

_ Jochen Stahn Uwe Filges Tobias Panzner Martié Cardenas Beate Klösgen

concept, design and first results:

convergent-beam reflectometry using a focusing elliptic guide

IKON-1

First In-Kind Contributions Meeting for Neutron Science for the ESS 8.9.2011, Lund, Sweden

outline

J. Stahn: Selene

 \mathbf{O}

principle:

- focusing in the scattering plane
- aberration
- instrument lay-out

operation modes:

 $\circ \lambda - \theta$ encoding

• TOF

o conventional

experience so far:

• TOF

- guide quality
- $\circ \lambda \theta$ encoding

slit-defined beam:

- \circ $\omega\text{-dispersive},$ or
- \circ $\lambda\text{-dispersive}\text{,}$

 \circ resolution given by $\Delta\lambda$ and $\Delta\omega$

convergent beam:

- $\circ \ \omega\text{-dispersive}$ and
- \circ λ -dispersive,
- \circ resolution given by $\Delta\lambda$ and detector

focusing in the scattering plane

focusing in the scattering plane

discussion:

- $-\Delta q_z$ varies with θ (finite detector resolution)
- off-specular and incoherent scattering cause background

+ flux gain > 10

+ fast screening of parameter space (T, H, E, ...)

still possible for high background (finger print)

aberration of elliptic guides

point source at focal point:

 \circ intensity is a function of θ

point source off focal point:

- coma effect: image is blurred
- defocusing / focusing in the early / late part of the ellipse

sample position

corrects for coma aberration

operation modes

• λ - θ encryprion

for each 2θ one q_Z is probed

operation modes

operation modes

 \circ compatibel with all beam manipulations

- \circ vertical reflectometer on an optical bench
- \circ set-up with *Selene* reflector:

choper housing 1st slit elliptic reflector (SwissNeutronics)

sample (hidden by diaphragm)

<u>detect</u>or

TOF mode:

conventional set-up

Selne set-up

TOF mode sample: 1000 Å Ni on glass

TOF mode sample: 1000 Å Ni on glass

4 guide elements à 500 mm

 D_2O / Si

• measurements with solid/liquid cells have not been successfull: background was too high ($\approx 10^{-4}$) for unclear reasons

TOF mode

sample: $[La_{2/3}Sr_{1/3}MnO_3/SrTiO_3]_4/NGO$ sample-size: $4 \times 5 \text{ mm}^2$

Selene is a guide concept which

- prevents direct line of sight
 - reduces radiation in the guide
 - allows for convenient beam manipulation

- reduces illumination of the sample environment
 - allows for a convergent beam set-up
 - $\Rightarrow flux \ gain > 10$

combination with focusing in the sample plane

- \bullet beam spot of the order of $2\times0.5\ mm^2$ within reach
- flux gain > 100 for high-intensity specular reflectometry

Jochen Stahn

Reflectometer(s) with

sample plane	horizontal	vertical
s resolution	$\Delta q_Z/q_Z \in$ [1%, 10%]	
□ <i>q_z</i> -range	[-0.5 Å ⁻¹ , 0.5 Å ⁻¹] (2 to 3 settings)	[0 Å ⁻¹ , 0.5 Å ⁻¹]
sample size	$10 imes 10 \text{mm}^2$	$< 5 \times 5 \mathrm{mm^2}$
options	full polarisation, GISANS	
σ	troughs	cryomagnets

- focusing in the sample plane, and
- a convergent beam in the scattering plane
 - pro: allows for high-intensity specular reflectometry (gain-factor > 10) can be operated as a conventional reflectometer convenient beam manipulation low background along the guide and at the sample
 - con: low flexibility