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1 introduction

Neutron reflectometry is a method to probe the laterally averaged nuclear and magnetic depth profiles
close to a flat surface. More precisely this means: The reflectivity one gets from a surface of at least some
mm2 allows to validate (or falsify) a model of this surface describing its density and composition, and the
in-plane magnetic induction. This method probes the density averaged laterally (parallel to the surface)
over some 10µm, but with a depth resolution of atomic dimensions. On the other side structures thicker
than 0.5µm can hardly be resolved. The penetration depth of the neutron in reflectometry is some µm.

The principle of neutron reflectometry is quite similar to the partial reflection of optical light on a flat
surface. This is illustrated on the example of the soap bubbles: A
part of the light is reflected as can be seen by the mirror images of
the surrounding. But depending on the angle of view, the image
changes its colour. In addition the bubbles are partly transparent,
allowing to see the bushes behind. By using a more precise set-up
in terms of defined wavelength λ and direction of the light relative
to the surface, one could extract the density of the soap film from
the index of refraction n and its thickness from the colour of the
reflected light.

The essential difference between light and neutrons is the na-
ture of the probed potential. The interaction of light with matter
is given by its polarisability, i.e. the mobility of electrons. Neu-
trons interact with the nuclei (the interaction is measured by the
nuclear scattering length b) and with magnetic fields. As we will
see later, the potential imposed upon the neutrons this way is rather small compared to their kinetic en-
ergy. As a consequence the index of refraction is almost 1. So in contrast to visible light with n = 1 . . . 1.5,
the reflection effects for neutrons play on the very limited range of small angles of incidence, only.

The power of neutron reflectometry (NR) can be nicely demonstrated on the example of the depth-
profile of the nuclear potential of a Ni/Ti multilayer. The scattering lengths of these materials are very
different: b̄Ni = 10.3 · 10−5 Å and b̄Ti = −3.438 · 10−5 Å.

In the following section an introduction into theory is given. The focus is on the dependence of n on
the composition of the material. The effects of magnetic fields are mentioned for completeness. These are
marked in blue. For the interpretation of the measurements the program code Parratt32 will be used. In
the theory section the principle behind the algorithm is explained without going too much into details.
A lot of these details can be found in Ott’s paper [1], and especially in the book of Daillant and Gibaud
[2].

Afterwards the experimental set-up and the sample are presented, followed by the description of the
experiment and the data reduction.

2 theory

As we will see, there is no direct transformation from the finally measured intensity vs. momentum
transfer back to the physical quantities we are interested in, i.e. the thicknesses and compositions of the
films and eventually the depth profile of the magnetisation. In practise one has to simulate a reflectivity
curve R(qz) and compare it to the measured and renormalised quantity R(qz) = I(qz)/I0. The simulation
is based on a model.

In the next subsections the index of refraction is reduced to some potential and finally to nuclear
density and magnetic induction. In a next step the reflectance and transmittance of a single interface
are deduced and finally a simplified method to calculate the reflectance of a series of parallel interfaces is
given. The simplification is, to assume perfectly flat and sharp interfaces and no lateral inhomogeneity
within the film.

2.1 what is n for neutrons?

The Schrödinger equation for a plane wave Φ = A eikir in a medium i is

h̄2

2m

d

dr
A eikir + (E − Vi)A eikir = 0

h̄2

2m
(−k2i )e

ikir + (E − Vi) e
ikir = 0

with the total energy E and the potential Vi of the medium i. This leads to the wavenumber

k2i = (E − Vi)
2m

h̄2 (1)
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For the vacuum (i := 0) we define V0 = 0. The index of refraction relates ki to k0 by

n2
i :=

k2i
k20

(2)

=
E − Vi

E

ni =
√

1− Vi/E (3)

≈ 1− Vi/2E for Vi ≪ E

:= 1− δ (4)

As we will see in section 2.6, |Vi| < 10−3E so that the approximation made is well justified.

