

Laboratory for Neutron Scattering and Imaging

Jochen Stahn

0

Probing hidden films with neutron reflectometry

08.06.2016 TU Clausthal, Germany

contributors

1

etperiments Ursula Bengaard Hansen Wolfgang Kreuzpaintner Saumya Mukherjee Birgit Wiedemann Wolfgang Gruber Harald Schmidt Florian Strauß Erwin Hüger Artur Glavic Bujar Jerliu Sina Mayr

. . .

simulations Emanouela Rantsiou Tobias Panzner Panos Korelis Uwe Filges discussions Marité Cardenas deas Rob Dalgliesh Frédéric Ott Phil Bentley Bob Cubitt Peter Böni Uwe Stuhr . . .

• intro

- reflectometry general introduction the neutron
- neutron reflectometry the next generation
- experimental examples
 - \rightarrow Li diffusion in Si
 - \rightarrow in-situ film growth
 - \rightarrow strain-induced magnetism
 - \rightarrow in-operando Li battery
- the future
 - \rightarrow projects for Amor
 - \rightarrow instrumentation
 - \rightarrow conceptual challenges

2

intro

features of **neutron reflectometry**

- depth-profile of chemical composition
- depth-profile of magnetic induction
- near surfaces: $\rightarrow 0.5\,\mu m$
- flat samples: \rightarrow 30 Å
- sample sizes: $3 \text{ mm}^2 \rightarrow 30 \text{ cm}^2$
- measurement time: $1 \min \rightarrow 1 day$
- high penetration depth: $\rightarrow 10\,\text{cm}$

alternative / complementary to: XR, resonant x-ray techniques, SIMS, TEM, ...

• intro

- reflectometry general introduction the neutron
- neutron reflectometry the next generation
- experimental examples
 - \rightarrow Li diffusion in Si
 - \rightarrow in-situ film growth
 - \rightarrow strain-induced magnetism
 - \rightarrow in-operando Li battery
- the future
 - \rightarrow projects for Amor
 - \rightarrow instrumentation
 - \rightarrow conceptual challenges

analogy to visible light

flat surfaces partly reflect light \rightarrow picture of the boot

some media also transmit light \rightarrow ground below the water

parallel interfaces \rightarrow colourful soap bubbles

 $|\mathbf{k}| = 2\pi/\lambda$ n = index of refraction

5

reflectometry

reflected intensity of a multilayer

 $R(q_Z) \approx |\mathcal{F}[\rho(Z)]_{q_Z}|^2$

- \Rightarrow all phase information is lost
 - \Rightarrow one way road:

 $\Rightarrow \text{ calculation of } R(q_Z) \text{ using a model}$ and comparison to measured curve(s) real effects to be taken into account:

- non-sharp interfaces
- inhomogeneous layers
- illumination of the sample
- resolution of the set-up $\Delta \omega$, $\Delta \lambda$

reflectometry

simulated reflectivity of a surface

reflectometry

simulated reflectivity of a thin layer

reflectometry

simulated reflectivity of a thick layer

simulated reflectivity of a periodic multilayer

... with neutrons

- building unit of atomic nuclei
- \approx mass of a proton
 - \Rightarrow collision with nuclei
- no charge

 \Rightarrow no interaction with electrons / charges

- spin 1/2
 - \Rightarrow magnetic moment
 - \Rightarrow interaction with magnetic fields
- De-Broglie wavelength ≈ 1...20 Å
 ⇒ atomic / crystallographic dimensions
 ⇒ energy of phonons
- interaction with nuclei
 - \Rightarrow random sensitivity across the PSE
 - $\Rightarrow \text{ isotope-sensitive}$

some numbers

probed depth $100 \text{ nm} \rightarrow 1 \mu \text{m}$ (less for absorbers)

depth resolution 0.2 nm \rightarrow 400 nm strongly model dependent t and δ might be correlated

lateral coherence

 $1\,\mu m
ightarrow 100\,\mu m$

averaging laterally over all *microstructures*

penetration depth

 \rightarrow 10 cm

equipment

neutron reflectometer

e.g. Morpheus at SINQ

angle-dispersive set-up

$$q_Z = 4\pi \frac{\sin \alpha}{\lambda}$$

equipment

sample environment

e.g. cooling with a closed cycle refrigerator 8 K < T < 300 K

application of an external magnetic field with -1000 Oe < *H* < 1000 Oe Helmholtz coils

