Jochen Stahn

Laboratorium für Neutronenstreuung ETH Zürich & Paul Scherrer Institut

Antiphase Magnetic Proximity Effect in Perovskite Superconductor / Ferromagnet Multilayers

25.10.2005

International Workshop on Reflectometry, Off-specular scattering and GISANS ROG2005 24.-26.10.2005, PSI

cooperators:

samples: G. Cristiani HU. Habermeier

measurements:

- T. Gutberlet
- J. Hoppler
- C. Niedermayer
- E. Kenzinger
- U. Rücker
- M. Wolff
- J. Chakhalian
- S. Pekarek

analysis: J. Hoppler S. Pekarek

interpretation: C. Bernhard

- C. Niedermayer
- E. Kenzinger
- B. Keimer
- J. Chakhalian

ETHZ PSI MPI-FKF FZJ RUB

motivation / history:

spring 2003:

C. Niedermayer presents nice μ SR and magnetisation measurements at PSI

no explanation at that time.

Coexistence of FM and SC in RuSrCuGdO → competitive order parameters artificial multilayers to investigate – interaction of FM and SC at the interfaces and – coupling through the layer

motivation / history:

spring 2003:

C. Niedermayer presents nice μ SR and magnetisation measurements at PSI

no explanation at that time.

method of choice (for a neutron scatterer):

neutrons!

in particular polarised n-reflectometry

```
tailored samples for reflectometry:size: 10 \times 10 \text{ mm}^2 (instead of 5 \times 5 \text{ mm}^2)period: 200 \text{ Å} to 500 \text{ Å}, 5 to 16 periodsthickness rations: 1:1 and 1:2 to cause extinctionnon-rough interfaces (otherwise used to tune T_c)materials: FMYBCOYB2Cu<sub>3</sub>O<sub>7</sub>HTSCLCMOLa2/3Ca1/3MnO3substrateSTOSrTiO3
```

instruments:

Morpheus, SINQ

AMOR, SINQ

ADAM, ILL

HADAS, FZ Jülich

sample environment (at SINQ):

sample holder with absorber

Helmholtz coils $H \le 1000 \text{ Oe}$ vol: $40 \times 40 \times 40 \text{ mm}^3$

translation stages for alignment

 $\omega\text{-rotation}$ stage

specular PNR & ω -scans **H** = 100 Oe

- field cooled
- $T = 10 \dots 300 \, \mathrm{K}$
- simulations performed with EDXR by Petr Mikulík (no fitting)
- bilayer structure has been broken down to some 100 sublayers to pay respect to $\mathbf{B}(z)$.

decrease of layer thickness towards the borders taken into account

reflectometry: specular, polarised

sample: [YBCO(150 Å)/LCMO(140 Å)]₅

reflectometry: specular, polarised

sample: [YBCO(150 Å)/LCMO(140 Å)]₅

reflectivity $\log[R(q_z)]$ 1*st* exponential decay into YBCO -1 AFM exponential decay into YBCO -2 2^{*nd*} 3rd magnetically dead layer in LCMO -3 above $T_{\rm m}$ reflectivity $\log[R(q_z)]$ YBCO LCMO -1 $+\rangle$ 5 $rac{2\pi}{\lambda^2}\,\delta(z)\cdot 10^6$ -2 4 nuc 3 ____ 2 -3 mag 0 -4 -1 0.03 0.06 0.01 0.02 0.04 0.05 0.07 0.2 0.4 0.6 0.8 0 $q_z/{ m \AA}^{-1}$ z/d in one period

sharp contrast at the interface exponential decay into YBCO AFM exponential decay into YBCO penetration into YBCO magnetically dead layer in LCMO

résumé:

0

-1

0

0.2

PNR at RT and below $T_{\rm m}$ and $T_{\rm c}$ exclude all models besides

mag

1

AFM-region within LCMO

charge-injection from YBCO leads to a doping of LCMO and thus to an AFM ground state

YBCO LCMO $+\rangle$ 5 $rac{2\pi}{\lambda^2} \, \delta(z) \cdot 10^6$ 4 nuc 3 $-\rangle$ 2 1

0.4

z/d in one period

0.6

0.8

antiphase magnetic proximity effect

FA coupling of Mn and Cu moments through oxygen

or

Cooper pairs penetrate into LCMO and are *polarised* \Rightarrow antiparallel magnetisation in YBCO

magnetometry:

SQUID measurements by F. Treubel, Konstanz

T = 5 Kcooled in H = 100 Oecoercitive field $H_{co} \approx \pm 400 \text{ Oe}$ exchange bias field $H_{eb} \approx -60 \text{ Oe}$

 $$\downarrow $\downarrow$$ presence of an AFM coupling at the FM-interface

but:

- magnetically dead layer might be an AFM

– ${\bf B}$ in YBCO might be an AFM with net magnetic moment

- ! onset of FM: changed contrast
- $T' \Rightarrow$ formation of 2nd peaks
 - ! B(z) is no longer congruent with $\delta(z)$
- $T_{\rm c} \Rightarrow {\rm decrease \ of \ } 1^{\rm st} {\rm \ peak}$
 - ? formation of lateral magnetic inhomogeneities
 - ? reduction of B

off-specular measurements: periodic ml, non-polarised, various T sample: $[YBCO(100 \text{ Å})/LCMO(100 \text{ Å})]_7$

magnetic domains are formed at T_c and they shrink from 10 μ m to 5 μ m when cooling

interpretation of off-specular scans:

- \Rightarrow SC directly influences the lateral correlation of $B_{||}$
- \Rightarrow model of direct contact of SC and FM is favoured!
- \Rightarrow antiphase magnetic proximity effect
- A magnetic moment on Cu antiparallel to Mn has been measured by XMCD (J. Chakhalian, B. Keimer)

F. S. BERGERET, A. F. VOLKOV AND K. B. EFETOV

174504 (2004)

69

Δ

PR

FIG. 1. Spatial dependence of the magnetization in the whole system. Here $\gamma_F / \gamma_S = 0.5$, $\overline{\gamma}_F = \gamma_F / \xi_0 = 0.1$ ($\xi_0 = \sqrt{D_S/2T_c}$), $J/T_c = 15$, and $d_F / \xi_0 = 1$. Inset: Schematic view of the inverse proximity effect in a S/F system (for discussion see text).

real off-specular measurements

No off-specular sheets at RT or 200 K \Rightarrow no structural roughness detectable

Increase of the Bragg sheet at 1^{st} Bragg peak (d) below 160 K \Rightarrow magnetic roughness, correlated vertically

Appearance of sheets in the spin-flip channel (e) \Rightarrow magnetic moments not parallel to the neutron spins

Interpretation (of all measurements): Magnetic domains of similar size (≈ 5 to 10μ m) are formed in the LCMO layers. These are correlated through YBCO over the whole stack.

conclusion:

- all LCMO layers are magnetised parallel
- interface effect of B(z) of the order of 10 Å is measured at $T_c < T' \approx 140 \, \text{K} < T_m$
- magnetic dead layer or antiphase proximity effect
- simultaneous appearance of Bragg-sheets
- vertical correlation of magnetic domains
- \bullet increase of off-specular scattering below ${\it T_{c}}$
- shrinking of magnetic domains / characteristic lengthscale
- correlation of domain size with T_c and XMCD measurements favours the *antiphase proximity effect*