2.2 what is Vi for neutrons?

As the de Broglie wavelength of a neutron is orders of magnitude larger than the radius of a nucleus
(λ ≫ rnucleus j) the interaction potential can be written in the form of a Fermi pseudo potential.

V Fermi
j (r) = bj

2π h̄2

m
δ(r)

bj is the scattering length of the nucleus j, m is the neutron mass, and δ(y) is the Kronecker delta
function. The integration over an ensemble i of nuclei then reduces to a summation:

V n
i =

1

vol

∫

vol
V Fermi
j (r) dr

=
2π h̄2

m

1

vol

∑

j

bj

:=
2π h̄2

m
ρbi (5)

So the V is reduced to a nuclear scattering length density ρb. If in addition a magnetic induction B is
present, the neutron experiences also a magnetic potential due to its magnetic moment µn:

V m = µnB (6)

:=
2π h̄2

m
ρm (7)

Depending on the relative orientation of µn and B one gets V m = ±µnB. The introduction of a magnetic

scattering length density ρm sometimes simplifies the calculation. The interpretation of ρm in terms of
magnetic moment per atom is dangerous because B can not be regarded as a sum over δ-functions.

Eqn. 3 tells that ni depends finally on the averaged nuclear scattering length density ρb, and on B
and the polarisation of the neutron. With the energy of the free neutron E = h̄2k20/2m = 4π2 h̄2/2mλ2

eqn. 4 can be written as

ni ≈ 1−
λ2

2π
(ρbi+ρmi ) (8)

2.3 reflectance of an interface

The reflectivity of a sample is defined by

R =

∣

∣

∣

∣

∣

A↑
0

A↓
0

∣

∣

∣

∣

∣

2

(9)

where A↓
0 is the amplitude of the incoming (from vacuum) plane wave and A↑

0 is the amplitude of the
reflected wave. The intensity is proportional to the amplitude squared. Fig. 1 illustrates the beam paths
of a plane wave partly reflected at a single interface.

In the following the reflectance and transmittance of a single interface between the materials i and
i+ 1 is deduced. Exactly at the interface (at r = ri,i+1) the continuity conditions

Ψi(ri,i+1) = Ψi+1(ri,i+1)

d

dr
Ψi(ri,i+1) =

d

dr
Ψi+1(ri,i+1) (10)
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apply for all ri,i+1 where Ψi is the wavefunction in layer i. This means that the x and y components
(in-plane) of Ψ are not affected by the change of n. So only the z-component has to be regarded. This
can be written as

Ψz,i = A↑
i e

ikz,iz +A↓
i e

−ikz,iz (11)

in medium i. Thus with eqns. 10 one gets

Ψz,i = Ψz,i+1

A↑
i e

ikz,iz +A↓
i e

−ikz,iz = A↑
i+1e

ikz,i+1z +A↓
i+1e

−ikz,i+1z (12)

and

d

dz
Ψz,i =

d

dz
Ψz,i+1

ikz,iA
↑
i e

ikz,iz − ikz,iA
↓
i e

−ikz,iz = ikz,i+1 A
↑
i+1e

ikz,i+1z − ikz,i+1 A
↓
i+1e

−ikz,i+1z (13)

The ratio of the amplitudes of the up- and down-travelling wave components in material i are called
reflectance of the interface i, i + 1 if the up-travelling wave is formed only by reflection of the down-
travelling wave on that interface.

ri,i+1 =
A↑

i

A↓
i

(14)

In analogy the transmittance is defined by

ti,i+1 =
A↓

i+1

A↓
i

(15)

These quantities can be calculated using eqns. 12 and 13. This is a lengthy exercise in boring book
keeping. The result can be given as a function of ki and ki+1 or by using kz,i = ki sinωi and ki = nik0
as a function of the angles ωi under which ki hits the interface.

