jochen stahn

laboratory for neutron scattering

Paul Scherrer Institut

PSI summer school on condensed matter research Zug, 11. – 17. August 2012 Imaging Life and Matter - using photons, neutrons and muons

outline

- heterostructures
 - \rightarrow magnetic layers
 - \rightarrow membrane systems
- reflectometry
 - \rightarrow (few formulae)
- . . . derivation
 - \rightarrow (lots of formulae)
- experimental examples
 - \rightarrow Fe/Si
 - \rightarrow FeSi/GaAs interfaces
 - \rightarrow bio-membrane
- relevance for imaging
 - \rightarrow YES, there is some!

outline

- heterostructures
 - \rightarrow magnetic layers
 - \rightarrow membrane systems
- reflectometry
 - \rightarrow (few formulae)
- ... derivation
 - \rightarrow (lots of formulae)
- experimental examples
 - \rightarrow Fe/Si
 - \rightarrow FeSi/GaAs interfaces
 - \rightarrow bio-membrane
- relevance for imaging
 - \rightarrow YES, there is some!

magnetic films and heterostructures

magnetic heterostructures

conflict of interests at superconductor / ferromagnet interfaces (1) no interaction:

magnetic heterostructures

conflict of interests at superconductor / ferromagnet interfaces

(2) suppression of magnetism:

magnetic heterostructures

conflict of interests at superconductor / ferromagnet interfaces(3) reality: induced magnetism within SC!

Habermaier, Physica C 364, 298 (2001); Holden, PRB 69, 064505 (2004); Stahn, PRB 71, 140509(R) (2005)

compression of self-organising polyglycerol-ester films

model-system for

foams used for stabilising food products

e.g. yogurt

trough to investigate membranes at the liquid/air interface

outline

- heterostructures
 - \rightarrow magnetic layers
 - \rightarrow membrane systems
- reflectometry
 - \rightarrow (few formulae)
- ... derivation
 - \rightarrow (lots of formulae)
- experimental examples
 - \rightarrow Fe/Si
 - \rightarrow FeSi/GaAs interfaces
 - \rightarrow bio-membrane
- relevance for imaging
 - \rightarrow YES, there is some!

analogy to visible light

flat surfaces partly reflect light \rightarrow picture of the boot

some media also transmit light \rightarrow ground below the water

parallel interfaces \rightarrow colourful soap bubbles

$$R = R(q_Z) = R(\lambda, \omega)$$
 $q_Z = 4\pi \frac{\sin \omega}{\lambda}$

angle-dispersive set-up

variation of ω with fixed λ detection under 2ω

energy-dispersive set-up

variation of λ with fixed ω detection via time-of-flight

angle-dispersive set-up

reflectometry 11

neutron reflectometer

instrument: Morpheus at SINQ

sample environment

cooling with a closed cycle refrigerator 8 K < T < 300 K

application of an external magnetic field with Helmholtz coils $-1000 \,\mathrm{Oe} < H < 1000 \,\mathrm{Oe}$

and sample

tilt- and translation stages for alignment

reflectometry 12

data acquisition

typical quantities:

 $\begin{array}{rl} \mbox{angular range} & 0^\circ \dots 10^\circ \\ & \lambda \mbox{ range } & 3 \mbox{\AA} \dots 15 \mbox{\AA} \\ \mbox{measurement time } & 10 \mbox{min} \dots 12 \mbox{h} \end{array}$

1

example:

Fe/Si multilayer on glass polarised neutrons 1h per spin state

from the sample to $\rho(z)$

reflectometry 14

outline

- heterostructures
 - \rightarrow magnetic layers
 - \rightarrow membrane systems
- reflectometry
 - \rightarrow (few formulae)
- . . . derivation
 - \rightarrow (lots of formulae)
- experimental examples
 - \rightarrow Fe/Si
 - \rightarrow FeSi/GaAs interfaces
 - \rightarrow bio-membrane
- relevance for imaging
 - \rightarrow YES, there is some!

analogy to visible light

reflectometry 16

flat surfaces partly reflect light \rightarrow picture of the boot

some media also transmit light \rightarrow ground below the water

parallel interfaces \rightarrow colourful soap bubbles

scientist's explanation:

- ∘ index of refraction,
- Fresnel reflectivity,
- transmittance,
- ∘ interference,
- o bla bla bla ...

