Requirements for new LEM/m6R facility hardware

time window:	up to 20 ms		
➢ time resolution:	0.05 – 0.1 ns (high-field n6 R), 0.25 – 1.0 ns others		
➢ modules:	TDC, ADC, Scaler applications; scaler information on single Detector rates as well as coincidences needed (presently, CAMAC scalers used)		
➤ trigger logic:	should be completely programmable Present: - LEM: NIM electronics + coincidence steering by use of CAMAC IO units - m6R: most of instruments are using ORTEC pTA, completely programmable; limited flexibility		
➢ read out:	LEM runs in event-by-event mode, total read out time must be less than 20 ms to handle 2000 trigger/sec with a few % dead time; other m6 R instruments could use event-by-event mode for test purposes.		
detector rates:	LEM + ALC beam counters have to measure > 10 ⁷ /s → signal sampling (flash-ADC) would be very useful for pile up/rate determination		
detector:	pulse height information desirable		
➢ future options:	DAQ hardware should be extandable \rightarrow position information with Si pixel/strip detectors		
<u>"Desire":</u>	 a general purpose board (VME ?) send analog detector signals directly into board sample signals with 1 – 2 GHz flash ADC (NA48 at CERN uses 1 GHz, 8-bit flash ADC) send sampled signals to FPGA do everything what you want in the FPGA (TDC, ADC, 		

logic...)

Requirements for new LEM hardware

detector	present rates	future rates
BC		8 x 3 x 10 ⁷ /s
	3 x 10 ⁷ /s	8 fold segmented
TD	1 x 10 ⁴ /s	7 x 10⁴/s
MCP1	1 x 10⁵/s	1 x 10 ⁶ /s
Sum of e+	4 x 10²/s	3 x 10³/s

TDC measurements:

TDC Start:	TD
TDC Stop:	delayed BC for time-of-flight BC-TD
TDC Stop:	decay e+ for μSR histograms
TDC Start:	MCP2
TDC Stop:	X1, X2, Y1, Y2 of MCP2 delay line anode

ADC:

TD pulse height distribution; future option: add BC, e+ scintillators