Experiences with the Selene guide prototype

4th International Workshop on Neutron Delivery Systems
28. - 30. 09. 2015, Grenoble, France
Selene guide

point-to-point focusing

with

2 subsequent elliptical reflectors

for

horizontal and vertical direction
light-field-diaphragm
c control of footprint

uncorrected, inverted image

aperture
defines divergence

image/sample
concept

coma aberration

chromatic aberration (gravity)
→ limits length \times wavelength to \approx 400 \text{ m Å}

transmission
→ 4 reflections at relatively high \(q_z \)
\Rightarrow \text{reduced transmission}

coating \(m \approx 8 \frac{\Delta\theta/\text{deg}}{\lambda_{\text{min}}/\text{Å}} \)
comparison to normal elliptic guide

$I(y)$

$I(\theta)$

0, 1, and ≥ 2 reflections

prototype

on Amor @PSI

slit = virtual source
polariser
1st segment
spin flipper
2nd segment
sample stage
flight tube
detector

optical bench, 8 m long
on Amor @PSI

- total length $= 4 \text{ m}$
- divergence $\approx 1.8^\circ \times 1.8^\circ$
- max spot size $\approx 2 \times 2 \text{ mm}^2$
- wavelength $\geq 4 \text{ \AA}$
high-intensity specular reflectometry

angle-dispersive reflectometry

energy-dispersive reflectometry

angle- and energy-dispersive reflectometry
high-intensity specular reflectometry

data acquisition and reduction

raw data

illumination corrected

normalised

$A = 60 \text{ mm}^2$

$t = 180 \text{ s}$
guide quality

- negligible waviness (due to glue)
- deviation of guide shape from the ellipse at the junctions (due to polishing)
 ⇒ dark lines in $I(y, z)$ and widening of focal spot

$I(y, z)$ reflected by a SM

guide alignment

- using optical light & pin-hole
- criteria: small focal spot
 homogeneous $I(y, z)$ map on detector
 ⇒ very accurate but time-consuming due to limited access
reliability

- guide on support beam is very robust
- position of guide relative to source depends on T!
- thermal expansion of tilting-stage
- inclination (and its encoding) are not precise enough
- position of sample is the main problem
 - alignment of sample (and reference) at the focal spot
 - shift in z and ω due to environment, T and H
a TOF reflectometer for the ESS

- horizontal scattering plane
- sample size $< 10 \times 50 \text{ mm}^2$
- divergence $1.5^\circ \times 1.5^\circ$
- $\lambda \in [4, 10] \text{ Å}$
- principle operation modes: classical, optimised, high-intensity
- lay-out
guide lay-out

side view

monolith
common shielding
instrument shielding

top view

cave

0 2 6 15 23 36 43 x/m
replacement of beam guide

old guide:
- 4.5 m $5 \times 12 \text{ cm}^2$ straight together with SANS
- 24.5 m $5 \times 5 \text{ cm}^2$ curved & split vertically
- 5 m $5 \times 5 \text{ cm}^2$ straight

new guide:
 Selene-type focusing on moderator
further applications

higher θ-coverage (option for *Estia*)

Werner Schweika’s thermal & cold guide

polariser / analyser (realised on *Amor*)

astigmatic beam
THANKS to

YOU

and

Emanouela Rantsiou
Tobias Panzner
Panos Korelis
Uwe Filges

Ursula Bengaard Hansen
Wolfgang Kreuzpaintner
Birgit Wiedemann
Anette Vickery
Sina Mayr

Vincent Thominet
Sibylle Spielmann
Roman Bürg
Marcel Schild
Dieter Graf
Jan Krebs

Björgvin Hjörvarsson
Marité Cardenas
Beate Klösgen
Rob Dalgliesh
Frédéric Ott
Phil Bentley
Bob Cubitt
Peter Böni
Uwe Stuhr
...