plane wave in a medium *i*:

$$\frac{\hbar^2}{2m} \frac{d^2}{dr^2} A e^{ik_i r} + (E - V_i) A e^{ik_i r} = 0$$

$$\frac{\hbar^2}{2m} (-k_i^2) e^{ik_i r} + (E - V_i) e^{ik_i r} = 0$$

$$\Rightarrow k_i^2 = (E - V_i) \frac{2m}{\hbar^2}$$

 $n_i^2 = \frac{k_i^2}{k_0^2}$ $= \frac{E - V_i}{E}$

by definition

with $V_0 = 0$ (vacuum)

$$n_i = \sqrt{1 - V_i/E}$$

 $\approx 1 - V_i/2E$
 $:= 1 - \delta$

for
$$V_i \ll E$$

 $n_i - 1 \propto V_i \implies \text{what is } V_i$?

what is V_i for x-rays?

interaction γ / electron

(off-resonance)

with absorption: complex n

at resonances:

$$V^{e} = \frac{2\pi\hbar^{2}}{m_{e}} \frac{r_{e}}{\text{vol}} \sum_{i} Z_{i}$$
$$= \frac{2\pi\hbar^{2}}{m_{e}} r_{e} \rho^{e}$$

with

$$Z_i$$
 = electron number of atom *i*

$$r_{\rm e}$$
 = electron radius

$$m_{\rm e} =$$
 electron mass

$$\delta = \frac{\lambda^2}{2\pi} \, r_{\rm e} \, \rho^{\rm e}$$

$$n = 1 - \delta - i\beta$$

 $\delta = \delta(\mathbf{B})$

what is V_i for neutrons?

reflectometry 19

interaction neutron / nucleus j

with $\lambda \gg r_{nucleus j}$

interaction neutron magnetic moment μ / magnetic induction ${\bf B}$

$$\begin{array}{l} \mu \uparrow \uparrow \mathbf{B} \Rightarrow V^{m} = +\mu B \\ \mu \uparrow \downarrow \mathbf{B} \Rightarrow V^{m} = -\mu B \\ \mu \perp \mathbf{B} \Rightarrow \text{ spin-flip scattering} \end{array}$$

$$V_{j}^{\text{Fermi}} = b_{j} \frac{2\pi \hbar^{2}}{m_{\text{n}}} \delta(\mathbf{r})$$

$$V^{\text{n}} = \frac{1}{\text{vol}} \int_{j} V_{j}^{\text{Fermi}} d\mathbf{r}$$

$$= \frac{2\pi \hbar^{2}}{m_{\text{n}}} \frac{1}{\text{vol}} \sum_{j} b_{j}$$

$$:= \frac{2\pi \hbar^{2}}{m_{\text{n}}} \rho^{b}$$

$$V^{\mathsf{m}} = \boldsymbol{\mu} \mathbf{B}_{\perp}$$
$$:= \frac{2\pi \hbar^2}{m_{\mathsf{n}}} \rho^{\mathsf{m}}$$

 $m_{\rm n}$ = neutron mass

assumptions:

- one interface, only
- ideally flat and sharp
- homogeneous in x and y \Rightarrow only normal (z) components are relevant

continuity conditions for a plane wave impinging on the interface i, i + 1:

$$\Psi_{z,i} = \Psi_{z,i+1}$$
$$\frac{d}{dz}\Psi_{z,i} = \frac{d}{dz}\Psi_{z,i+1}$$

with

$$\Psi_{Z,j} = A_j^{\uparrow} e^{ik_{Z,j}Z} + A_j^{\downarrow} e^{-ik_{Z,j}Z}$$
$$k_{Z,j} = k_j \sin \omega_j$$
$$= n_j k_0 \sin \omega_j$$

reflectance

$$r_{i,i+1} = \frac{A_i^{\uparrow}}{A_i^{\downarrow}}$$

$$\vdots$$

$$= \frac{n_i \sin \omega_i - n_{i+1} \sin \omega_{i+1}}{n_i \sin \omega_i + n_{i+1} \sin \omega_{i+1}}$$

Fresnel reflectivity

air/solid interface for $q_Z > q^C$

$$r_{0,1} = \frac{1 - \sqrt{1 - (q^{c}/q_{z})^{2}}}{1 + \sqrt{1 - (q^{c}/q_{z})^{2}}}$$
$$R(q_{z}) = |r_{0,1}(q_{z})|^{2}$$

several parallel interfaces:

interference of all waves

$$R(q_Z) = |r(q_Z)|^2$$

what is $r(q_z)$ of a multilayer?

 $\Psi_0(0) = \begin{pmatrix} A_0^{\dagger} \\ A_{\bullet}^{\dagger} \end{pmatrix}$ —____free choice of phase __ $= \begin{pmatrix} 1/t_{0,1} & r_{0,1}/t_{0,1} \\ r_{0,1}/t_{0,1} & 1/t_{0,1} \end{pmatrix} \begin{pmatrix} A_1^{\uparrow} \\ A^{\downarrow} \end{pmatrix} \quad \text{continuity condition } \int$ $= \mathbf{I}_{0,1} \begin{pmatrix} e^{ik_{Z,1}d_1} & 0 \\ 0 & e^{-ik_{Z,1}d_1} \end{pmatrix} \begin{pmatrix} A_1^{\uparrow} e^{-ik_{Z,1}d_1} \\ A_2^{\downarrow} e^{ik_{Z,1}d_1} \end{pmatrix} \text{ phase factor } \neg$ $= \mathbf{I}_{0,1} \mathbf{T}_1 \begin{pmatrix} 1/t_{1,2} & r_{1,2}/t_{1,2} \\ r_{1,2}/t_{1,2} & 1/t_{1,2} \end{pmatrix} \begin{pmatrix} A_2^{\uparrow} e^{-ik_{z,1}d_1} \\ A_2^{\downarrow} e^{ik_{z,1}d_1} \end{pmatrix}$ $= \mathbf{I}_{0,1} \mathbf{T}_1 \mathbf{I}_{1,2} \begin{pmatrix} e^{ik_{z,2}d_2} & 0 \\ 0 & e^{-ik_{z,2}d_2} \end{pmatrix} \begin{pmatrix} A_2^{\uparrow} e^{-ik_{z,2}(d_1+d_2)} \\ A_2^{\downarrow} e^{ik_{z,2}(d_1+d_2)} \end{pmatrix} -$ $:= \mathbf{M} \left(\begin{array}{c} A_{\text{substr}}^{\uparrow} e^{-ik_{z,\text{substr}} \sum_{i} d_{i}} \\ A_{\text{substr}}^{\downarrow} e^{ik_{z,\text{substr}} \sum_{i} d_{i}} \end{array} \right)$

$$\Psi_{0}(0) = \begin{pmatrix} A_{0}^{\dagger} \\ A_{0}^{\dagger} \end{pmatrix}$$

$$= \mathbf{M} \begin{pmatrix} 0 \\ A_{substr}^{\downarrow} e^{ik_{z,substr} \sum_{i} d_{i}} \end{pmatrix}$$

$$r(q_{z}) = A_{0}^{\dagger}/A_{0}^{\downarrow} \qquad \text{there is no}$$

$$= \frac{M_{12}A_{substr}^{\downarrow} e^{ik_{z,substr} \sum_{i} d_{i}}}{M_{22}A_{substr}^{\downarrow} e^{ik_{z,substr} \sum_{i} d_{i}}} \qquad \text{wave}$$

$$= \frac{M_{12}(q_{z})}{M_{22}(q_{z})}$$
calculation of $M_{12}(q_{z})$ and $M_{22}(q_{z})$ is trivial ...

... if all n_i and d_i are known!

 $R(q_Z) = |r(q_Z)|^2$

- \Rightarrow all phase information is lost
 - \Rightarrow one way road:

 $\Rightarrow \text{ calculation of } R(q_Z) \text{ using a model}$ and comparison to measured curve(s) real effects

to be taken into account:

- non-sharp interfaces
- inhomogeneous layers
- illumination of the sample
- resolution of the set-up $\Delta \omega, \ \Delta \lambda$

... of a surface

... of a thin layer

... of a thick layer

simulated reflectivity

... of a periodic multilayer

some numbers

$$\delta = 1 - n = \frac{\lambda^2}{2\pi} (\rho^b + \rho^m) \text{ for neutrons}$$
$$= \frac{\lambda^2}{2\pi} r_e \rho^e \text{ for x-rays}$$

Ni:
$$\rho^b = 9.4 \cdot 10^{-6} \text{ Å}^{-2}$$

 $\Rightarrow \delta^{\text{nuc}} = 3.75 \cdot 10^{-5}$, $\lambda = 5 \text{ Å}$
 $\Rightarrow \omega^{\text{c}} \approx 0.5^{\circ}$

 $\delta \ll 1$

small angles of incidence!

Fe:
$$\rho^{m} \approx 6 \cdot 10^{-6} \text{ Å}^{-2}$$

 $\Rightarrow \delta^{m} \approx 2.4 \cdot 10^{-5}, \lambda = 5 \text{ Å}$

AI: $r_{e} \rho^{e} = 2.2 \cdot 10^{-5} \text{ Å}^{-2}$
 $\Rightarrow \delta^{e} = 8.7 \cdot 10^{-5}, \lambda = 5 \text{ Å}$

 $\delta^{e} \sim \delta^{b}$

some	num	bers
------	-----	------

probed depth	$100nm ightarrow 1\mu m$	(less for strong absorbers)
depth resolution	0.2nm ightarrow 400nm	strongly model dependent t and δ might be strongly correlated
lateral coherence	$1\mu m ightarrow 100\mu m$	averaging laterally over all microstructures

outline

- heterostructures
 - \rightarrow magnetic layers
 - \rightarrow membrane systems
- reflectometry
 - \rightarrow (few formulae)
- ... derivation
 - \rightarrow (lots of formulae)
- experimental examples
 - \rightarrow Fe/Si
 - \rightarrow FeSi/GaAs interfaces
 - \rightarrow bio-membrane
- relevance for imaging
 - \rightarrow YES, there is some!

spintronics

use not only the electron charge to carry information but also its spin

e.g. transistor based on spin / FM alignment:

spin-polarised currents exist in *half-metals* (e.g. Fe₃Si)

but

polarised spin injection into a semiconductor (e.g. GaAs) is inefficient

 \Rightarrow what happens at the interface?

spintronics

Fe₃Si film on GaAs search for a magnetically dead layer

sample size: $5 \times 5 \text{ mm}^2$ measurement time: 24 h neutron 1 h x-ray

spintronics

AI

Fe₃Si

GaAs

Fe₃Si film on GaAs search for a magnetically dead layer

Fe/Si multilayer

ideal case:

Fe/Si multilayer

reality: interdiffusion leads to 5 Å thin magnetically dead Fe : Si layers

compression of self-organising polyglycerol-ester films

 ${\rm H_2O}$ substituted by ${\rm D_2O}$

 \Rightarrow strong contrast between solvent and film (essentially $[CH_2]_n)$

 \Rightarrow high critical edge

constant film thickness

laterally more homogeneous

- \Rightarrow less roughness
- \Rightarrow lower damping of $R(q_Z)$

C. Curschellas, IACIS, Sendai, 2012

where are the functional groups located?

Schüwer, Macromolecules 44, 6868-6874 (2011)

chemical sensor

outline

- heterostructures
 - \rightarrow magnetic layers
 - \rightarrow membrane systems
- reflectometry
 - \rightarrow (few formulae)
- ... derivation
 - \rightarrow (lots of formulae)
- experimental examples
 - \rightarrow Fe/Si
 - \rightarrow FeSi/GaAs interfaces
 - \rightarrow bio-membrane
- relevance for imaging
 - \rightarrow YES, there is some!

total reflection and refraction change beam direction

 \Rightarrow important for *large* sample-detector distances

also (optically) rough interfaces show significant total reflection!

transmission of a slightly tilted square prism: $n < 1 \Rightarrow$ total external reflection possible

parallel, monochromatic beam


```
?
```

I

transmission of a slightly tilted square prism:
no refraction
no reflection

 \Rightarrow reflection (and refraction) can lead to detectable features

like halos or shadows

measured transmission (Eberhard Lehmenn, PSI)

Al cube has not perfectly flat and parallel surfaces

 $\Rightarrow \omega = 0 \pm \Delta \omega_{\text{beam}} \pm \Delta \omega_{\text{surface}}$

resume

reflectometryprobes depth-profile of some potentialaverages laterally⇒ ideal for layered systemsdata analysis by modelling

with neutronsresolution: atom to sub-μmisotope selectivedetects in-plane magnetic induction

with x-raysresolution: atom to sub-μmdetects electron density

... in resonance detects magnetic states of atoms

radiography

might be affected !!!

reflectometry, in general :

J. Daillant, A. Gibaud:X-ray and Neutron ReflectivityLect. Notes Phys. 770 (Springer 2009)

U. Pietsch, V. Holý, T. Baumbach: *High-Resolution X-Ray Scattering* (Springer 2004)

... on magnetic systems

F. Ott:

Neutron scattering on magnetic surfaces

C. R. Physique 8, 763-776 (2007)

... using resonant x-rays

S. Brück:

Magnetic Resonant Reflectometry on Exchange Bias Systems Dissertation, Stuttgart 2009