                    | 2.312(5).Rep 🖺               | 2.353(19). Dev   | 8.20 Slgma   |            |
| NAO -02_3                                    | 1.555 1.                     | 555              | # 6 Check    |            |
| 701_HLEHI_1_H Bond Colc                      | 2.265(7) Hep                 | 2.45[3], Uev     | 26.43 SLgma  |            |
|                                              | 109 7(2) 8                   | 100 (10)         | # 7 Lheck    |            |
| 02_HLLIII_I_H HIGLE LOUC                     | -02 3 1 555                  | 1 555 1 555      | # 11 Check   |            |
| 702 ALERT 1 A Angle Colc                     | 140.0(2), Ben                | 143.3(8), Dev.,  | 16.50 Sugma  |            |
| 0A_2 -NA0                                    | -02_3 1.555                  | 1.555 1.555      | # 12 Check   |            |
| 702_ALERT_1_A Angle Calc                     | 98.4(3), Rep                 | 92.1(7), Dev     |              |            |
| 0_5 -NAO                                     | -02_3 1.555                  | 1.555 1.555      | # 13 Check   |            |
| 702_ALERI_1_A Angle Calc                     | 137.6(2) Rep                 | 130.5[/]. Dev    | 35.50 Slgma  |            |
|                                              | -03_3 1.555                  |                  | # 15 Lheck   |            |
|                                              | -03 3 1 555                  | 1 555 2 766      | # 16 Check   |            |
| 702 ALEBT 1 A Angle Colo                     | 91.9(3), Ben                 | 101.5(7), Dev.   | 32-00 Sl.ama |            |
| 0 5 -NAO                                     | -03 3 1.555                  | 1.555 2.766      | # 18 Check   |            |
| 702_ALERT_1_A Angle Calc                     | 102.6(3), Rep                |                  |              |            |
| 01_3 -5_3                                    | -C_3 1.555                   | 1.555 1.555      | # 133 Check  |            |
| 702_ALERI_1_A Angle Calc                     | 169.8(6), Rep                | 159.9(14), Dev   | 16.50 Slgma  |            |
| 5_3 -U2_3                                    | -NHU 1.555                   | 1.555 1.555      | # 134 Check  |            |
|                                              |                              |                  | # 158 Chook  |            |
| 702 ALERT 1 A Angle Colo                     | 112.9(4), Ben                | 110.4(6), Nev    | 6.25 Sl.ano  |            |
| F3 4 -C 4                                    | -5 4 1.555                   | 1,555 1,555      | # 164 Check  |            |
| 925_ALERT_1_A The Reported                   | and Calculated Rha(          | max) Dlffer by . | 5.35 eA-3    |            |
| THETPHETTON THEFT WAS KEVED ON LEFT-MOUSE    |                              | K61              |              | Exit       |
| THSTRUCTION IN OF VIA REIBORRD OF LEFT-MOUSE | CEICKS (NEEP WITH RIGHT CEIC | (0)              |              |            |
|                                              |                              |                  |              | MenuActive |
| >> Continue (Y/N[Y])                         |                              |                  |              |            |

- Figures contain no information about data quality
- "Quick" quality indicators: resolution  $d_{min} < 0.84$ Å,  $R1 \le 5\%$ ,  $\approx 100\%$  complete
- (In-)Organic Compounds: CheckCIF Report (A.L.Spek, Acta Cryst. 2009, D65, 148-155.)
- Should have neither A- nor B-alerts

Bear in mind: Crystallisation is a **purification** method.



# 3 - Why Crystals?



#### Imaging with Visible Light (Light Microscope)





### No Imaging with X-rays

- Typically bond lengths are 1–2Å
- Abbé principle to resolve two adjacent points:  $\lambda \leq 2d_{\min} \sin \alpha$
- Typical X-ray wavelength: 0.5-2Å





# X-ray Diffraction from Crystals





# Crystals are Signal Amplifiers

- Single molecules are too small for visualisation:
  - Short wavelength required  $\approx 1 \text{\AA}$
  - X-rays: no lenses, Electrons: distructive
- Crystals can be used for diffraction instead of direct visualisation

Simulated Diffraction from single molecule: Each pixel contributes to image formation: signal buried in noise



Diffraction from Crystal: Crystal concentrates signal in reflections (spots) Signal well above noise



### Crystals Structures: Average over all unit cells

- Crystals structure = average of all unit cells in crystal
- Sometimes, disorder can be modelled
- When disorder becomes too irregular, features become invisible
- (Platons "SQUEEZE" command blinds out disordered regions)













# 4 - Crystal Structure Determination at PSI



### Instruments / X-ray Sources

- Three beamlines, PX-I, PX-II, PX-III
- Optimised for protein crystallography
- Suitable for Organic Compounds



Photograph courtesy Paul Scherrer Institute/Markus Fischer



# Applications of Crystal Structures

Pretty pictures do not make a reason for Crystallography

- 1. Confirmation of Synthesis Products
- 2. Sole method to determine chirality
- 3. Starting point for Molecular Dynamics (design interaction drug  $\leftrightarrow$  target)
- 4. Basis for new drugs (insulin cocktail)



### **Applications of Crystal Structures**

The therapeutically non-active isomer in a racemate should be regarded as an impurity

E. J. Ariëns, Eur. J. Clin. Pharmacol. (1984), 26, 663-668



Razemic (dex)razoxane, a cardioprotective agent

By Jü, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=32957899

X-ray crystallography can determine enantiomeric purity



### Synthesis Control



Very small, poor looking crystals sufficient for reliable structure solution.