ri,i+1 =
kz,i − kz,i+1

kz,i + kz,i+1

=
ni sinωi − ni+1 sinωi+1

ni sinωi + ni+1 sinωi+1
(16)

ti,i+1 =
2 kz,i

kz,i + kz,i+1

=
2ni sinωi

ni sinωi + ni+1 sinωi+1
(17)

The angles ωi and ωi+1 are related by Snell’s law:

cosωi

cosωi+1
=

ni+1

ni

(18)

2.4 the surface: Fresnel reflectivity

In the case of a single interface vacuum/material eqn. 16 can be rewritten

r0,1 =
sinω − n sinω1

sinω + n sinω1
(19)

=
sinω − n

√

1− cos2 ω/n2

sinω + n
√

1− cos2 ω/n2
(20)

ω0 ω0

ω1

k
↓
0 k

↑
0

k
↓
1

n0
n1

qz = k↑0,z − k↓0,z

✲
x

Figure 1: Sketch to illustrate the beam paths
in a reflectivity measurement. Only the scat-
tering plane (x/z-plane) is shown. k

↓
0 is the

wavevector of the incoming beam, k↑
0 is the re-

flected and k
↓
1 the transmitted beam. ωi gives

the angle between ki and x; and qz represents
the momentum transfer normal to the surface.
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For cosω = n this leads to r0,1 = 1, i.e. to total external reflection. Thus one can define the critical angle
of total reflection ωc by

cosωc := n (21)

1−
ωc2

2!
+

ωc4

4!
− . . . = 1− δ

ωc2

2
≈

λ2

2π
(ρb + ρm)

ωc ≈

√

ρb + ρm

π
λ (22)

The cos function was rewritten as a power series and cut after the quadratic term; δ was substituted
using eqns. 3. To get rid of the experimental parameters λ and ω one often uses the (wavenumber of the)
momentum transfer normal to the surface

qz = −2 k0

=
4π sinω

λ
(23)

For small ω one can use sinω ≈ ω and the resulting critical momentum transfer is

qc = 4
√

π(ρb + ρm) (24)

and the reflectance of a single interface can be written as

r0,1 =
1−

√

1− (qc/qz)2

1 +
√

1− (qc/qz)2
∀ qz ≥ qc (25)

= 1 ∀ qz < qc

The reflectivity in this case is called Fresnel reflectivity :

RFresnel(qz) = |r0,1(qz)|
2 (26)

Figure 2 shows RFresnel(qz) together with the function (4qz/q
c)−4 to display the strong decrease of R(qz)

with increasing qz. In cases where the assumptions of ideally flat and sharp interfaces and of a homoge-
neous material do not apply, the intensity decreases even more rapidly. The reason is that also scattering
in other directions occurs, reducing the effective intensity of the incoming wave.

From eqn. 24 one can see that qc2 ∝ ρb+ρm. This can be used to extract ρb and finally b of a
non-magnetic material and to measure the mean magnetisation of the surface area: By using neutrons

polarised parallel and antiparallel to B one gets 2 critical edges at qc,up2 ∝ ρb + |ρm| and at qc,down2 ∝

ρb − |ρm|, respectively. Thus ρm ∝ qc,up2 − qc,down2.

-5

-4

-3

-2

-1

0

 0  2  4  6  8  10

qz/q
c

lo
g
1
0
[R

(q
z
/
qc
)] R(qz/q
c)

(

4qz
qc

)−4

Figure 2: (red curve) Simulated reflectivity
R(qz) of a single interface (vacuum / material
1). The qz axis is renormalised to the crit-
ical momentum transfer qc. To illustrate the
strong decay ofR(qz) above q

c also the asymp-
tote is shown in blue curve.
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2.5 parallel interfaces, matrix formalism

Now we will have a look at the situation with several parallel interfaces. The wave fields formed in a
multilayer are quite complex and one finally measures an outgoing wave which is formed by interference
defined by all layers. I.e. by their ni, their thicknesses di and their order. A rather simple approach to
calculate R(qz) for a given multilayer is the matrix formalism. Still assuming homogeneous layers and
sharp interfaces this leads to a transparent description.

