TOF reflectometry at PSI:
from an optical bench set-up
to a new instrument concept
with a focus on small samples

JCNS instrumentation workshop
04. – 07. 10. 2011, Tutzing
pre-history

scientific case: liquid-air-interface

⇒ ○ vertical scattering geometry
 ○ (variable) inclination of the beam
 ○ TOF operation (double-blind-chopper)

variable resolution

⇒ ○ optical bench set-up
 ○ high flexibility
the optical bench

8 m granite block

maximum length chopper to detector = 10 m

$2\theta \in [-3^\circ, 12^\circ]$

$\lambda \in [2 \text{ Å}, 18 \text{ Å}]$

detectors: 3He single and area (180 × 180 mm2)
options

trough polarisation cryomagnet
polarisation analysis (horizontal, 6 T)

1T electromagnet
large gap
actual usage of Amor

(Amor is the only reflectometer at SINQ)

- liquid/air interfaces < 10%
- liquid/solid interfaces < 30%
- magnetic samples > 50%
- non-magnetic solid samples > 10%

majority of the samples is < 2 cm²
some are < 5 × 5 mm²

⇒ adaption of Amor for small magnetic samples
innovations:

non-magnetic sample table for 1t load

\(\omega \in [\pm 4^\circ] \) for heavy set-up

\(\omega \in [\pm 15^\circ] \) else
innovations:

shielding of the detector and flight tube

⇒ background from sample(environment) only
innovations:

focusing guide element for small samples
focusing in the sample plane
including the guide field

McStas simulation of the beam spot:

measured gain for samples of < 10 mm width ≈ 3
innovations:

2D focusing elliptic guide
- to combine θ and λ-dispersive operation
- to allow for λ/θ encoding

Selene
Selene: principle

Convergent beam:

Slit-defined beam:

Sample: Ni/Ti multilayer
Selene: realisation

- Chopper housing
- 1st slit
- Elliptic reflector (SwissNeutronics)
- Sample (hidden by diaphragm)
- Detector

Guide
Slit
Focusing guide

Chopper
Knife-edge collimator
Sample
Detector

x/mm: -622 0 880 1880 3880 4880 8663
Selene measurements: 1000 Å Ni film on glass, 9 × 9 mm²
Selene

measurements: 1000 Å Ni film on glass, $9 \times 9 \text{ mm}^2$

measured

simulated with geometrical errors

4 guide elements à 500 mm
Selene measurements: 1000 Å Ni film on glass, 9 × 9 mm²

Measurement time:

- **Conventional set-up**
 - Horizontal focusing
 - 1500 rpm
 - 5 h

- **Selene set-up**
 - No horizontal focusing
 - 750 rpm
 - 45 min

Gain-factor: 6.7
Selene

focusing in the sample plane
+ counting time reduced by 60%

focusing in the scattering plane
+ counting time reduced by 90%

± off-specular & incoherent scattering set limits
– high-precision guide and careful alignment needed
 → improvements under development
– coma aberration
 → correction possible
Selene as an instrument concept (TOF)

cut in the scattering plane
stretched by 10 normal to incident beam

initial slit \(\approx\) projected sample size

1st elliptic reflector

2nd elliptic reflector
detector

shielding

biological shielding
no direct line of sight

cold source

intermediate image:

beam manipulation

\begin{itemize}
 \item polarising reflector
 \item small chopper
 \item deflector (to bend beam)
\end{itemize}
why 2 ellipses?

- convenient beam manipulation
- guide dimensions not too large
- correction for aberration
mode: almost conventional

- beam is still convergent
- off-specular measurements are feasible
mode: high-intensity specular reflectivity

- energy- and angle-dispersive ⇒ gain > 10
- for fast scanning (T, H, E...)
- or if off-specular scattering is no problem
mode: low-divergent beam

- uses the focusing due to coma aberration
- corresponds to Montel optics used at synchrotrons
- for high q_z resolution
mode: small spot size

- uses the focusing due to coma aberration
- scanning mode possible

point source off focal point: image is a function of θ
mode: wide q-range

- shift diaphragm (chopper) between pulses
- vary θ with fixed sample position
- suited for liquid surfaces

\[
\begin{array}{c|c}
\theta & q_z/\text{Å}^{-1} \\
\hline
0.5^\circ & 0.014 \ldots 0.055 \\
1.5^\circ & 0.042 \ldots 0.165 \\
2.5^\circ & 0.070 \ldots 0.275 \\
\end{array}
\]

e.g. $\lambda = 2\text{ Å} \ldots 8\text{ Å}$
mode: angle/energy encoding

- use a ml-monochromator at the intermediate image
- spectral analysis of the beam: λ / θ encoding
- large λ on small $\theta \Rightarrow$ wide q_z-range

\[\begin{align*}
\text{e.g. } & \lambda = 2\,\text{Å} \ldots 8\,\text{Å} \\
& \theta = 0.5^\circ \ldots 2.5^\circ \\
\Rightarrow & \quad q_z = 0.014\,\text{Å}^{-1} \ldots 0.275\,\text{Å}^{-1}
\end{align*}\]
mode: high q_z-resolution

- double PG-monochromator at the intermediate image
- high resolution for $\Delta \lambda / \lambda$, i.e. specular reflectivity
- moderate resolution for q_x

- convergent beam is used to recover losses due to the combination of TOF and monochromator
mode: pure TOF

- free choice where to put the choppers

e.g. chopper behind 1st slit at $x = 2\text{ m}$

$\Rightarrow \Delta \lambda / \lambda = \text{const.} = 5\%$
Selene is a guide concept...

- prevents direct line of sight
 - reduces radiation in the guide
 - allows for convenient beam manipulation
- reduces illumination of the sample environment
 - allows for a convergent beam set-up
 \[\Rightarrow \text{flux gain} > 10 \]

combination with focusing in the sample plane
- beam spot of the order of \(0.1 \times 1 \text{ mm}^2 \) reachable
- flux gain \(> 100 \) for high-intensity specular reflectometry
tests: \([\text{La}_{2/3}\text{Sr}_{1/3}\text{MnO}_3/\text{SrTiO}_3]_4/\text{NGO}, 4 \times 5 \text{ mm}^2\]

- no focusing in sample plane
- TOF mode, \(\lambda \in [2 \ldots 18 \text{ Å}]\)

- measurement time:
 - conventional: 6.5 h
 - Selene: 45 min
 - gain-factor: 8.3

\[
\log_{10}[R(q_z)]
\]

by courtesy of C. Aruta and F. Miletto