> tilt- and translation stages for alignment

> > ω rotation stage

sample

within sample-holder

data acquisition

example:

Fe/Si multilayer on glass polarised neutrons 1h per spin state

data acquisition and interpretation

data acquisition and interpretation Fe/Si multilayer

interdiffusion leads to 5 Å thin magnetically dead Fe : Si layers

typical scientific questions

adsorption at ... solid/water

air/water

... interfaces

growth mechanisms

diffusion

exchange bias

spintronics

liquid/gas interface

compression of self-organising polyglycerol-ester films

model-system for

foams used for stabilising food products

e.g. yogurt

trough to investigate membranes at the liquid/air interface

liquid/gas interface

compression of self-organising polyglycerol-ester films

- ${\rm H_2O}$ substituted by ${\rm D_2O}$
- \Rightarrow strong contrast between solvent and film (essentially [CH₂]_n)
- \Rightarrow high critical edge

• intro

- reflectometry general introduction the neutron
- neutron reflectometry the next generation
- experimental examples
 - \rightarrow Li diffusion in Si
 - \rightarrow in-situ film growth
 - \rightarrow strain-induced magnetism
 - \rightarrow in-operando Li battery
- the future
 - \rightarrow projects for Amor
 - \rightarrow instrumentation
 - \rightarrow conceptual challenges

$\lambda\text{-dispersion}$ by time-of-flight

$\omega\text{-dispersion}$ by focusing

point-to-point focusing

with

2 subsequent elliptical reflectors

for

Selene picture: ceiling painting in the Ny Carlsberg Glyptotek, København

horizontal and vertical direction

the **Selene** guide

light-field-diaphragm

uncorrected, inverted image

aperture defines divergence

the **Selene** guide demonstrator

on Amor@PSI

- total length = 4 m
- max spot size $\approx 2 \times 2 \,\text{mm}^2$
- divergence $\approx 1.8^{\circ} \times 1.8^{\circ}$

the **Selene** guide demonstrator on Amor@PSI

• intro

- reflectometry general introduction the neutron
- neutron reflectometry the next generation
- experimental examples
 - \rightarrow Li diffusion in Si
 - \rightarrow in-situ film growth
 - \rightarrow strain-induced magnetism
 - \rightarrow in-operando Li battery
- the future
 - \rightarrow projects for Amor
 - \rightarrow instrumentation
 - \rightarrow conceptual challenges

experiments

Li transport through thin silicon films

in-situ study in cooperation with E. Hüger, F. Strauß and H. Schmidt, TU Clausthal

technological motivation:

- Si layers can be used in Li batteries to prevent oxidation of the electrodes
- Si films can be used as electrodes in Li batteries
- \Rightarrow How fast does Li diffuse through thin amorphous Si films?
- \Rightarrow What is the solubility of Li in Si?
- \Rightarrow What is the influence of the Si:O:Li interface layer?

E. Hüger, et al., Nano Letters 13 (2013) 1237.

experiments

Li transport | the sample

multilayer structure using the different densities of ⁶Li and ⁷Li

J. Stahn | Clausthal, 06. 2016 | hidden films | 35

experiments

Li transport | experimental set-up in-situ furnace

- $\circ \ \mathcal{T} \in [25^{\circ}\text{C}, 500^{\circ}\text{C}]$
- $\circ~\dot{\mathcal{T}}=50\,\mathrm{Ks}^{-1}$ for heating
- $\circ~\dot{\mathcal{T}} = 12\,\text{Ks}^{-1}$ for cooling
- time-structure
- interval

