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motivation

what happens at interfaces where

electronic )
chemical
crystallographic
magnetic

> properties do not match?

SC and magnetism avoid each other
— unless forced together on an atomic scale

= how do they arrange? LCMO

used system:
multilayers of the type

[SC/FM],/STO
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the samples

multilayers of the type [SC/FM],,/STO T
FM: L32/3C31/3|\/|n03 TCurie
Tcurie = 180K
STO: SrTiO3 used as substrate
T =~ 105 K: cubic to tetragonal
T =~ 65 K: tetragonal to orthorombic
= surface fragmentation
SC: Y1 _xPrxBasCuzOeg et
Tc~40K(x=0.4), 90K (x=0)
t—o
Tc
crystal types: 0

(close to) perovskite-like carrier concentration in CuO planes




how does the magnetisation in the film look like?

depth profile of magnetic induction: B(z)

has SC an influence? = T-dependence of B(z2)

= need for a method to probe B(z) and p(z)

— with 0< z <2000A
Az~1A
B(2) Az .
0(2) — in the range 10K < T <200K
= — in a magnetic field H < 1000 Oe

— polarised neutron reflectometry

the question
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polarised neutron reflectometry

index of refraction n (as for visible light:
In—1] =8| < 107°
0 = dnyclear 6magnetic

6magnetic X un B |
neutron magnetic moment: un

in-plane magnetic induction: B |

‘ measured quantity:
/ intensity vs. normal momentum transfer g
a-

for parallel interfaces:
interference of (multiply)
reflected beams

substrate




polarised neutron reflectometry

index of refraction n
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O = dnuclear 5magnetic

5magnetic X un B |
neutron magnetic moment: up

in-plane magnetic induction: B |

‘ measured quantity:
/ intensity vs. normal momentum transfer g
dz

angle dispersive mode

substrate




polarised neutron reflectometry

index of refraction n
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neutron reflectometer
AMOR

at SINQ), PSI

time-of-flight
spin polarisation

‘ measured quantity:

polarised neutron reflectometry

/ intensity vs. normal momentum transfer q-
dz

substrate

energy dispersive mode




Bsi experiments

OF L
| T
T dependence of R(w) |
for an ML with ~ -1} —— o Tcurie
underdoped SC E‘j’/ o
é') 2 F
9 L
field cooled and > |
measured in g 3 _
H = 100 Oe s _
@ 4 _ c—t
-5
o 05 1 15 2 25 3 35, _
w
Tc




(—[] experiments
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experiments

appearance of ond Bragg peak
magnetic screening in YPBCO
be|OW TCurie

T' is doping dependent
and scales like T* of the
pseudo gap
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experiments
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T dependence of R(w)
for an ML with
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Bsi ‘ polarised neutron reflectivity

for an ML with
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polarised neutron reflectivity

T dependence of R(w)

for an ML with
underdoped SC

field-cooled

Hexternal = 100 Oe

T =15K

with
spin-polarisation
and

spin analysis
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no (strong) spin-flip visible

= B is (allmost) parallel to Hegyternal




interpretation: modulation of B

magnetic peak
comparable to a fractional Bragg peak in diffraction Tcurie
indication for a (magnetic) superstructure

YPBCO LCMO
model assumpton:

Z
Tc< T < Tcurie Gt
all LCMO layers have the same B = Bg
t—o
T < T
Tc
B=BygtAB
where sign changes each period
= layerwise AFM on top of the FM
0

respective moments on Mn: 2.1 £1.9ug




Bsi influence of the substrate

-
STO undergoes phase transitions
7_Curie
= twinning, buckling of the surface
= surface is fragmented into facets
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influence of the substrate

STO undergoes phase transitions _—
= twinning, buckling of the surface
= surface is fragmented into facets
= varying angle of incidence over the sample

= lots of specularly reflected beams |
C—
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PAUL SCHERRER INSTITUT

PE

scattering angle 20

magnetic superlattice peak appears only

« ETHwo [0

wavelength (2 to 10A)

e below Tc

e on some of the surface facets

e when uniaxial in-plane pressure is applied to the substrate
= alignment of domains?
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Bsi ‘ interpretation

o LCMO has a complicated phase diagram and
shows phase separation of structural and magnetic properties

strain
finite dimension in z
coupling to neighboring FM layers

might change the energies of
competing magnetic states

» the changed coupling through YPBCO in the (energetically weak)
SC state can then switch the ground state in the FM

o the SC gains surface energy
if he is strained

he can win!
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Bsi ‘ conclusion

» PNR can probe p(z) and B (z) with almost atomic resolution
e samples: [Yl_XPrXBaQCU3O6/La2/3Ca1/3I\/InOg]1O/SrTiO3
o FM layers are aligned parallel

e exception: in strained films below Tc¢
a modulation is initated by SC spacer

o hypothetical explanation:
— strain lowers energy of modulated FM states
— gain in surface energy in SC is enough to
switch the ground state in FM

o "normal’ case: energy scale of FM is much larger than of SC
= competition normally below 1K

e here: 40K




