jochen stahn laboratory for neutron scattering Paul Scherrer Institut

PSI summer school on condensed matter research Zuoz, 8.–13. august 2010 magnetic phenomena

12.08.2010

reflectometry 1

outline

• \sum

- motivation
 - \rightarrow reflectometry
 - \rightarrow neutrons, γ
- reflectometry in general
 - \rightarrow index of refraction
 - \rightarrow Fresnel reflectivity
 - \rightarrow multiple interfaces
- neutron reflectivity
 - \rightarrow experimental set-up
 - \rightarrow measurement
- resonant γ reflectivity
 - \rightarrow absorption
 - \circ intro to XMCD
 - \rightarrow experimental set-up
 - \rightarrow measurement

magnetically dead layers $\Rightarrow \rho(z)$ $\Rightarrow \mathbf{B}$

only specular, no absorption $n = 1 - \delta$

matrix method

motivation

analogy to visible light

flat surfaces partly reflect light \rightarrow picture of the boot

some media also transmit light \rightarrow ground below the water

parallel interfaces \rightarrow colorful soap bubbles

scientist's explanation:

- ∘ index of refraction,
- Fresnel reflectivity,
- transmittance,
- \circ interference,
- o bla bla bla ...

plane wave in a medium *i*:

$$\frac{\hbar^2}{2m} \frac{d^2}{dr^2} A e^{ik_i r} + (E - V_i) A e^{ik_i r} = 0$$

$$\frac{\hbar^2}{2m} (-k_i^2) e^{ik_i r} + (E - V_i) e^{ik_i r} = 0$$

$$\Rightarrow k_i^2 = (E - V_i) \frac{2m}{\hbar^2}$$

by definition

$$= \frac{E - V_i}{E}$$

with $V_0 = 0$ (vacuum)

$$n_i = \sqrt{1 - V_i/E}$$

 $\approx 1 - V_i/2E$
 $:= 1 - \delta$

for
$$V_i \ll E$$

 $n_i - 1 \propto V_i \implies \text{what is } V_i$?

assumptions:

- one interface, only
- ideally flat and sharp
- homogeneous in x and y \Rightarrow only normal (z) components are relevant

continuity conditions for a plane wave impinging on the interface i, i + 1:

$$\Psi_{z,i} = \Psi_{z,i+1}$$
$$\frac{d}{dz}\Psi_{z,i} = \frac{d}{dz}\Psi_{z,i+1}$$

with

$$\Psi_{Z,j} = A_j^{\uparrow} e^{ik_{Z,j}Z} + A_j^{\downarrow} e^{-ik_{Z,j}Z}$$
$$k_{Z,j} = k_j \sin \omega_j$$
$$= n_j k_0 \sin \omega_j$$

reflectance

$$r_{i,i+1} = \frac{A_i^{\uparrow}}{A_i^{\downarrow}}$$

$$\vdots$$

$$= \frac{n_i \sin \omega_i - n_{i+1} \sin \omega_{i+1}}{n_i \sin \omega_i + n_{i+1} \sin \omega_{i+1}}$$

Fresnel reflectivity

reflectometry 6

air/solid interface for $q_Z > q^C$

$$r_{0,1} = \frac{1 - \sqrt{1 - (q^{c}/q_{z})^{2}}}{1 + \sqrt{1 - (q^{c}/q_{z})^{2}}}$$
$$R(q_{z}) = |r_{0,1}(q_{z})|^{2}$$

several parallel interfaces:

interference of all waves

$$R(q_Z) = |r(q_Z)|^2$$

what is $r(q_z)$ of a multilayer?