The wavefield outside the sample but just at the interface is

Ψ0(z = 0) =

(

A↑
0

A↓
0

)

where the phase factor vanished because of the free choice of the origin, i.e. z = 0 at the interface.
Ψ0(z = 0) is related to the wavefield inside the first layer, also at the interface, by

Ψ0(z = 0) =

(

1/t0,1 r0,1/t0,1
r0,1/t0,1 1/t0,1

)(

A↑
1

A↓
1

)

where the continuity condition (equations 10 has been used. The interface matrix I contains elements
made up from the reflectance and transmittance of the interface. These in turn depend on qz. If we knew
A↑

1 and A↓
1 we were able to calculate A↑

0. We do not know these quantities but we can relate the unknown
situation at z = 0 to the next interface at z = −d1:

Ψ0(z = 0) = I0,1

(

eikz,1d1 0
0 e−ikz,1d1

)(

A↑
1 e

−ikz,1d1

A↓
1 e

ikz,1d1

)

and obtain a matrix T1 giving phase factors. Now we repeat the procedure from interface 0,1 and so on:

Ψ0(z = 0) = I0,1T1

(

1/t1,2 r1,2/t1,2
r1,2/t1,2 1/t1,2

)(

A↑
2 e

−ikz,1d1

A↓
2 e

ikz,1d1

)

= I0,1T1I1,2

(

eikz,2d2 0
0 e−ikz,2d2

)(

A↑
2 e

−ikz,2(d1+d2)

A↓
2 e

ikz,2(d1+d2)

)

...

:= M

(

A↑

substr e
−ikz,substr

∑
i
di

A↓

substr e
ikz,substr

∑
i
di

)

(27)

We end up with a matrix M which relates the wave outside the sample to the situation inside the
substrate, just below the last interface. Now we can assume that there is no up-travelling wave in the
substrate, so A↑

substr = 0, and

Ψ0(z = 0) = M

(

0

A↓

substr e
ikz,substr

∑
i
di

)

(28)

ω0 ω0

ω1

k
↓
0 k

↑
0

n0
n1

qz

✲
x

n2

n3

r0,1, t0,1

r1,2, t1,2

r2,3, t2,3

d1

d2

d3

Figure 3: Sketch to illustrate the beam paths in a sample with several parallel interfaces. The nomencla-
ture is the same as in Fig. 1. The sample is characterised by the index of refraction ni and the thickness
di of the layers i.
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-2

-1

0

 0  2  4  6  8  10

qz/q
c

lo
g
1
0
[R

(q
z
/
qc
)] R(qz/q

c)

(

4qz
qc

)−4
Figure 4: Simulated reflectivity curve R(qz) of
a sample with several parallel interfaces. The
qz axis is renormalised to the critical momen-
tum transfer qc of the substrate (the lowest
interface). The modulation of R(qz) above qc

is the result of the interferences of the waves
reflected at the various interfaces.

And finally we are not interested in A↑
0 and A↓

0 but in the reflectance of the complete multilayer:

r(qz) =
A↑

0

A↓
0

=
M1 2 A

↓

substr e
ikz,substr

∑
i
di

M2 2 A
↓

substr e
ikz,substr

∑
i
di

=
M1 2

M2 2
(29)

or better in its reflectivity

R(qz) =

∣

∣

∣

∣

M1 2(qz)

M2 2(qz)

∣

∣

∣

∣

2

(30)

Now we have a simple but time-consuming method to calculate R(qz) starting from a model giving ρb(z)
and thus ni and di. The calculation must be done for each value of qz individually.

To compare the simulated reflectivity with measured curves on has in general to take additional effects
into account. E.g.
– non-sharp interfaces
– under- or over-illumination of the sample
– resolution of the set-up resulting in ∆ω, ∆λ

More sophisticated approaches take laterally inhomogeneous layers into account. The problem there
is the length-scale of the inhomogeneity: on long distances one gets a sum of specularly reflected beams.
On the short scale one averages over the inhomogeneity and one is back at the presented algorithm. In
between one has partial interference. We leave this topic to the real experts and concentrate on what we
need for the planned experiment.

