Jochen Stahn Laboratory for Neutron Scattering

Paul Scherrer Institut

Polarised Neutron Reflectometry

a complementary method to RIXS and ARPES

spectroscopy workshop on novel materials PSI - SYN

Beatenberg, 3.-7. May 2011

... did so far:

- chemistry studies
- γ -Compton spectroscopy on GaAs
- x-ray diffraction (resonant! HASYLAB, ESRF) on GaAs and ZnSe in electric fields
- neutron optics development
- instrument scientist, reflectometry
- PNR on layerd magnetic films
 YBCO/LCMO (C. Bernhard, B. Keimer)
 div. (F. Miletto)
 LSMO/YBCO (M. Radovic)

Konstanz

Potsdam

PSI

outline

 \rightarrow done.

- intro to PNR
 - \rightarrow reflectometry in general
 - \rightarrow . . . with neutrons
 - \rightarrow . . . on magnetic samples
 - \rightarrow experimental set-up
- experiments: LSMO / YBCO interfaces
 - \rightarrow bi-layers (Y. Sassa, M. Radovic)
 - \rightarrow multilayers (M. Radovic)

analogy to visible light

flat surfaces partly reflect light \rightarrow picture of the boot

some media also transmit light \rightarrow ground below the water

parallel interfaces \rightarrow colorful soap bubbles

Fresnel reflectivity

- reflectivity of a sharp flat surface
- total external reflection for $q_Z < q^C$
- exponential decay of $R(q_z)$ for $q_z > q^c$

neutrons / x-rays: $\lambda \in \{1 \dots 20 \text{ \AA}\}$ $\omega^{\mathsf{C}} < 1^{\circ}$

refraction of transmitted beam \Rightarrow dynamical scattering theory several parallel interfaces:

interference of all waves

 \Rightarrow complex reflectance

$$r = r(q_z, n_0, n_1, n_2, \dots, d_1, d_2, \dots)$$

 $R(q_Z) = |r(q_Z)|^2$

 $R(q_Z) = |r(q_Z)|^2$

- \Rightarrow all phase information is lost
 - \Rightarrow one way road:

⇒ calculation of $R(q_z)$ using a model and comparison to measured curve(s)

real effects to be taken into account:

- illumination of the sample
- resolution of the set-up
- Δω, Δλ
 - non-sharp interfaces
 - inhomogeneous layers

references

reflectometry, in general :

J. Daillant, A. Gibaud: X-ray and Neutron Reflectivity Lect. Notes Phys. 770 (Springer 2009)

U. Pietsch, V. Holý, T. Baumbach: *High-Resolution X-Ray Scattering* (Springer 2004)

J. Stahn:

Introduction to polarised neutron and resonant x-ray reflectometry http://people.web.psi.ch/stahn/publications

... on magnetic systems

F. Ott:

Neutron scattering on magnetic surfaces

C. R. Physique 8, 763-776 (2007)

... of a surface

... of a thin layer

... of a thick layer

simulated reflectivity

... of a periodic multilayer

interaction neutron / nucleus j with $\lambda \gg r_{nucleus j}$

$$V_{j}^{\text{Fermi}} = b_{j} \frac{2\pi \hbar^{2}}{m} \delta(\mathbf{r})$$

$$V_{i}^{\text{n}} = \frac{1}{Vol} \int_{j} V_{j}^{\text{Fermi}} d\mathbf{r}$$

$$= \frac{2\pi \hbar^{2}}{m} \frac{1}{Vol} \sum_{j} b_{j}$$

$$:= \frac{2\pi \hbar^{2}}{m} \rho^{b}$$

- b: nuclear scattering length
 - \Rightarrow isotope specific complement to XR

interaction neutron magnetic moment μ / magnetic induction B

$$V^{m} = \mu \mathbf{B} \qquad \qquad \mu \uparrow \uparrow \mathbf{B} \Rightarrow V^{m} = +\mu B$$
$$:= \frac{2\pi \hbar^{2}}{m} \rho^{m} \qquad \qquad \mu \uparrow \downarrow \mathbf{B} \Rightarrow V^{m} = -\mu B$$
$$\mu \bot \mathbf{B} \Rightarrow V^{m} = 0$$

