

Jochen Stahn Laboratory for Neutron Scattering *Uwe Filges, Tobias Panzner* Laboratory for Development and Methods

5th European Conference on Neutron Scattering 17.–22.07.2011, Prague, Czech Republic

ECNS 2011

outline

principle:

- focusing in the scattering plane
- aberration
- instrument lay-out

operation modes:

Selene

• monochromatic

- $\circ \lambda \theta$ encoding
- TOF

o conventional

experience so far:

- TOF
- guide quality
- $\circ \lambda \theta$ encoding

slit-defined beam:

- \circ $\omega\text{-dispersive},~\text{or}$
- \circ $\lambda\text{-dispersive}\text{,}$

 \circ resolution given by $\Delta\lambda$ and $\Delta\omega$

convergent beam:

- $\circ \ \omega\text{-dispersive}$ and
- \circ $\lambda\text{-dispersive},$
- \circ resolution given by $\Delta\lambda$ and detector

focusing in the scattering plane

focusing in the scattering plane

discussion:

- $-\Delta q_z$ varies with θ (finite detector resolution)
- off-specular and incoherent scattering cause background

+ flux gain > 10

+ fast screening of parameter space (T, H, E, ...)still possible for high background (*finger print*) point source at focal point:

 \circ intensity is a function of θ

point source off focal point:

- \circ coma effect: image is blurred
- defocusing / focusing in the early / late part of the ellipse

sample position

corrects for coma aberration

• monochromatic

for each 2θ one q_Z is probed

operation modes

• λ - θ encryprion for each 2 θ one q_z is probed

continous, white incident beam reflected beam: $\lambda = 4\pi \frac{\sin \theta^{ml}}{q^{ml}}$ multilayer monochromator q^{ml} $\lambda = \lambda(\theta)$

see also:

F. Ott, A. Menelle, *N.I.M. A* 586, 23 (2008)
F. Ott, A. Menelle, *Euro. Phys. J.* 167, 93 (2009)

 $q_Z = q_Z(\theta)$

operation modes

• TOF mode

for each 2θ a $R(q_z)$ curve is measured

operation modes

• conventional (*allmost* slit-defined)

reduction of divergence with a slit

- enables off-specular measurements
- \circ low background radiation
- \circ compatibel with all beam manipulations

- vertical reflectometer on an optical bench
- \circ set-up with Selene reflector:

<u>choper</u> housing 1st slit elliptic reflector (

elliptic reflector (SwissNeutronics)

sample (hidden by diaphragm)

detector

TOF mode:

conventional set-up

Selne set-up

TOF mode sample: 1000 Å Ni on glass

TOF mode sample: 1000 Å Ni on glass

4 guide elements à 500 mm

TOF mode

sample: $[La_{2/3}Sr_{1/3}MnO_3/SrTiO_3]_4/NGO$ sample-size: $4 \times 5 \text{ mm}^2$

Selene 3.7

- λ θ encoding:
 - $\theta(\lambda)$ after the double-bounce ml monochromator

 $\lambda/\text{\AA}$

after reflection off a 1000 Å Ni film on glass

geometrical errors of the guide spoil the measurement

a better guide is under development

Selene is a guide concept which

- prevents direct line of sight
 - reduces radiation in the guide
 - allows for convenient beam manipulation

- reduces illumination of the sample environment
 - allows for a convergent beam set-up
 - $\Rightarrow flux \ gain > 10$

combination with focusing in the sample plane

- \bullet beam spot of the order of $2\times0.5\,mm^2$ within reach
- flux gain > 100 for high-intensity specular reflectometry