Jochen Stahn
Laboratory for Neutron Scattering
ETH Zurich & Paul Scherrer Institut

Tobias Panzner
Uwe Filges
Laboratory for Development and Methods
Paul Scherrer Institut

study on a
focusing, low-background neutron delivery system
approach:

define the beam, starting at the sample, by:
– size at the sample position
– divergence
– wavelength, \(\Delta \lambda / \lambda \)

and avoid everything else!

small samples (i.e. in the mm\(^2\), mm\(^3\) range)

focusing

low-background

filtering / beam-profiling far from the sample
define the beam, starting at the sample

⇒ beam line lay-out
 − shading optics
 − focusing optics

→ aberration

application to a specular reflectometer

McStas simulations on the performance

extention to diffraction / spectroscopy

next steps

prototype for amor
Amor – polarised reflectometer in TOF mode

losses between guide (50 \times 50 \text{mm}^2) and sample:

- chopper: 96%
- first diaphragm: > 80%
- frame overlap filter: \approx 5%
- polariser: > 60%
- sample (10 \times 10 \text{mm}^2): 20%
- \Pi: > 99.75%
beam defined by • required beam divergence

shading / guide

source

aperture sample

focusing
beam defined by • finite source size

guide

source

aperture

lense

sample

shading / guide

focusing
beam defined by • filtering (polarisation / monochromatisation)
beam defined by • background / radiation issues
background / radiation issues

shading vs. focusing

shading / guide

source aperture guide filter

focusing

input aperture lense sample
effect of optical elements on the phase space

non-focusing elements: (shading optics)
- diaphragm cuts phase space
- plain mirror alters direction, λ filter
- (long) guide, can be seen as diaphragm + translation

... limit and dilute phase space

focusing elements:
- lense distorts phase space, aberration
- bent mirror, λ filter
- focusing guide, open end \Rightarrow shading + focusing effects

... alter and dilute phase space
realisation

shading / guide

(source) (curved) straight guide monochromator aperture sample

double monochromator aperture half elliptic guide

focusing
selene
titan goddess of the moon
coma aberration (distortion of the image of an off-axis point source)

inhomogeneous illumination

<table>
<thead>
<tr>
<th></th>
<th>large α</th>
<th>small α</th>
</tr>
</thead>
<tbody>
<tr>
<td>coma effect</td>
<td>de-focusing</td>
<td>focusing</td>
</tr>
<tr>
<td>divergence</td>
<td>low</td>
<td>high</td>
</tr>
<tr>
<td>intensity</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>of a finite source</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at the sample position</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"
coma aberration

analytic calculations for selene

slit: high emittance
aperture = 0.2 mm
coma aberration

analytic calculations for selene

slit: high emittance
aperture = 0.6 mm

\[\alpha / \text{deg} \]

\[y / \text{mm} \]

\[\alpha / \text{deg} \]

\[y / \text{mm} \]

J. Stahn, Garching, 04.05.2010
coma aberration

analytic calculations for selene

slit: high emittance
aperture = 2.0 mm

⇒ a *nice* phase space element requires a sample aperture
coma aberration

comparison to a straight guide / diaphragm set-up

guide: emittance = ±0.5°
slit: aperture = 2.0 mm
McStas simulations for selene — reflectometer

- monochromator
 - aperture = 1st focal point
- half elliptic guide
- sample & knife aperture = 2nd focal point
McStas simulations for selene — reflectometer

the model device:

- guide: 80 × 50 mm²
- coating $m = 5$

monochromator:
- PG
- ml

sample: $[\text{Ni}(160 \text{ Å})/\text{Ti}(240 \text{ Å})]_{20}/\text{Si}$
new McStas component
- true curvature
- all surfaces with individual properties
- individual shapes
- neutrons can pass by
- nesting of devices

to come:
- off-specular reflectivity
high-intensity specular reflectometer – principle

incoming beam with known λ/α_i relation
detection of I vs. α_f
conversion to
$q_z = 4\pi \frac{\sin \alpha_f}{\lambda}$

gain:
$\Delta \alpha_i = 1.4^\circ$ compared to $\Delta \alpha/\alpha = 7\%$ gives a gain factor 20

but:
off-specular scattering leads to background
\Rightarrow method is limited to 5 orders of magnitude
high-intensity specular reflectometer – implementation

ReFOCUS concept by F. Ott

the elliptic guide
has a (graded)
monochromating coating

encode λ in α_i
resolve $q_z(\lambda, \alpha_i)$ with
an area detector
McStas simulations for **selene — reflectometer** using a double **ml monochromator** \((m = 3)\)

incident angle on the ml: \(0\ldots2^\circ\)

with \(\lambda \propto \sin \alpha_i\)

acceptance of the guide:
\(\Delta \alpha = 1.3^\circ\)

\[\Rightarrow \lambda \text{ vs. } \alpha_i \text{ at sample position:}\]
McStas simulations for **selene — reflectometer**

using a double ml monochromator \(m = 6, \Delta q_z/q_z \approx 1\% \)