angle-dispersive set-up

variation of ω with fixed λ detection under 2ω

energy-dispersive set-up

variation of λ with fixed ω detection via time-of-flight

neutron reflectometer

Amor at SINQ

sample environment

cooling with a closed cycle refrigerator 8 K < T < 450 K

application of an external magnetic field with Helmholtz coils $-1000 \,\mathrm{Oe} < H < 1000 \,\mathrm{Oe}$

or

usage of a cryo-magnet 1.4 K < T < 300 K-50 000 Oe < H < 50 000 Oe

tilt- and translation stages for alignment

from the sample to a profile

magnetic signal almost as strong as nuclear one only B_{\perp} is probed no element sensitivity

high **depth resolution** (down to 0.1 nm) strongly **model-based**

penetration depth 1 000 nm resolution limit 500 nm

limited q_z -range accessible

extreme sample environments are *no* problem

time-consuming data analysis supporting methods needed

bi-layer: STO/LSMO/YBCO

Y. Sassa, M. Radovic, Oct. 2009

sample size: $10 \times 5 \text{ mm}^2$ measurement time: 6 h

multi-layer: $STO / [LSMO / YBCO]_4 / LSMO$ ELLA 10-018 M. Radovic, May 2010 $10 \text{K}, |+\rangle$ reflectivity log₁₀[$R(q_Z)$] sample size: $5 \times 5 \text{ mm}^2$ -1 10 K, $|-\rangle$ measurement time: 18 h -2 -3 -4 -5 0.05 0.01 0.025 0.075 $\log_{10}[q_Z / Å^{-1}]$ YBCO 5 nm LSMO 12 nm STO ∞

PNR-21

0.1

multi-layer: STO/[LSMO/YBCO]₄/LSMO M. Radovic, May 2010

PNR-23

ELLA 10-018

multi-layer: $STO / [LSMO / YBCO]_4 / LSMO$ ELLA 10-018 M. Radovic, May 2010 $10 \text{K}, |+\rangle$ reflectivity $\log_{10}[R(q_Z)]$ -1 $10 \text{ K}, \left|-\right\rangle$ -2 -3 -4 -5 0.05 0.01 0.025 0.075 0.1 $\log_{10}[q_Z / Å^{-1}]$ YBCO 5 nm LSMO 12 nm LSMO: magnetically dead layers \approx 0.6 nm STO ∞

multi-layer: $STO / [LSMO / YBCO]_4 / LSMO$ ELLA 10-018 M. Radovic, May 2010 $10 \text{K}, |+\rangle$ reflectivity $\log_{10}[R(q_Z)]$ -1 $10 \text{ K}, \left|-\right\rangle$ -2 -3 -4 -5 0.01 0.025 0.05 0.075 0.1 $\log_{10}[q_Z / \text{\AA}^{-1}]$ YBCO 5 nm LSMO 12 nm LSMO: no magnetically dead layers STO ∞ \Rightarrow higher q_Z & better statistics needed

multi-layer: $STO / [LSMO / YBCO]_4 / LSMO$ ELLA 10-021 M. Radovic, May 2010 $10 \text{ K}, |+\rangle$ reflectivity log₁₀[$R(q_Z)$] sample size: $5 \times 5 \text{ mm}^2$ -1 $10 \,\mathrm{K}, \left|-\right\rangle$ measurement time: 18 h -2 -3 -4 -5 0.075 0.1 0.01 0.025 0.05 $\log_{10}[q_Z/\text{\AA}]$ YBCO 5 nm structurally forbidden peak \Rightarrow magnetic profile breaks symetry LSMO 5nm magnetically dead layer of $\approx 0.6 \, \text{nm}$ STO ∞ to be fitted with a more complex model

to take along:

- PNR probes $\rho(z)$ where $\rho = \rho(\text{composition}, B_{\perp})$
- \circ atomic depth resolution
- \circ lateral integration over several μm
- data analysis via comparison with model
 - \Rightarrow no unique solution
 - \Rightarrow PNR is a *team-player*

	probes	depth	
ARPES	surface	1 nm	
RIXS	bulk	100 nm	element specific
PNR	interfaces	1 000 nm	$ ho(z)$, B_{ot}
XR	interfaces	100 nm	$\rho(z)$

selene set-up on Amor:

