ESS -

Jochen Stahn Tobias Panzner, Uwe Filges Ursula Hansen Dieter Graf Marcel Schild Jan Krebs

first tests with a model

Selene-type neutron guide

IKON 4

13.-14.02.2013, Lund, Sweden

Paul Scherrer Institut

J. Stahn: Selene IKON4, 02.2013 1.0

outline

Selene guide concept application: reflectometer

model and tests

Selene BOA

set-up & components
virtual point-source
high-intensity specular reflectivity

high-intensity specular reflectivity

 λ/θ encoding

discussion

principle

generic instrument layout

cut in the scattering plane stretched by 10 normal to incident beam

operation modes for reflectometry

high-intensity specular reflectivity

almost conventional reflectivity

 $\lambda\text{-}\theta$ encoding

guides

by SwissNeutronics

2 guides 1200 mm each,

made of

2 elements,

made of 2 elliptically bent reflectors. coating: Ni/Ti SM, m = 4

 $a = 1000 \,\mathrm{mm}$ b/a = 0.0206

choppers

$$\label{eq:v} \begin{split} \nu &= 60\,\text{s}^{-1} \\ \text{gives } \lambda &= 0\dots 10\,\text{\AA} \end{split}$$

 $\varnothing = 150 \, \text{mm}$

AI:B and Cd absorber

- mimic ESS pulse
- frame-overlap filter

virtual point source

Selene BOA

 $\lambda/Å$

Selene BOA

- proof of measurement scheme
- $\Delta \lambda = \text{const.}!$ ($\hat{=} \text{ESS}$)
- source should be homogeneous!detector needs to be homogeneous!
- background at BOA is too high (10^{-2})
 - \rightarrow already improved
- guide accuracy has to be improved

 $\lambda/Å$

high-intensity specular reflectometry

no horizontal detector offset

high-intensity specular reflectometry

$$0.005 \,\text{\AA}^{-1} < q_Z < 0.05 \,\text{\AA}^{-1}$$

in 25 min on 10 mm² area,

limited by background due to open detector

λ/θ encoding

λ/θ encoding

discussion

general limits of Selene guides

- $\circ \quad \lambda > 3\, \text{\AA}$
- $^\circ$ max. spot-size / guide-length ≈ 5 $\cdot\,10^{-4}$ i.e. 1 cm / 20 m

technical limits (to be pushed)

- guide waviness too high for λ/θ encoding
- sample alignment has to be improved

successes

- + guide quality sufficient for high-intensity reflectometry and conventional reflectometry
- + successfully applied to real samples

next steps

- \circ polarisation & λ -filter
- mechanical modification of Amor