 $\Psi_0(0) = \begin{pmatrix} A_0^{|} \\ \Delta^{\downarrow} \end{pmatrix}$ — free choice of phase — $= \begin{pmatrix} 1/t_{0,1} & r_{0,1}/t_{0,1} \\ r_{0,1}/t_{0,1} & 1/t_{0,1} \end{pmatrix} \begin{pmatrix} A_1^{\dagger} \\ \Delta^{\downarrow} \end{pmatrix} \quad \text{--continuity condition} \quad \text{--}$ $= \mathbf{I}_{0,1} \begin{pmatrix} e^{ik_{Z,1}d_1} & 0 \\ 0 & e^{-ik_{Z,1}d_1} \end{pmatrix} \begin{pmatrix} A_1^{\uparrow} e^{-ik_{Z,1}d_1} \\ A_2^{\downarrow} e^{ik_{Z,1}d_1} \end{pmatrix} \text{ phase factor } \neg$ $= \mathbf{I}_{0,1} \mathbf{T}_1 \begin{pmatrix} 1/t_{1,2} & r_{1,2}/t_{1,2} \\ r_{1,2}/t_{1,2} & 1/t_{1,2} \end{pmatrix} \begin{pmatrix} A_2^{\uparrow} e^{-ik_{z,1}d_1} \\ \Delta_{\perp}^{\downarrow} e^{ik_{z,1}d_1} \end{pmatrix}$ $= \mathbf{I}_{0,1} \mathbf{T}_1 \mathbf{I}_{1,2} \begin{pmatrix} e^{ik_{z,2}d_2} & 0 \\ 0 & e^{-ik_{z,2}d_2} \end{pmatrix} \begin{pmatrix} A_2^{\uparrow} e^{-ik_{z,2}(d_1+d_2)} \\ A_2^{\downarrow} e^{ik_{z,2}(d_1+d_2)} \end{pmatrix} -$ $:= \mathbf{M} \left(\begin{array}{c} A_{\text{substr}}^{\uparrow} e^{-ik_{z,\text{substr}} \sum_{i}^{J} d_{i}} \\ A_{\text{substr}}^{\downarrow} e^{ik_{z,\text{substr}} \sum_{i}^{J} d_{i}} \end{array} \right)$

$$\Psi_{0}(0) = \begin{pmatrix} A_{0}^{\dagger} \\ A_{0}^{\dagger} \end{pmatrix}$$

$$= \mathsf{M} \begin{pmatrix} 0 \\ A_{\text{substr}}^{\dagger} e^{ik_{z,\text{substr}}\sum_{i}d_{i}} \end{pmatrix}$$

$$r(q_{z}) = A_{0}^{\dagger}/A_{0}^{\dagger} \qquad \text{there is no}$$

$$= \frac{M_{12}A_{\text{substr}}^{\downarrow} e^{ik_{z,\text{substr}}\sum_{i}d_{i}}}{M_{22}A_{\text{substr}}^{\downarrow} e^{ik_{z,\text{substr}}\sum_{i}d_{i}}} \qquad \text{wave}$$

$$= \frac{M_{12}(q_{z})}{M_{22}(q_{z})}$$
calculation of $M_{12}(q_{z})$ and $M_{22}(q_{z})$ is trivial ...

... if all n_i and d_i are known!

 $R(q_Z) = |r(q_Z)|^2$

- \Rightarrow all phase information is lost
 - \Rightarrow one way road:
 - $\Rightarrow \text{ calculation of } R(q_Z) \text{ using a model}$ and comparison to measured curve(s)

real effects

to be taken into account:

- non-sharp interfaces
- inhomogeneous layers
- illumination of the sample
- resolution of the set-up $\Delta \omega, \ \Delta \lambda$

... of a surface

... of a thin layer

... of a thick layer

simulated reflectivity

... of a periodic multilayer

what is V_i for neutrons?

interaction neutron / nucleus j

with $\lambda \gg r_{nucleusj}$

 $V_{j}^{\text{Fermi}} = b_{j} \frac{2\pi \hbar^{2}}{m} \delta(\mathbf{r})$ $V_{i}^{\text{n}} = \frac{1}{\text{vol}} \int_{j} V_{j}^{\text{Fermi}} d\mathbf{r}$ $= \frac{2\pi \hbar^{2}}{m} \frac{1}{\text{vol}} \sum_{j} b_{j}$ $:= \frac{2\pi \hbar^{2}}{m} \rho^{b}$

interaction neutron magnetic moment μ / magnetic induction ${\bf B}$

$$\begin{array}{l} \mu \uparrow \uparrow \mathbf{B} \Rightarrow V^{m} = +\mu B \\ \mu \uparrow \downarrow \mathbf{B} \Rightarrow V^{m} = -\mu B \\ \mu \perp \mathbf{B} \Rightarrow \text{ spin-flip scattering} \end{array}$$

$$V^{\mathsf{m}} = \boldsymbol{\mu} \mathbf{B}_{\perp}$$
$$:= \frac{2\pi \hbar^2}{m} \rho^{\mathsf{m}}$$

$$\delta = 1 - n = \frac{\lambda^2}{2\pi} (\rho^b + \rho^m)$$

Ni:
$$\rho^b = 9.4 \cdot 10^{-6} \text{ Å}^{-2}$$

 $\Rightarrow \delta^{\text{nuc}} = 3.75 \cdot 10^{-5}$, $\lambda = 5 \text{ Å}$
 $\Rightarrow \omega^c \approx 0.5^\circ$

