DFT calculation of the electron-density response in GaAs to an ‘external electric field’

J. Stahn, U. Pietsch, Institute of Physics, University of Potsdam, Germany
P. Blaha, K. Schwarz, Institute of Physical and Theoretical Chemistry, TU Vienna, Austria

Introduction

In the recent years, experiments were performed to probe theoretical concepts of electric screening in insulators on a microscopic scale.

Outcome:
- The response of the charge density to the external electric field is dominated by the displacement of the Ga and As sublattices relative to each other.
- No explanation for the anisotropy in \((\Delta R / R)(E)\) (see figures below) was found.
- LAPW calculations with WIEN97 were performed to find an explanation.

Experiment

Determination of the relative intensity variation \((\Delta R / R)\) of weak reflections of GaAs caused by an homogenous externally applied electric field.
The measurements were performed with HASYLAB, D3 with different wavelengths. [1]

Typical results:

- DFT-program: WIEN97
- the code was modified to simulate an external electrical field by addition of a periodic potential \(V_{\text{ext}}\) to the ESP.
- \(V_{\text{ext}}\) is constructed of a series of cosine functions.
- the supercell \((S|Z)\) contains 48 atoms:

Calculations

- \((\Delta R / R)(V_{\text{ext}})\)
- space is separated into spheres around the atoms and the remaining interstitial region.
- calculation of the structure factors \(F^\ast\) by using the quasi-atomic structure factors \(f_i\) from the spheres \(i\) located near \(z = 0.25\) or \(z = 0.75\), respectively.

Problems, approximations

- \(S|Z\) \Rightarrow limited resolution in \(k\)-space
- limited accuracy due to numerical reasons
- \(f\)-field strength is 100 times larger than in the experiment
- underestimation of band gaps by LDA-DFT: isolating potential has to be checked
- muffin tin potential: interstitial region is not considered in \(F^\ast\)
- calculation of \(\Delta R / R\): inclusion of
 - anomalous dispersion \((f_0^\ast(\lambda) + i f_1^\ast(\lambda))\)
 - thermal effects (Debye-Waller factor \(T\))

\(\Delta R / R \approx [(F_{\text{DW}}^2 - |F_0|^2) / |F_0|^2]\)

\(F^\ast = (f_{\text{ix}} + f_{\text{iy}}(\lambda) + if_{\text{iz}}(\lambda)) T_{\text{Ga}} + (f_{\text{ix}} + if_{\text{iy}}(\lambda) + i f_{\text{iz}}(\lambda)) T_{\text{As}} e^{i2\pi r}(E), f_i = f_i(\lambda)\)

\(r = r(E), f_i = f_i(\lambda)\)

Clamped ion geometric

- calculations for \(V_{\text{ext}} = 0, 50\) and \(100\) mRy \((0, 350\) and \(700\) kVmm\(^{-1}\))
- \(\Delta R / R < 10^{-3}\)
- Difference charge densities, \(E|[\vec{I} \vec{T}]\)

\(\rho = \rho_0\) mRy \(\Rightarrow \rho_0\) mRy \(\Rightarrow \rho_0\)

- \(\Delta R / R\) is not reproduced by DFT calculations

![Diagram](image)

Relaxed ion positions

- criteria: no forces on the nuclei
- \(\Delta f_{\text{ix}} - f_{\text{ix}} = 0.01\) mRy \(V_{\text{ext}} = 50\) mRy
- \(\Delta f_{\text{ix}}\) field is not altered
- Difference charge densities, \(E|[\vec{I} \vec{T}]\)

\(\rho = \rho_0\) mRy \(\Rightarrow \rho_0\) mRy \(\Rightarrow \rho_0\)

- \(\Delta R / R\) is not reproduced by DFT calculations

Diamonds: results of DFT calculations solid lines: predictions of calculation with superposed atoms, \(r = r(E)\)

- The effect of the redistribution of the charge density is several orders of magnitude smaller compared with the displacement of atoms

- strong anisotropy of \((\Delta R / R)(V_{\text{ext}})\) is not reproduced by DFT calculations

References

Acknowledgements

This project was supported by the BMBF, (grant 05 6471PA) and the EC, (grant CHRXCT-920555).

Contact: uipetsch@rz.uni-potsdam.de
http://www.riekgen.physik.uni-potsdam.de