Reflectometer(s) for the ESS
suggestions by the Danish-Swiss working group

workshop on WP 2
Lund, 29.04.2011
selene approach: focusing in the scattering plane
– concept
– principle lay-out of a full instrument
– tests on Amor
– to be done for ESS

soft matter
medium resolution, horizontal sample plane
⇒ short instrument, moderate focusing in the sample plane
(GISANS: strong focusing to the detector)

small samples
magnetic layers, variable resolution, vertical sample plane
⇒ moderate length, strong focusing in the sample plane
selene — aberration

PNR-3
geometry in the scattering plane
sample: 1000 Å Ni on glass

conventional set-up horizontal focusing 1500 rpm

selene set-up no horizontal focusing 750 rpm
sample: La$_{2/3}$Sr$_{1/3}$MnO$_3$/SrTiO$_3$ - multilayer on NGO
sample-size: 4 \times 4 mm2
no focusing in sample plane
measurement time: 1 h
chopper frequency: 750 rpm / 1500 rpm
1. simulation of an instrument with 2 guide elements
 + check of options like polarisation, band-width filter, chopper

2. construction of the prototype instrument and tests on BOA
 + experiments with real samples
 + horizontal and vertical geometry

3. adaption of the design to the needs of the ESS
 splitting into
 - a horizontal soft matter instrument, and
 - a vertical hard condensed matter instrument for small samples

⇒ deliverables:
 - report on tests on BOA
 - complete simulation of the instruments for the ESS
optimised for liquid/air interface
⇒ horizontal sample plane, large q_z-range with one setting

optimised for short counting times
⇒ no use of long wavelengths
⇒ conflict short vs. long instrument!

GISANS focusing to the detector in the sample plane
compatibility with selene-concept has to be checked!
(astigmatic focusing might spoil the correction for coma aberration)
aim for small samples ($< 10 \times 10 \text{mm}^2$)

⇒ strong focusing to the sample in the sample plane

⇒ initial aperture of $1 \times 10 \text{mm}^2$ ideally!

variable resolution (1 to 20% required):

⇒ variable sample-detector distance (to tune $\Delta \alpha$)
 moderate source/detector distance (30 to 50 m)

or use a multilayer monochromator to get an angle/wavelength encoding for high resolution

 (no chopper, Frédéric’s REFocus approach)
 – TOF gives off-specular resolution
 – ML gives specular resolution

(to be evaluated)
<table>
<thead>
<tr>
<th>manpower and costs</th>
<th>PNR-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>task</td>
<td>pm</td>
</tr>
<tr>
<td>programming</td>
<td>2.1, 2.2</td>
</tr>
<tr>
<td>– off-specular scattering (from guide/sample)</td>
<td>3</td>
</tr>
<tr>
<td>– gravity in elliptic guides</td>
<td>6</td>
</tr>
<tr>
<td>simulations</td>
<td></td>
</tr>
<tr>
<td>– full set-up on BOA (several options)</td>
<td>2.3, 2.4</td>
</tr>
<tr>
<td>– analysis of experiments (real effects)</td>
<td>2.3, 2.4</td>
</tr>
<tr>
<td>– adaption for ESS, soft matter</td>
<td>2.1</td>
</tr>
<tr>
<td>– adaption for ESS, hard matter</td>
<td>2.2</td>
</tr>
<tr>
<td>hard-ware, investment</td>
<td>2.4</td>
</tr>
<tr>
<td>– second guide element</td>
<td></td>
</tr>
<tr>
<td>– diaphragms, rotation and translation stages</td>
<td></td>
</tr>
<tr>
<td>consumables</td>
<td></td>
</tr>
<tr>
<td>– computation time</td>
<td></td>
</tr>
<tr>
<td>– misc. for BOA experiment</td>
<td></td>
</tr>
<tr>
<td>conception / experiments</td>
<td>2.3, 2.4</td>
</tr>
<tr>
<td>– full set-up on BOA</td>
<td>6+9</td>
</tr>
</tbody>
</table>