2.6 some numbers

In the theory part some approximations were made, essentially based on the statement that Vi ≪ E ∀i.
Using eqn. 4 and some extreme input vales (for cold neutrons, i.e. λ > 2 Å) one can estimate the validity
of this statement. The element with the largest scattering length density in Ni with b̄ = 10.3 ·10−5 Å and

a resulting ρb = 9.41 · 10−6 Å
−2

.

δn =
V n

2E
=

λ2

2
ρb

< 2 · 10−3 for λ = 20 Å

A high magnetic induction with B = 10T leads to

δm =
V m

2E
=

µnB

2π2h̄2/mλ2

< 2 · 10−3 for λ = 20 Å

with µn = −0, 96623641(23) · 10−26 J/T and m = 1, 674927211(84) · 10−27 kg.

7



3 the experiment

3.1 the sample

The sample is a multilayer of Ni and Ti on glass. This means that on a flat and clean glass (SiO2) substrate
an alternating stack of Ni and Ti layers are deposited. The thicknesses of the layers are constant and
of the order of 100 Å to 200 Å. The periodic nature of the multilayer leads to conditions for destructive
(minima) and constructive (main maxima) interferences, similar to diffraction or to the scattering of light
on an optical grid.

Table 1 contains the parameters to be used for the calculation of ρb(z).

element /
material

b̄

10−5 Å

ρ

cm3

M

g/mol

Ni 10.3 8.91 58.69
Ti -3.438 4.51 47.88
Si 4.1491 2.32 28.09
O 5.803 – 16.00

SiO2 – 2.13 –

Table 1: Physical parameters of the materials and ele-
ments involved. b̄ is the scattering length, averaged over
the natural isotope concentration. ρ is the mass density
and M the atomic wight.
1mol = 6.022 141 79 (30) · 1023

detector

diaphragm

sample &
environment

flipper & polariser

monochromator

ω

2ω

Figure 5: The angle dispersive
neutron reflectometer Morpheus at
SINQ, PSI. The photo shows a pos-
sible configuration of Morpheus al-
lowing for polarised neutron reflec-
tometry measurements.
The essential elements are repro-
duced in the sketch below. They
are from right to left (following the
beam)
◦ The monochromator: a graphite
single crystal which extracts a beam
with λ = 5 Å from the white beam.
◦ The polariser: a multilayer of Fe
and Si, reflecting spin-up neutrons,
only. The transmitted beam is spin-
down polarised.
◦ The flipper: to flip the spin state
from down to up if needed.
◦ The sample environment: equip-

ment to hold and adjust the sam-
ple, allowing for ω rotation; And
equipment to define the conditions
on and around the sample, here
a Helmholtz coil to apply a mag-
netic field and a cooling device. For
non-polarised measurements an Eu-
ler cradle will be installed to allow
for a precise alignment of the sam-
ple
◦ The detector: a 3He filled wire de-
tector.
◦ Diaphragms are installed before
and after the sample to define ∆ω
and thus the resolution, and to re-
duce the background in the detec-
tor.
The lower sketch shows Morpheus
from top to illustrate the rotations
of the sample and the detector.
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3.2 measurement scheme, angle dispersive mode

We will have to determine R(qz). But we measure some intensity as a function of some variable(s). For
the intensities its quite simple: R = I↑/I↓, where I↓ is the total intensity hitting the sample (which
might be different from the intensity of the incoming beam). And I↑ is the intensity of the reflected
beam. For the variables: Eqn. 23 leaves us 2 choices to scan qz: One can vary the wavelength λ of
the incoming neutrons, keeping ω fixed (energy dispersive set-up); Or one can fix λ and vary ω (angle
dispersive set-up).

