

Jochen Stahn, Uwe Filges, Tobias Panzner

concept for a reflectometer for the ESS with focusing in sample and scattering plane

Selene

Workshop on off-specular neutron scattering 09.–10. 01. 2012, Bruxelles, Belgium

outline

slit optics vs. focusing optics

small samples

focusing with elliptic guides • coma aberration

• operation modes

realisation \checkmark add-on for Amor \rightarrow experimental results \checkmark \land \land \checkmark \land \land \checkmark \land \land \land \checkmark \land \land <t

dimensions are freely scaleable

- \Rightarrow adjustable to $~\circ~$ TOF length
 - sample environment
 - spin-echo spatial needs
 - available space

o ...

focusing for high-flux specular reflectometry

slit-defined beam:

- \circ $\theta\text{-dispersive},~\text{or}$
- \circ λ -dispersive,
- \circ resolution given by $\Delta\lambda$ and $\Delta\theta$

convergent beam:

- \circ $\theta\text{-dispersive}$ and
- \circ λ -dispersive,
- \circ resolution given by $\Delta\lambda$ and detector

focusing for high-flux specular reflectometry

small samples

small samples

i.e. samples smaller than the beam

- e.g. PLD-grown samples
 - latterally structured films
 - functional devices
 - samples compatible with x-ray or magnetometry environments

projected height < 1 mm!

Ni/Ti multilayer on Si, $4 \times 3 \text{ mm}^2$

perovskite multilayer on STO, $5 \times 5 \text{ mm}^2$

small samples

i.e. illumination of a defined area, only

- e.g. \circ inner region within a trough
 - inner region of a solid-liquid cell:
 - samples with electrical contacts
 - partially coated substrates
 - bent substrates

footprint < substrate typical dimensions: $10 \times 10 \text{ mm}^2$ to $20 \times 40 \text{ mm}^2$

i.e. latteraly inhomogeneous samples

- e.g. o structured materials
 - samples with (large) domains

footprint \ll substrate

typical dimensions: $0.1 \times 10 \text{ mm}^2$

 \Rightarrow scanning of sample area

real focusing!

 \Rightarrow pre-image \longrightarrow image

no fancy version of a ballistic guide!

cut in the scattering plane

stretched by 10 normal to incident beam

```
initial slit \hat{=} projected sample size (e.g. 5 × 1 mm<sup>2</sup>)
```


corrects for coma aberration

why only one branch of an ellipse?

- no structured $I(\theta, z)$

 $I(\theta, z)$ map

– one branch can cover $\Delta \theta$

why two subsequent elliptic guides?

- convenent beam manipulation
- guide dimensions not too large
- \rightarrow correction for coma aberration!

coma aberration — and its correction

width / mm

-4

coma aberration — and its correction

limitations:

- finite length of the guides
- non-perfect coating

oportunities:

- use aberration to reduce beam spot or divergence at the sample

operation modes for TOF:

(non-TOF operation is also possible!)

mode: almost conventional

- beam is still convergent
- off-specular measurements are feasible

mode: wide *q*-range

- vary $\boldsymbol{\theta}$ with fixed sample position
- shift diaphragm (chopper) between pulses

- suited for liquid surfaces

mode: small spot size

- uses focusing due to coma aberration
- scanning mode possible

mode: small spot size

mode: low-divergent beam

- uses defocusing due to coma aberration
- corresponds to the use of Montel optics used at synchrotrons
- for high q_z resolution

- parallel beam e.g. for GISANS

use coma aberration to reduce divergence

mode: angle/energy encoding

- use a ml-monochromator at the intermediate image
- spectral analysis of the beam: λ / θ encoding

mode: high-intensity specular reflectivity

- energy- and angle-dispersive \Rightarrow gain >10
- for fast scanning (T, H, E...)
- or if off-specular scattering is no problem

realisation

add-on for Amor

prototype on BOA

concept for the ESS

Amor, conventional TOF set-up

8 m granite block

maximum length chopper to detector $= 10 \,\mathrm{m}$

 $2 heta\in [-3^\circ,12^\circ]$

 $\lambda \in [2\,\text{\AA}, 18\,\text{\AA}]$

vertical scattering plane

detectors: ^{3}He single and area (180 \times 180 $\text{mm}^{2}\text{)}$

measurements: 1000 Å Ni film on glass, $9 \times 9 \text{ mm}^2$

measurements: 1000 Å Ni film on glass, $9 \times 9 \text{ mm}^2$

4 guide elements à 500 mm

measurements: 1000 Å Ni film on glass, $9 \times 9 \text{ mm}^2$

measurement time: conventional 5 h Selene 45 min gain-factor 6.7

 $[\,La_{2/3}Sr_{1/3}MnO_3\,/\,SrTiO_3\,]_4\,/\,NGO$

- no focusing in sample plane
- TOF mode, $\lambda \in [2 \dots 18 \text{ Å}]$
- measurement time:

 $4 \times 5 \, mm^2$

 $\log_{10}[I(\lambda, \theta)]$ maps taken with the liquid/solid interface cell with Si vs. D₂O.

realisation: prototype on BOA

realisation: concept for the ESS

schematic lay-out of the reflectometer for tiny samples

realisation: concept for the ESS

 $\Delta \theta$, λ – range \Rightarrow q_Z – range

critical points

thanks

Selene

critical points

- \circ accuracy of guides
 - how to assemble the 0.5 m units without errors
- \circ alignment of guides
- \circ scattering at focal points
 - from diaphragms / choppers
 - off-specular form mirrors

first simulation with off-specular scattering with McStas (K. Leffman, 12.2011)

◦ influence of gravity

- will be simulated within the next months

thanks to

Tobias Panzner McStas simulations, experiments, BOA Uwe Filges

Dieter Graf conctruction

Marcel Schild electronics

SwissNeutronics elliptic guide development

Marité Cardenas experiments Anette Vickery

Hanna Wacklin discussions Bob Cubitt Peter Böni Uwe Stuhr Frederic Ott Thomas Krist

Selene is a guide concept

which ...

- prevents direct line of sight
 - reduces radiation in the guide
 - allows for convenient beam manipulation

- reduces illumination of the sample environment
 - allows for a convergent beam set-up
 - \Rightarrow flux gain > 10