Reflectometry Proposal Review Meeting Lund, 15.01.2014

focusing reflectometer for small samples based on the Selene guide concept

J. Stahn

main critics

"The STAP will not be able to justify an instrument that can only investigate hard condensed matter samples to the SAC."

"information on the Q-resolution and Qmax required to address the scientific case"

"justification needs to be given why the proposers have chosen to go for a double rather than a single Selene system."

importance of the fast movement of the slit

challenges of guide alignment and accuracy

comparison to an existing instrument

main critics

"The STAP will not be able to justify an instrument that can only investigate hard condensed matter samples to the SAC."

criter" information on the Q-resolution and Qmax required to address the scientific case"

"justification needs to be given why the proposers have chosen to go for a double rather than a single Selene system."

technical aspects challenges of guide alignment and accuracy

comparison to an existing instrument

main critics

"The STAP will not be able to justify an instrument that can only investigate hard condensed matter samples to the SAC."

 $E\sigma\tau\iota\alpha$ is optimised for small samples

— most of which are hard matter nowadays

Eστία will deliver brilliant results also for large samples,

or samples with intrinsic background

 $E\sigma\tau i\alpha = Selene$ -guide + reflectometer

is a concept which can be adapted to a science case

the SAP has the expertise to define a science case (especially for "a very fast moving area of science.")

J. Stahn: focusing reflectometer $E\sigma\tau i\alpha$

design criteria

very general (complement to the vertical instrument) STAP small samples polarisation higher resolution take care for background double Selene guide avoid prompt pulse length λ -range ESS shielding, source, distances

> length pin-hole double *Selene* guide

me science case, operation modes

small footprint wide divergence

instrument

Εστία

is a

TOF reflectometer

with

- horizontal scattering plane
- \bullet max footprint $10\times 50\,mm^2$
- \bullet intrinsic resolution 2 to 4%
- various options

not all options can be used for all kinds of experiments

guide accuracy - options

frame of reference:

- pin-hole in the extraction unit
- 1st guide segment

as submitted

optimised for low radiation

distance from moderator in m 52 6 26 58 sampleaperture moderator end of shielding virtual source detector

aperture removed

guide stretched

guide accepts only neutrons originating form a $10\times10\,\text{mm}^2$ spot on the monitor

guide accuracy - access

technical aspects

• detector

feedback from R. Hall-Wilton: no principle problem, no risk.

challenge: high simultaneous dynamic range across the detector area

• polarisation

```
performed before the virtual source 

\Rightarrow no problems with diffuse / off-specular scattering 

guide field \approx 26 m long, with cross-section \leq 80 × 80 mm<sup>2</sup>
```

• polarisation analysis

various options, none perfect for area detectors

common problem to all reflectometers

technical aspects

• fast slit system

 λ - θ encoding

J. Stahn: focusing reflectometer $E\sigma\tau i\alpha$

• fast slit system

type	importance	risk
some conventional slit	essential	none
" changing position by dropping pulses	essential	none
" changing position (< 80 mm) within 10ms	nice to have	moderate
2 blades scanning independently $< 80 \text{mm}$ within 60 ms and resetting in 10 ms	very nice †	high
alternative: double disk chopper		none

upgradable any time

† if not available:

 λ - θ -encoding is contaminated with specular non-Bragg scattering from monochromator

normalisation

common problem for all TOF reflectometers

- direct beam
- + simple and fast
- intensity might be too high
- detector inhomogeneities are problematic
- different (virtual) footprint
- reference sample
- + illumination correction included
- + detector inhomgeneities no problem
- limited q_z -range
- long counting times

reference can be characterised in angle-dispersive mode

- computed
- + time saving
- + flexible
- no experience

(used on Amor)

(works with *Selene* prototype)

recent measurements

J. Stahn: focusing reflectometer $E\sigma\tau\iota\alpha$

in-situ growth of Fe on Co

(B. Wiedemann, TUM)

costing

in the proposal:

5 M € for hardware

not in the proposal: + R&D on fast slit and detector

+ man power for design, construction, fabrication and assembly

my guess of total costs:

10 to 12 M €.

my guess is nothing the ESS should use to make their budget

costing

in the proposal:

5 M € for hardware

not in the proposal: + R&D on fast slit and detector

+ man power for design, construction, fabrication and assembly

my guess of total costs:

10 to 12 M \in .

my guess is nothing the ESS should use to make their budget

but it matches the estimate of R. Connaster

is this sufficient?

if not: will ESS help?

- is to long (it hardly exceeds the requested size)
- contains only half of the requested science case
- has too many details (makes it complicated)
- does not give enough details (see STAP question list)

help me

SAP please provide me with a science case and the resulting key features: $\Delta q/q$, q_z -range, time resolution

soft matter

very fast moving area of science

TAP how detailed should the proposal be? which options should be mentioned?

polarisation

measurement modes

ESS what are the reliable parameters / requests?

exclusion of prompt pulse

radiation / background

help me

SAP please provide me with a science case and the resulting key features: $\Delta q/q$, q_z -range, time resolution

soft matter

very fast moving area of science

TAP how detailed should the proposal be? which options should be mentioned?

polarisation

measurement modes

ESS what are the reliable paraoneters / requests? the properties / requests? to^{0} late for the properties / requests? exclusion of prompt pulse radiation / background