The energy dispersive mode is often used when liquid samples are involved. In most cases it is not
possible to tilt the neutron source to change ω. And it is even more difficult to tilt a liquid surface. An
example for an experiment using the energy dispersive mode is the reflectometer Amor at SINQ, PSI.

Most reflectometers operate in the angle dispersive mode. Fig. 6 illustrates the measurement scheme:
The incoming beam hits the sample at a small angle ω. This is varied by tilting the sample with respect
to the beam. The detector has to be rotated around the same axis, but by 2ω. The general instrument
lay-out to allow for these movements is shown in Fig. 5 on the example of the reflectometer Morpheus,
also at PSI.

k
↓
0

k
↑
0

qz

ω

ω

R
(ω
)

Figure 6: Measurement scheme of the
angle dispersive reflectometry. The in-
coming beam has a constant λ, but the
orientation relative to the sample sur-
face is varied. The lower part of the
sketch is the real world cartoon of the
sample. Above its surface the momen-
tum space representation of the beams
is given.

3.3 alignment & measurements

The first step will be to set-up the NR option on the instrument Morpheus and to align it without the
sample. This will be done by the adviser.

The next step will be to mount and align the sample. The beam width will be around 1mm, the ω
range to be covered is 0 < ω < 3◦. This means that the alignment has to be very accurate.

1. rough alignment with a laser: A laser is installed behind the monochromator and allows to position
the sample by eye at the correct height (z of the instrument) and in the direction normal to the
beam (y of the instrument). The latter movement is motorised and has the name sty

> dr sty <value> drive sample translation in y-direction to value

Also the sample surface can be roughly aligned parallel to the beam via the rotation som. After
alignment the scale for ω should be reset by

> sp som 0 set position of sample omega to be 0

2. The substrate of the sample is glass containing some Boron. B is a neutron absorber, thus the
substrate is not transparent. This fact can be used to improve the alignment: The detector is
positioned at 2ω = 0◦ with the command

> dr stt 0 drive sample two theta to 0

and the sample is scanned normal to the beam

> sscan sty -2 2 41 2000 step-scan of sty from −2◦ to 2◦

with 41 points and 2000 counts in the monitor

If the rough alignment was not too bad, one should see a step profile: full intensity when the sample
is not in the beam, a strong decay (depending on the width of the beam), and low intensity if the
sample shades the beam. The sample is to be moved to the step by

> dr sty <value> drive sty to value

3. If ω was already correct a scan of it should lead to a triangular intensity distribution with the tip
at som = 0 and tip-height half of the unshaded intensity. The scan is performed by

> sscan som -2 2 81 2000 step-[scan of som from −2◦ to 2◦ . . .

Most likely it was not correct and one gets a shifted tip position or even a plateau. One has to
move there

9



> dr som <value>

> sp som 0 redefine the som zero

and repeat the sty scan. And so on with a higher resolution but with a reduced scan width, until
sty is accurate within 0.05mm.

4. The final step is to adjust the ω zero position using the reflected beam. The detector rotation is
very accurate and has a defined zero-position. The detector is moved to an angle where still high
reflectance can be assumed.

> dr stt 0.8

Then one has to scan ω

> sscan som 0 0.8 0.01 4000 step-scan of som

> peak analyse the last scan and find a peak

> center go to that peak

> sp som 0.4 set som to be 0.4◦ (half of the value of stt)

5. Eventually one has to repeat at least part of the procedure with narrower diaphragms. The final
accuracy of ω should be better than 0.01◦.

Now the sample is aligned and one can check if one really gets something like a reflectivity curve by
performing a scan

> sscan som 0 2 stt 0 4 101 4000 step-scan of ω from 0◦ to 2◦ and
simultaneously of the detector from 0◦ to 4◦

As a result one should see the direct beam around ω = 0, the total reflection plateau, the decrease in
intensity above ωc and the oscillations.

