the Swiss-Danish Instrument Initiative presents

а

focusing reflectometer for small samples based on the Selene guide concept

ESS -

J. Stahn

the Swiss-Danish Instrument Initiative for reflectometry are

science case

depth-profiling of structural and magnetic densities lateral structures close to surfaces

organic films at a solid liquid interface

laterally structured (organic) films

functional devices

instrument

key parameters

 $\begin{array}{rl} \text{sample size} & 1\times1\,\text{mm}^2\\ \text{to} & 10\times50\,\text{mm}^2 \end{array}$

horizontal scattering plane

intrinsic resolution 2 to 4%

polarisation option

low background

truly focusing

instrument

instrument

convergent beam

defined footprint

defined divergence

medium resolution ($\approx 5\%$)

specular & off-specular reflectometry

almost conventional

convergent beam

defined footprint

defined divergence

medium resolution (\approx 5%)

liquid interfaces

e.g. solid-liquid cell

avoid gasket & trough walls restrict to a homogeneous area

specular & off-specular reflectometry

almost conventional

convergent beam

defined footprint

defined divergence

medium resolution (\approx 5%)

specular & off-specular reflectom

multiferroics

strain induced FM in multiferroic AFM LuMnO₃ J. White et al.

PRL 111, 037201 (2013)

Strain gradient

8.5 9

Si/Fe/Cu on Si

 $\lambda / Å$

tiny samples

0.02

 $q_Z \,/\, {
m \AA}^{-1}$

14

interdiffusion high-intensity specular reflection Li diffusion through a thin Si layer E. Huger at al. Nano Lett. 13, 1237 (2013) trading off-specular resolution \Rightarrow complex resolution function Li^+ 0, negative quick & dirty way to scan a electrode (Li) Si membrane silicon ⁶Li ⁷Li layer reservoir reservoir 10 nm time-resolved studies tiny samples 0.02 0.04 0.06 0.08 0.1

J. Stahn: focusing reflectometer Εστία

operation modes

spectral analysis of the w

constant $\Delta q/q$

wide q_z -range

parallel beam

by reflection on a parabolic mirror

tunable divergence and beam size

uni-modal beam characteristics

J. Stahn: focusing reflectometer $E\sigma\tau\iota\alpha$

polarisation

by selective reflection

on a log-spiral mirror

for laterally structured samples (GISANS)

constant angle of incidence

low-*m* coating \Rightarrow high *P*

parallel beam

by reflection on a parabolic mirror

tunable divergence and

uni-modal beam cl

for **laterally structured samples** (GISANS)

structured surfaces

nanostructured diblock copolymer films with embedded magnetic nanoparticles

Xin Xia et al. J. Phys. 23, 254203 (2011)

J. Stahn: focusing reflectometer $E\sigma\tau i\alpha$

by selective reflection

polarisation

performance

1000 Å Ni on glass $(5 \times 5 \text{ mm}^2)$