(measurements at RT in between annealing periods)

continuous measurement

Li transport | measurements

 6 LiNbO₃/Si/ 7 LiNbO₃/Si multilayer counting time 1.5 min

experiments

Li transport | measurements & data reduction

experiments

Li transport | measurements & data reduction

Li transport | reflectivity curves

measurements on a ${}^{6}Li_{3}NbO_{4}/Si/{}^{7}Li_{3}NbO_{4}/Si$ multilayer

annealing at $T = 240^{\circ}C$

(a) ml is chemically stable

(b) Li contrast is vanishing

experiments

quasi in-situ reflectometry during sample growth sample: Si/Cu(50 nm)/Fe(0...20 layers)

by B. Wiedemann, S. Mayr, W. Kreuzpaintner, TU Munich

experiments

sputter steps

quasi in-situ reflectometry during sample growth

sample: Si/Cu(50 nm)/Fe(0...20 layers)

J. Stahn | Clausthal, 06. 2016 | hidden films | 42

experiments

strain-induced ferromagnetism

sample:

- ∘ LuMnO₃
- ferroelectric
- antiferromagnetic
- film (20...50 nm) on YAIO₃ substrate:
- \circ strained at interface
- induced ferromagnetism
- ⇒ manipulation of magnetic state by electric polarisation

experiments

strain-induced ferromagnetism

last week's measurements:

in-operando battery studies

H. Schmidt, E. Hüger, B. Jerliu

experiments

in-operando battery studies

 \Rightarrow contrast variation

time-resolution: 1...6 min

pprox 400 measurements per cycle

pprox 4000 measurements per beamtime

 \Rightarrow new data analysis strategy required

• intro

- reflectometry general introduction the neutron
- neutron reflectometry the next generation
- experimental examples
 - \rightarrow Li diffusion in Si
 - \rightarrow in-situ film growth
 - \rightarrow strain-induced magnetism
 - \rightarrow in-operando Li battery
- the future
 - \rightarrow projects for Amor
 - \rightarrow instrumentation
 - \rightarrow conceptual challenges

projects for Amor

- smaller electrochemical cell
- \circ lower background
- \circ less absorption
- \circ extension to fundamental research:
 - e.g. switching of FM by Li intercalation
 - \Rightarrow low $\,\mathcal{T}$ and high $\,\textbf{H}$ needed

- spin-analysis
 - \circ switching of magnetic domains

J. Stahn | Clausthal, 06. 2016 | hidden films | 48

Amor upgrade with **Selene** guide

 \circ 1...2 orders of magnitude faster than Amor (now)

Estia at the ESS

European Spallation Source

Estia:

• Selene guide, 24 m

- \circ total length $\approx 40\,m$
- \circ construction since 2015
- commissioning 2020
- \circ user operation 2023
- \circ 3...4 orders of magnitude faster than Amor (now)

concepts and software

we are working on:

- better instrument control
- \circ faster and reliable alignment
- \circ automatising of data reduction
- new concepts of data interpretation

• intro

- reflectometry general introduction the neutron
- neutron reflectometry the next generation
- experimental examples
 - \rightarrow Li diffusion in Si
 - \rightarrow in-situ film growth
 - \rightarrow strain-induced magnetism
 - \rightarrow in-operando Li battery
- the future
 - \rightarrow projects for Amor
 - \rightarrow instrumentation
 - \rightarrow conceptual challenges

references

reflectometry, in general

J. Daillant, A. Gibaud: X-ray and Neutron Reflectivity Lect. Notes Phys. 770 (Springer 2009)

U. Pietsch, V. Holý, T. Baumbach: *High-Resolution X-Ray Scattering* (Springer 2004)

... on magnetic systems

- F. Ott: Neutron scattering on magnetic surfaces
- C. R. Physique 8, 763-776 (2007)

focusing reflectometry

J. Stahn, A. Glavic: Focusing neutron reflectometry

N.I.M. A 821, 44-54 (2016)

this talk

https://www.psi.ch/lns-kur/JochenStahnEN/stahn_2016_t1.pdf