The angular resolution is set with the diaphragm openings
> dah 1 0.8 2 the diaphragm apertures in horizontal direction

are 1mm, 0.8mm, and 2mm
Now the first real measurement can be performed:

> sscan som 0 2 stt 0 4 201 10000

Depending on the time available one can extend the ω-range, but with a somewhat longer counting time

> sscan som 2 4 stt 4 8 201 50000

After the measurements one has to remove the sample, and to drive the motors back

to the initial positions upon adjustment.
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3.4 data reduction

The measured curves are of the format I vs. ω. To get the reflectivity one has to transform ω into qz,
which is straight forward using eqn. 23. The treatment for I is more complicated. For large (infinite)
samples the complete beam hits the sample. Only the length of the footprint varies with ω. In this case
for ω < ωc the total reflection plateau can be used for renormalisation to 1:

R(ω) = I(ω)/Î (31)

with

Î =

∫ ωc

ω=ωmin
I(ω)

ωc − ωmin
(32)

The lower limit ωmin is the start of the scan, or the lowest ω where the unreflected beam no longer hits
the detector.

For small samples the situation changes: the footprint of the beam is larger than the sample (the
beam width is wider than the projected sample width). The fraction of the incoming beam hitting the
sample surface I ′ is proportional to sinω (for a parallel beam). Thus one has an additional correction:

I(ω) =
I ′(ω)

sinω
(33)

to be applied prior to using eqns. 31 and 32.
In the worst case one has a cross-over from the small to the large sample case. The corrections

mentioned above assume a parallel beam - which is not the case. But due to the normalisation by Î the
error introduced this way is quite small. The problematic consequence is, that there is no sharp ω where
to switch from using eqn. 33 to omitting it. To avoid this one normally aims for a small sample, always
bathed in the beam.

The reflectivity obtained so far is still not the pure sample property, but contains the experimental
resolution fqz(qz). I.e.

R′(qz) = R(qz)⊗ fqz (qz) (34)

The subscript qz indicates that f varies with qz. For the angle dispersive set-up the resolution is given
by ∆λ/λ = constant and by ∆ω. If the latter one is also kept constant (by not changing the diaphragms
during a scan) f does not vary with qz and is often assumed to be a Gauß function.

Instead of de-convolution the measured curve with fqz (qz) it is more convenient to convolve the
simulated data before the comparison of both. Often the resolution function is also a fit-parameter like
thicknesses and densities.

The rapid decay of R(qz) with qz has the consequence that the qz range accessible is quite small. One
limiting factor is the measuring time available: I scales with ω−4 so that for a sufficiently good statistics
the counting time scales with ω4! Even worse is the limit given by background. This might originate
from the counter electronics, the neutrons scattered close to the sample (e.g. on the sample holder) or
on the substrate (incoherent scattering), or just from the atmosphere. To illustrate the problem: If one
wants to measure down to R ≈ 10−6 with an incoming intensity of 3000 cps one has to wait some 5min
for the one count from the surface!

For the comparison one normally assumes a constant background level and adds it to the simulated
R(qz).

The simulations will be performed with the program Parratt32, running under Windows (sorry for
that!). It is quite simple and of low flexibility, but its usage is intuitive. And the aim of this exercise is
not to spend days in creating input files. Within Parratt32 the model parameters are entered in form
of a table. It does all the calculations and finally plots the simulated R(qz) together with the measured
curves. The fit should be done by eye (not by using the implemented fitting routine) by varying the
parameters until the agreement is fine - or until one runs out of time.
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3.5 protocol

During the experiment and the data reduction a logbook has to be kept. It should contain

• the names of the experimentalists and the date

• a short description of the planned experiment (not a copy of this manuscript: it does already exist!)

• a step-by-set description of all activities

– manipulations

– interpretations / justifications

– commands given to the control software

• plots of

– the raw data

– the data after each reduction step

– the data in comparison to the simulated curves

• a discussion of the results of the simulation (reliability, problems, options)

• an interpretation of the obtained density profiles
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