progress report of the
Swiss-Danish instrument initiative
for the ESS
WP2
focusing reflectometer

IKON 2
09.–10.02.2012, Malmö, Sweden
aims

development and proof of concepts for two reflectometers for the ESS, optimized for:

- **small samples** (<1 mm²)
 - horizontal scattering geometry
 - polarization & analysis
 - voluminous sample environment
 - moderate to low resolution
 - ...

- **liquid surfaces**
 - vertical scattering geometry
 - time-resolved studies ($\Delta t < 1$ s)
 - wide q_z-range with one (few) angular setting(s)
 - high to low resolution
 - ...
generic instrument layout

cut in the scattering plane
stretched by 10 normal to incident beam

initial slit $\hat{=} \text{projected sample size}$

1st elliptic reflector

no direct line of sight

sample
detector

knife blade

2nd elliptic reflector
generic instrument

why focusing?

beam profile
penumbra
umbra

slits
reflective / refractive optics
generic instrument

why an elliptic reflector?

an **elliptic** reflector allows for
 point-to-point focusing
 - small source point
 - convenient beam manipulation (chopper, filtering)
 - early beam definition
 - low background
 - low radiation
 - disentangling of spot size and divergence
 - λ/θ encoding

a **parabolic** reflector turns beam size into divergence and *vice versa*
why only one branch of an ellipse?

- no structured $I(\theta, z)$

- in most cases one branch can cover $\Delta \theta$
generic layout

why two subsequent elliptic guides?

- convenient beam manipulation
- guide dimensions not too large
- correction for coma aberration!
operation modes:

for TOF

(non-TOF operation is also possible!)
operation modes:

almost conventional

- beam is still convergent
- off-specular measurements are feasible
operation modes:

wide q-range

- vary θ with fixed sample position
- shift diaphragm (chopper) between pulses

- suited for liquid surfaces
operation modes:

small spot size

- uses focusing due to coma aberration
- scanning mode possible

$I(y,z)$ and $I(z,\theta_z)$ at the sample for a $1 \times 1 \text{mm}^2$ entrance slit

use coma aberration to reduce beam size
operation modes:

angle/energy encoding

- uses a ml-monochromator at the intermediate image
- spectral analysis of the beam: λ / θ encoding

- large λ on small θ
 \Rightarrow wide q_z-range
operation modes:

high-intensity specular reflectivity

- energy- and angle-dispersive ⇒ gain > 10
- for fast scanning (\(T, H, E \ldots \))
- or if off-specular scattering is no problem

\[
\log_{10}[R(q_z)]
\]
operation modes:

high-intensity specular reflectivity vs. almost conventional
operation modes:

high-intensity specular reflectivity vs. almost conventional

\([\text{La}_{2/3}\text{Sr}_{1/3}\text{MnO}_3/\text{SrTiO}_3]_4/\text{NGO}\) \(4 \times 5 \text{ mm}^2\)

- no focusing in sample plane
- TOF mode, \(\lambda \in [2 \ldots 18 \text{ Å}]\)
- measurement time:
 - conventional \(6.5 \text{ h}\)
 - Selene \(45 \text{ min}\)

$\log_{10}[R(q_z)]$

gain-factor 8.3

by courtesy of C. Aruta and F. Miletto
Boa is a test beam line at SINQ, PSI

- **guide-end** ($40 \times 150 \text{mm}^2$, $\Delta \theta_y = 1.4^\circ$, $\Delta \theta_z = 2.0^\circ$)
- **chopper** ($\varnothing = 150 \text{mm}$)
- **slit**
- **elliptic guides**
- **sample position**
- **area detector**

Diagram Details:
- **Total length** $\approx 8.6 \text{m}$
- **Wavelength** $\lambda \in [1.5, 12] \text{Å}$
- **Polarized beam**
- **Setup operational** 8. 2012

Textual Diagram:

- x/y translation, $2\theta/\omega$ rotation stages
concept for the ESS

schematic lay-out of the reflectometer for tiny samples
concept for the ESS

source
coarse slit
initial slit

intermediate image

detector
sample

$\Delta \lambda \Rightarrow \text{total length}$

repetition rate multiplication chopper $\Rightarrow \Delta \lambda / \lambda \approx 1\%$

ml-monochromator $\Rightarrow \Delta q_z / q_z \approx 5\% \ldots 20\%$
Schedule

January
February
March
April
May
June
July
August
September

Concept Studies

- **Generic Instrument** (T. Panzner)
- Adaption to BOA
 - incl. off-specular scattering (K. Lefmann)
 - incl. gravity (E. Rantsiou)
- ESS Instrument for small samples (N.N.)
- ESS Instrument for liquid surfaces (U. B. Hansen)

McStas Simulations

Construction (D. Graf, M. Schild)
- Offer for guides (SwissNeutronics)
- Set up on BOA
- Experiments

Manufacturing (PSI)
Selene is a guide concept

which . . .

• prevents direct line of sight
 • reduces radiation in the guide
 • allows for convenient beam manipulation
 • reduces illumination of the sample environment
 • allows for a convergent beam set-up
⇒ flux gain > 10