

A Remanent Fe / Si Supermirror Transmission Polarizer

J. Stahn & D. Clemens

Laboratorium für Neutronenstreuung, Paul Scherrer Institut & ETH Zürich
CH-5232 Villigen PSI, Switzerland

Introduction

In order to develop a neutron spin polarizer based on magnetically remanent supermirrors we produced a Fe/Si supermirror (m=2) giving polarizations of 96% to 98%.

Advantages of Fe / Si and transmission geometry:

• remanence is achievable by preparation with DC magnetron sputtering [1]:

Magnetic hysteresis of a multilayer measured parallel and orthogonal to the direction of the substrate movement during the sputtering process.

remanence allows for a compact set up [2];

- $\rho_{\text{Fe}}(b_{\text{Fe}} + p_{\text{Fe}}) \gg \rho_{\text{Si}}b_{\text{Si}}$, $\rho_{\text{Fe}}(b_{\text{Fe}} p_{\text{Fe}}) \approx \rho_{\text{Si}}b_{\text{Si}}$; $\Rightarrow \text{Fe}/\text{Si on Si is almost invisible for } \downarrow$;
- low absorption;
- unaltered beam path.

Problems:

• $\rho_{\text{Fe}}(b_{\text{Fe}} - p_{\text{Fe}}) \neq \rho_{\text{Si}}b_{\text{Si}}$ \Rightarrow increased R_{\parallel} \Rightarrow first order R_{\parallel} peak:

Neutron reflectivity R of a multilayer ([Fe(75 Å) / FeSi(5 Å) / Si:(N, O)(66 Å) / FeSi(5 Å)]₁₀ on glass) for \uparrow and \downarrow measured on TOPSI at SINQ / PSI (neutron wavelength $\lambda = 4.74$ Å).

- formation of an $\approx 5\,\text{Å}$ thick magnetically dead inter-diffusion layer at the interfaces [3, 4, 5]
 - \Rightarrow increased R_{\perp} \Rightarrow 'second order' R_{\perp} peak;
- anisotropic stress:
 - condition for magnetic remanence,
 - might cause mechanically instable multilayer films.

Solution

Reactive gases (N₂, O₂) can be incorporated in the Si layer to tune ' $\rho_{\rm Si}b_{\rm Si}$ ', stress and to prevent interdiffusion. Optimization:

- production of multilayers,
- measurement of reflectivity, stress and hysteresis,
- R simulation with EDXR [6],
- variation of preparation parameters.

Results

Si sputtered in Ar, N_2 and O_2 (60:9:1) allows to prepare a stable Fe/Si supermirror:

- reflecting \uparrow up to $q = 0.044 \text{ Å}^{-1} \ (m = 2)$;
- 149 layers:
- measured in a guide field of < 2 mT, (saturation field: 80 mT);
- Polarizing efficency: $P = \frac{T_{\downarrow} T_{\uparrow}}{T_{\downarrow} + T_{\uparrow}} = 98\% \text{ to } 96\%$

Neutron transmission T through a m=2 Fe/Si supermirror on a Si wafer for \uparrow and \downarrow . The bump in the spin up curve shows that the layer thicknesses still have to be optimized.

Outlook:

- further reduction of stress;
- go to higher q (m = 2.5);
- build a compact polarizer.

_ References _

- [1] P. Böni et al. Physica B Condensed Matter 267-268, 320 (1999).
- [2] C. F. Majkrzak et al. SPIE 1738, 90 (1992).
- [3] D. J. Müller et al. *Physica B* **234**, 1050 (1997).
- [4] L.N. Tong et al. Eur. Phys. J. B 5, 61 (1998).
- [5] P. Høghøj et al. *Physica B* **268**, 355 (1999).
- [6] P. Mikulík. EDXR X-ray and neutron reflectivity calculation program mikulik@physics.muni.cz.

These results were obtained within the project TECHNI of the EU program IHP / Networks with financial support from the BBW Switzerland (No. 99.0593).