 $\delta \ll 1$

small angles of incidence!

$$\begin{split} \text{Fe:} \ \rho^m &\approx 6 \cdot 10^{-6} \, \text{\AA}^{-2} \\ &\Rightarrow \delta^m &\approx 2.4 \cdot 10^{-5} \text{ , } \lambda = 5 \, \text{\AA} \end{split}$$

 $\rho^m \approx \rho^b$

$$R = R(q_z) = R(\lambda, \omega)$$
 $q_z = 4\pi \frac{\sin \omega}{\lambda}$

angle-dispersive set-up

variation of ω with fixed λ detection under 2ω

energy-dispersive set-up

variation of λ with fixed ω detection via time-of-flight

angle-dispersive set-up

reflectometry 18

neutron reflectometer

instrument: morpheus at SINQ

sample environment

cooling with a closed cycle refrigerator 8 K < T < 300 K

application of an external magnetic field with Helmholtz coils $-1000 \,\mathrm{Oe} < H < 1000 \,\mathrm{Oe}$

and sample

tilt- and translation stages for alignment

reflectometry 19

from the sample to $\rho(z)$

measurements

reflectometry with
non-resonant x-rays and
polarised neutrons

on a

Fe₃Si film on GaAs

sample size: $5 \times 5 \text{ mm}^2$ measurement time: 24 h neutron 1 h x-ray

measurements

Fe/Si multilayer (a neutron polariser)

Fe/Si multilayer (a neutron polariser)

reality: interdiffusion leads to 5 Å thin magnetically dead layers

summary neutrons

specular polarised reflectometry

probes magnetic and structural depth profiles

with

atomic to sub- μm resolution

isotope selective

data analysis by
comparison to
calculated profile(s)

 $n = 1 - \delta - i\beta$

and at resonances (close to absorption edges): δ and β depend on the – photon energy

- photon polarisation
- density of states (DOS)

0.1

XMCD

XMCD

x-ray magnetic circular dichroism

XMCD + reflectometry

reflectometry measurements

- at both absorption peaks
- with both circular polarisations

+

XMCD and absorption measurements

to get optical constants

data interpretation:

analogue to n-reflectometry

but with $n = 1 - \underbrace{\delta - i\beta}{\delta}$

including:

- coherent dispersion + absorption
- resonant scattering
- magnetic contributions

schematic set-up of the experiment ...

by E. Göring, Max-Planck Institut für Metallforschung, Stuttgart

... and how it looks at the beamline UE56-2_PGM at BESSY-II, Berlin

by E. Göring, Max-Planck Institut für Metallforschung, Stuttgart

resonant x-ray reflectometry

summary resonant x-rays

- + element specific
- + separation of spin and orbit momentum
- + sensitive to sup-atomic layers
- + depth selective
- +- absorption limits penetration depth
 - \Rightarrow balance of signal strength and penetration depth
 - \Rightarrow restricted to the surface region (< 1000 Å)
- needs ultra high vacuum \rightarrow restriction of space and external
 - \Rightarrow restriction of space and external parameters
- + short measuring time (20 min)
- difficult simulation: knowledge of the optical constants

reflectometry 34

resume

reflectometryprobes depth-profile of some potentialaverages laterally⇒ ideal for layered systemsdata analysis by modelling

with neutronsresolution: atom to sub-μmisotope selectivedetects in-plane magnetic induction

with x-raysresolution: atom to sub-μmdetects electron density

... in resonance detects magnetic states of atoms element specific separation of spin and orbit

reflectometry, in general :

J. Daillant, A. Gibaud:X-ray and Neutron ReflectivityLect. Notes Phys. 770 (Springer 2009)

U. Pietsch, V. Holý, T. Baumbach: *High-Resolution X-Ray Scattering* (Springer 2004)

... on magnetic systems

F. Ott:

Neutron scattering on magnetic surfaces

C. R. Physique 8, 763-776 (2007)

... using resonant x-rays

S. Brück:

Magnetic Resonant Reflectometry on Exchange Bias Systems Dissertation, Stuttgart 2009