

aim:

use flux-gain and time-structure of the ESS to open access to reflectometry on surfaces in the sub-mm² range (in addition to reflectometry on cm² samples)

aproach:

use a Selene type guide in horizonatl and vertical direction to focus the beam on a defined footprint (\rightarrow poster 1/4)

favoured applications:

- \circ small samples (1 \times 1 mm²)
- curved or bent surfaces
- spatially inhomogeneous samples
- restricted area on contacted or functional multilayers

also possible:

- moderately sized samples as on current instruments
- solid/liquid cells
- focusing GISANS (with larger sample surfaces)
- \circ diffraction

key parameters & features:

sample area λ range	$0.3 \times 0.3 mm^2$ to $20 \times 20 mm^2$ 3 Å to 9 Å
q_z range	0 Å^{-1} to 1 Å^{-1} reflectometry
q_z resolution q_x resolution	0 Å ⁻¹ to 4 Å ⁻¹ diffraction $\Delta q_z / q_z = 2.5\%, 5\%, 10\%, 20\%$ $\Delta q_x = \Delta q_x(\lambda) = 10\% \dots 3\%$
options	polarisation & analysis diffraction ($2\theta < 140^{\circ}$, shorter detector arm) focusing GISANS

- adjustable footprint: sub-mm to cm
- horizontal and vertical scattering geometry possible
- encoding via multilayer monochromator (or prism, fast moving slits) \Rightarrow operation without choppers possible (but not mendatory)
- wide divergence for high-intensity specular reflectometry
- \circ combination of high/low θ with low/high λ enables for a wide q_z range to be measured simultaneously
- free space around the sample (also free of diaphragms!) and between the guides (\approx 4 m) allows for all kinds of sample environment, add-on options like MIEZE or SERGIS can be installed

this work is part of the ESS Design Update Programme — Denmark & Switzerland

contact: Jochen Stahn, Paul Scherrer Institut, WHGA / 142, 5232 Villigen PSI, Switzerland jochen.stahn@psi.ch

Selene-type reflectometer for small samples

science case

small sample area

- for $\emptyset < 6 \, \text{mm}$, only F. Miletto, Naples, Italy C. Schneider, PSI, Switzerlend
- H. Schmidt, Claustal, Germany
- compatibility with other techniques (e.g. SQUID)

 contacted devices e.g. organic spin valve L. Schulz, A. J. Drew et al. NMAT doi:10.1038/nmat2912

unconventional surfaces

unsupported films

 curved or fracmentet surfaces J. Hoppler *et al.* NMAT doi:10.1038/nmat2383

in-situ combination • MBE

- moderate *t* resolution on MBE-grown samples at ESS
- X-ray reflectometry

combination with spin-echo techniques

○ MIEZE

 restricted by prepapation technique e.g. PLD produces homogeneous films

• expensive materials (e.g. certain isotopes)

samples with perturbing sourroundings

no illumination of environment \rightarrow poster W. Kreutzpaintner *et al.*: In-situ polarised neutron reflectometry

magnetic dynamics in the range 100 ps < t < 500 nssample size determines resolution 4...9m

1st RF coil 2nd RF coil

 \rightarrow poster W. Häußler *et al.*: Multi angle MIEZE beam Line at ESS \rightarrow poster R. Georgii *et al.*: The scientific case for a MIEZE-NRSE-spectrometer at the ESS

 $1 \times 1 \, \text{mm}^2 \dots 5 \times 5 \, \text{mm}^2$