R1 = 4.3%, Highest peak:  $0.75e^-$ , Deepest hole:  $-0.59e^-$ 

C. Borsa & J. Wennmacher, LBR; da



### Chirality with only Light Atoms

http://skuld.bmsc.washington.edu/scatter/ASform.html



- High resolution data requires short wave-length  $< 0.8 \text{\AA}$
- Anomalous Signal extremely weak for light atoms (CHNO)
- Chirality determined from Anomalous Signal (Absorption)
- Challenge for Synchotron beamlines tunes for protein samples



## Data Quality at PX-III



- Organic Compound collected at PX-III,  $\lambda=0.72 \text{\AA}$
- 100% complete data at 0.9Å, 82% data at 0.86Å
- Multiple, > 2, lattices
- Good model statistics, R1=5.1%; chirality determined: Flack x = 0.08(10) Flack Parsons = 0.07(14)



# 5 - Crystallography with Electrons (instead of X-rays)



# Electrons vs. X-rays

- X-rays: weak interaction, nearly all do not interact with crystal
- Electrons: strong interaction, short penetration depth
- X–rays minimum crystal size  $\approx 5\mu m$
- Electrons **maximum** crystal size  $\approx 1 \mu m$



### Electrons as Radiation Source

- Crystallography requires an incoming wave (so far: X-rays)
- Electrons are waves, *cf.* de Broglie wavelength:  $\lambda = \frac{h}{m_e v_e}$
- Typical energies and wavelengths: 100 keV = 0.05016Å, 200keV = 0.02508Å
- Wavelength much shorter ( $\times 1/40$ ) than X–ray (penetration depth)



#### An Electron Diffraction Instrument



FIG. 123. Electron diffraction camera of the Institute of Crystallography of the Academy of Sciences, U.S.S.R. 1-electron gun, 2-anode, 3-gun support, 4-intermediate chamber, 5-magnetic lens, 6-central chamber, 7-intermediate valve, 8-diffraction section, 9-upper part of photographic chamber, 10-lower part of photographic chamber, 11-high-vacuum pump, 12-fore-vacuum valve block, 13-high-vacuum valve, 14-electrical control panel.

B. K. Vainshtein, "Structure Analysis by Electron Diffraction", Pergamon Press, 1964



### **Electron Microscopes**



Left: By David J Morgan from Cambridge, UK (Tecnai 12 Electron Microscope), via Wikimedia Commons

Right: By Dr Graham Beards, via Wikimedia Commons



# Some Milestones in Electron Crystallography

- Pioneers: ZG Pinsker, BK Vainshtein (1940s +; 1990s)
- D. Dorset (1995: Organic Compounds, Structure solution with direct methods)
- U. Kolb (recording of **3D** diffraction patterns, ADT, 1997+)
- X. Zou, S. Hovmöller (recording of 3D diffraction patterns with beam precession, RED, 2008+)



### Pharmaceutical I: Curvulone antibiotic / antifungal

CCDC: IRELOH, Dai et al., Eur. J. Org. Chem (2010), 6928-6937, Sample courtesy Novartis



- Field of view:  $3\mu m$
- Crystal:  $1.6\mu m \times 400nm$



- $d_{\min} < 0.8$ Å
- P212121: 85% completeness with 3 crystals
- a=8.06Å b=10.00Å c=17.73Å



- 1334 reflections, 195 parameters, 156 restraints (RIGU)
- $R1 = 15.5\%, R_{\text{complete}} = 18.5\%$

Despite the poor conventional quality indicators (R-values), the data quality is good enough to show hydrogen positions.



### Pharmaceutical II: Epicorazine A

CCDC: EPICZA, Dai et al., Eur. J. Org. Chem (2010), 6928-6937, Sample courtesy Novartis

Data quality: recognition of atom types, C vs. O vs. N etc. (CCDC: EPICZA)



- Field of view:  $3\mu m$
- Crystal: 400nm diameter



- $d_{\min} = 0.80$ Å
- a=10.65Å, b=12.16Å, c=12.83Å
- *P*2<sub>1</sub>2<sub>1</sub>2<sub>1</sub>: completeness with 4 crystals: 97%



- 3316 refl., 256 param., 267 restraints (RIGU)
- model fit to data: R1 = 18.8%,  $R_{\text{complete}} = 23.2\%$



### Pharmaceutical II (EPICZA): Structure Solution Process





#### Are Structures from Electron Diffraction Reliable?

- Structures can be solved with X-ray knowledge and methods (D. Dorset, 1995)
- Radiation damage present, but not (always) limiting
- Kinematic approximation sufficient for high quality structures
- Quality indicators very poor
- Structure quality acceptable





## 6 - Acknowledgements

- George Sheldrick (Georg–August–University)
- Trixie Wagner (Novartis)
- Staff at SLS PX-beamlines
- Henning Stahlberg (C–CINA)
- Abrahams group (C–CINA + PSI)