\(R(q_z) \) of the sample

\(\omega = -0.5^\circ, 1.5^\circ \text{ and } 3.5^\circ \)

no off-specular scattering included, yet
McStas simulations for **selene — reflectometer**

using a double ml monochromator $m = 5$, $\Delta q_z/q_z = 7\%$

\[
\log_{10}[R(q_z)]
\]

$\omega = 0^\circ$

\[
q_z/\text{Å}^{-1}
\]

J. Stahn Garching, 04. 05. 2010
McStas simulations for **selene — reflectometer** using a double ml monochromator $m = 3$, $\Delta q_z/q_z \approx 4\%$

![Graphical representation of McStas simulations for selene — reflectometer using a double ml monochromator](image)
McStas simulations for **selene — reflectometer** using a double **PG monochromator** ($\Delta \alpha = 0.16^\circ$)

simulated data ($\omega = -1^\circ, 0^\circ, 1^\circ, \ldots, 7^\circ$)

no illumination correction applied yet
McStas simulations for **selene — reflectometer**

using a double **PG monochromator**

comparison: **mosaicity** of PG

- 1.40°
- 0.50°
- 0.16°

sample
McStas simulations for selene — reflectometer using a double PG monochromator ($\Delta \alpha = 0.16^\circ$)

comparison: sample sizes

- $10 \times 10 \text{ mm}^2$
- $8 \times 8 \text{ mm}^2$
- $6 \times 6 \text{ mm}^2$
- $4 \times 4 \text{ mm}^2$
- $2 \times 2 \text{ mm}^2$

\[\log_{10}[I(q_z)] \]

$q_z/\text{Å}^{-1}$
reflectometer – resume

maximum flux on the sample for a given $\Delta \alpha_i$

allows for high-intensity reflectometry:

– ml monochromator: q_z-range e.g. 0.01 to 0.1 Å$^{-1}$

– PG monochromator: q_z-range $\propto \Delta \alpha_i$

reduction of $\Delta \alpha_i$ leads to a *conventional* angle-dispersive reflectometer

\Rightarrow off-specular measurements are possible

\Rightarrow a diaphragm-scan results in a q_z-scan
some thoughts on focusing monochromators

typical set-up:
source – guide – monochromator – sample

monochromator: array of flat crystals (mirrors)
⇒ divergence is transported
some thoughts on focusing monochromators

modified set-up:
source – guide – monochromator + lense – sample

lense: mirror with continuous curvature
⇒ divergence is transformed to convergence
some thoughts on focusing monochromators

modified set-up:

aperture: reduces un-wanted flux
⇒ reduced background
some thoughts on focusing monochromators

modified set-up:

guide: reduced to the necessary length
⇒ selene-type set-up

- double monochromator needed
- same usable intensity on the sample
+ strongly reduced background
+ fix sample position
McStas simulations for **selene** — **diffractometer**

using a double **PG monochromator**

($\Delta \alpha = 0.5^\circ$)

![Graph showing spot size and wavelength resolution](image)

- **Spot**: $0.8 \times 8 \text{ mm}^2$
- **Wavelength Resolution**: $\Delta \lambda / \lambda < 4\%$
- **First Aperture**: 2 mm
next steps

a prototype of 4 m length (monochromator to sample) is under construction
to be tested on BOA
to be used on AMOR
Amor – polarised reflectometer in TOF mode
Amor with selene in TOF mode

horizontal focusing
gain factor ≈ 6

enables high-intensity specular reflectivity
gain factor ≈ 20
Amor with selene in monochromator mode

chopper stopped
double monochromator (ml or PG)
same flux, but different q_z-range
polarising ml possible
replacement of the guide of e.g. RITA II, SINQ
- old insert / first part of the straight guide can be reused
- monochromator in the 1st part of guide bunker
- guide ends within guide bunker

⇒ fixed sample position
⇒ large 2θ-range accessible
filter first:

+ reduction of radiation entering the guide to < 1%
+ reduced n-background: saves shielding material
+ reduced radiation level: saves life!
 o no gain in flux!
 - mechanical parts close to source

focusing guide:

+ reduces illumination of sample surroundings
+ no direct view to source
+ allows for small monochromators . . .
 o no gain in flux!
 + allows for q_Z/α_i encoding
 - (coma) aberration
 - does not work for large samples
thanks to

T. Panzner and U. Filges
for the McStas programming and simulation work

C. Marcelot and L. Holitzner
for support in the test and design process

F. Ott
for the ReFOCUS concept — which triggered this work

P. Böni, U. Stuhr and C. Niedermayer
for long discussions

nmi3, MaNEP, SNF and SwissNeutronics
for financial and technical support

YOU