the Swiss-Danish Instrument Initiative presents

Estia

a focusing reflectometer for small samples based on the Selene guide concept

J. Stahn
the Swiss-Danish Instrument Initiative for reflectometry are

Paul Scherrer Institut, Switzerland

J. Stahn
P. Korelis
U. Filges
T. Panzner
E. Rantsiou

University of Copenhagen, Denmark

M. Cardenas
U. Bengaard Hansen

University of Southern Denmark

B. Klösgen
Science Case

Depth-profiling of structural and magnetic densities

Lateral structures close to surfaces

Organic films at a solid liquid interface

Laterally structured (organic) films

Functional devices

Magnetic heterostructures
instrument

key parameters

sample size $1 \times 1 \text{ mm}^2$ to $10 \times 50 \text{ mm}^2$

horizontal scattering plane

intrinsic resolution 2 to 4%

polarisation option

low background

truly focusing
point-to-point focusing with 2 subsequent elliptical reflectors for horizontal- and vertical direction

Selene guide concept
instrument

shielding concept

direct view: 14 m
indirect view: 26 m

time regime

\[\lambda \in [5, 9.4] \text{ Å} \]

\[\Delta \theta_{xy} = 1.5^\circ \]
\[\Delta \theta_{xz} = 1.5^\circ \]
operation modes

almost conventional

convergent beam

defined footprint

defined divergence

medium resolution (≈ 5%)

specular & off-specular reflectometry
operation modes

almost conventional

convergent beam

defined footprint

defined divergence

medium resolution (≈ 5%)

liquid interfaces

e.g. solid-liquid cell

avoid gasket & trough walls

restrict to a homogeneous area
operation modes

almost conventional

convergent beam

defined footprint

defined divergence

medium resolution ($\approx 5\%$)

specular & off-specular reflectometry

multiferroics

strain induced FM in multiferroic AFM LuMnO$_3$

J. White et al.

PRL 111, 037201 (2013)
operation modes

high-intensity specular reflectivity

trading off-specular resolution for intensity
⇒ complex resolution function

quick & dirty way to scan a phase diagram

time-resolved studies

tiny samples
operation modes

high-intensity specular

trading off-specular resolution

⇒ complex resolution

tiny samples

novel electronic phases at interfaces

exchange bias in LaNiO$_3$ (PM) / LaMnO$_3$ (FM) superlattices

M. Gibert et al.
nature materials 11, 195198 (2012)
operation modes

high-intensity specular reflectivity

trading off-specular resolution

⇒ complex resolution function

quick & dirty way to scan a phase diagram

time-resolved studies

tiny samples

interdiffusion

Li diffusion through a thin Si layer

E. Huger at al.

Nano Lett. 13, 1237 (2013)
operation modes

- **λ-θ encoding**
 - $\lambda \propto \alpha$
 - multilayer

- **spectral analysis of the white beam**

- **constant $\Delta q/q$**

- **wide q_z-range**
operation modes

\[\lambda - \theta \text{ encoding} \]

functional devices

electrical switching of spin polarisation
D. Pantel et al. nature materials 11, 289 (2012)

active area < 50 \times 50 \mu m^2

constant \(\Delta q/q \)

wide \(q_z \)-range
operation modes

parallel beam

by reflection on a parabolic mirror

tunable divergence and beam size

uni-modal beam characteristics

for laterally structured samples (GISANS)

constant angle of incidence

low-\(m\) coating \(\Rightarrow\) high \(P\)
operation modes

parallel beam

by reflection on a *parabolic* mirror

tunable divergence and uni-modal beam characteristics

structured surfaces

nanostructured diblock copolymer films with embedded magnetic nanoparticles

Xin Xia et al. J. Phys. 23, 254203 (2011)

for *laterally structured samples* (GISANS)

polarisation

by selective reflection

constant angle of incidence

low-m coating \Rightarrow high P
performance

obtained by McStas simulations

λ-θ encoding

high-intensity specular reflectivity

almost conventional

1000 Å Ni on glass (5 × 5 mm²)

reflectivity log₁₀ R(qz)

$qz / \text{Å}^{-1}$

t / s

60

900

1

10

100

60

900

1

10

100
Estia

J. Stahn