

PAUL SCHERRER INSTITUT

Jochen Stahn

Tobias Panzner Uwe Filges Emanouela Rantsiou Ursula B. Hansen

focusing on small samples

ICNS 2013 International Conference on Neutron Scattering 09.–12.07.2013, Edinburgh, Great Britain

people involved

Ursula Bengaard Hansen McStas Simulations Birgit Wiedemann Anette Vickery reas Emanouela Rantsiou Björgvin Hjörvarsson The structure Marité Cardenas **Tobias Panzner** Panos Korelis Beate Klösgen Uwe Filges **Rob Dalgliesh** Frédéric Ott Sibylle Spielmann Phil Bentley Roman Bürge Bob Cubitt Peter Böni Marcel Schild nspiration Selene Uwe Stuhr Dieter Graf Jan Krebs

Selene picture: ceiling painting in the Ny Carlsberg Glyptotek, København

outline

• Selene guide system

• prototype

 \circ optics & options

• reflectometry

 \circ discussion

people.web.psi.ch/stahn/publications.html#oral

focusing on small samples

deal with

_

small samples

beam shaping

What, if the samples **are** small?

small is relative to the guide / the optics

basics

basics

basics

dimensions are freely scalable

- \Rightarrow adjustable to $~\circ~$ TOF length
 - sample environment
 - spin-echo spatial needs
 - available space

o ...

limited by o aberration o gravity

• Selene guide system

• prototype

• optics & options

• reflectometry

 \circ discussion

generic lay-out

• Selene guide system

• prototype

• optics & options

 \circ reflectometry

 \circ discussion

guides

by SwissNeutronics

2 guides 1200 mm each,

made of 2 elements,

made of

2 elliptically bent reflectors. coating: Ni/Ti SM, m = 4

 $a = 1000 \,\mathrm{mm}$ b/a = 0.0206

quality characterisation with pin-hole

using light & CCD camera, or neutrons

quality characterisation with pin-hole

using light & CCD camera, or neutrons

quality characterisation with pin-hole

using light & CCD camera, or neutrons

quality characterisation by interferometry:

ZYGO Verifire ATZ metrology-lab @ PSI

parallel beam normal to the surface

quality characterisation by interferometry:

ZYGO Verifire ATZ metrology-lab @ PSI

focused beam

quality characterisation by interferometry:

ZYGO Verifire ATZ metrology-lab @ PSI

focused beam fed into guide

not yet analysed

light optics not adapted \Rightarrow low intensity

J. Stahn: focusing, ICNS 2013 3.5

• Selene guide system

• prototype

• optics & options

• reflectometry

 \circ discussion

polariser

requested:

a surface hit by all trajectories from a point source at the same angle $\boldsymbol{\alpha}$

polariser

requested:

a surface hit by all trajectories from a point source at the same angle $\boldsymbol{\alpha}$

 \Rightarrow the logarithmic spiral

polariser: logarithmic spiral

condenser: parabolic deflector to generate a parallel beam

parabola axis \Rightarrow beam direction

condenser: parabolic deflector to generate a parallel beam

parabola axis \Rightarrow beam direction

focal length \Rightarrow beam width

condenser: parabolic deflector to generate a parallel beam

parabola axis \Rightarrow beam direction

focal length \Rightarrow beam width

beam width & divergence \Rightarrow divergence

no collimator needed tunable

(not yet realised)

condenser: parabolic deflector to generate a parallel beam

no collimator needed tunable

adaptive convex parabola (PSI, early version) parabola axis \Rightarrow beam direction

focal length \Rightarrow beam width

beam width & divergence \Rightarrow divergence

spectral analysis

using a multilayer monochromator

double ML monochromator

3D footprint definition using the imaging property of the *Selene* guide

point source \Rightarrow illuminates sample centre

source

sample

3D footprint definition using the imaging property of the *Selene* guide

point source \Rightarrow illuminates sample centre

finite sample \Rightarrow needs finite source

source

sample

3D footprint definition using the imaging property of the *Selene* guide

point source \Rightarrow illuminates sample centre

finite sample \Rightarrow needs finite source

source shape & orientation = image of footprint

3D footprint definition using the imaging property of the Selene guide

- point source \Rightarrow illuminates sample centre
- finite sample \Rightarrow needs finite source
- source shape & orientation = image of footprint

3D footprint definition using the imaging property of the *Selene* guide

applications:

- exclude sample holder, etc.
- concentrate on one crystallite

reflectometry

- \circ $\,$ inner region within a trough
- inner region of a solid-liquid cell:
- samples with electrical contacts:
- partially coated substrates
- bent substrates

choppers

 $v = 60 \,\text{s}^{-1}$ gives $\lambda = 0 \dots 10 \,\text{\AA}$

 $\varnothing = 150 \, \text{mm}$

AI:B and Cd absorber

- frame-overlap suppression
- pulse generation

MIEZE (NRSE)compatibility with Selene guide under investigationall trajectories have the same length

G. Brandl, A. Chacón, R. Georgii, W. Häußler, et al. FRM II & TU Munich

• Selene guide system

• prototype

• optics & options

• reflectometry

 \circ discussion

why?

• samples are *small* in at least one direction ($\ll 10 \text{ mm}$)

- typically $\lambda > 3 \text{ Å}$
- large dynamic range requires a low background no illumination of sample environment
- X

- reflectometry can profit from \circ large $\Delta \theta$
 - $\circ \lambda$ - θ encoding
 - \circ changing θ without rotating the sample

• it's my area of interest

operation modes

 $\lambda / Å$

high-intensity specular reflectivity

sample by Birgit Wiedemann TU Munich

sample by SwissNeutronics

high-intensity specular reflectivity

high-intensity specular reflectivity

high-intensity specular reflectivity

high-intensity specular reflectometry

VS.

almost conventional

 \Rightarrow constant $\Delta q_Z/q_Z$

at one moment, only one λ and one θ are active

θ

reflectometry

absolute error of 0

discussion

• Selene guide system

• prototype

• optics & options

• reflectometry

• discussion

discussion

focusing results in:

no gain in brilliance

defined footprint clean beam homogeneous uni-modal angular or spatial distribution

non-perfect optics

 \Rightarrow reduction of resolution / transmission

works best for small samples

weak aberration

discussion

appendix

comparison to conventional and full elliptic guides

comparison to a straight guide

chromatic aberration due to gravity

simulations (McStas) with (1mm) tapered guides (40 m long, b/a = 0.022)

in agreement with analytical calculations

set-up realised several times

on the optical bench BOA@PSI

on the TOF reflectometer $\ensuremath{\mathsf{Amor}}\ensuremath{\mathsf{QPSI}}$

