

Jochen Stahn Laboratory for Neutron Scattering ETH Zurich & Paul Scherrer Institut

Tobias PanznerLaboratory for Development and MethodsUwe FilgesPaul Scherrer Institut

## study on a focusing, low-background neutron delivery system



approach:

PAUL SCHERRER INSTITUT

define the beam, starting at the sample, by:

- size at the sample position
- divergence
- wavelength,  $\Delta\lambda/\lambda$

& ETH Zurich

and avoid everything else!

small samples (i.e. in the mm<sup>2</sup>, mm<sup>3</sup> range) focusing low-background

filtering / beam-profiling far from the sample

## define the beam, starting at the sample

 $\Rightarrow$  beam line lay-out

& ETH Zurich

PAUL SCHERRER INSTITUT

- shading optics
- focusing optics
  - $\rightarrow$  aberration

application to a specular reflectometer McStas simulations on the performance

extention to diffraction / spectroscopy

next steps

prototype for amor



## Amor – polarised reflectometer in TOF mode



losses between guide ( $50 \times 50 \text{ mm}^2$ ) and sample:

- chopper: 96%
- first diaphragm: > 80%
- frame overlap filter:  $\approx 5\%$ 
  - polariser: > 60%
- sample  $(10 \times 10 \text{ mm}^2)$ : 20%
  - П: > 99.75%





beam defined by • required beam divergence



beam defined by • finite source size

& **ETH** Zurich



PAUL SCHERRER INSTITUT

\_

focusing



## beam defined by • filtering (polarisation / monochromatisation)





## beam defined by • background / radiation issues



focusing

# background / radiation issues



PAUL SCHERRER INSTITUT

\_

& ETH Zurich

effect of optical elements on the phase space

non-focusing elements: (*shading optics*)

- diaphragm cuts phase space
- plain mirror alters direction,  $\lambda$  filter
- (long) guide ", can be seen as diaphragm + translation

... limit and dilute phase space



PALL SCHERRER INSTITUT

& **ETH** Zurich



... alter and dilute phase space



monochromator

aperture

sample

realisation

& **ETH** Zurich





PAUL SCHERRER INSTITUT

=

 & ETH Zurich







## **coma aberration** (distortion of the image of an off-axis point source)



### inhomogeneous ilumination



|                         | large $\alpha$ | small $\alpha$ |                        |
|-------------------------|----------------|----------------|------------------------|
| coma effect             | de-focusing    | focusing       | of a finite source     |
| divergence<br>intensity | low<br>high    | high<br>Iow    | at the sample position |





0.2

0

2.5

-2

-3

-4

-2.5

-2

-1.5

-1

 $\alpha/deg$ 

-0.5

0

-2

-3

-4

0

0.5

1

 $\alpha / deg$ 

1.5

2



 $\Rightarrow$  a *nice* phase space element requires a sample aperture



### coma aberration

comparison to a straight guide / diaphragm set-up

guide: emmittance =  $\pm 0.5^{\circ}$ slit: aperture = 2.0 mm













### new McStas component

- true curvature
- all surfaces with individual properties
- individual shapes
- neutrons can pass by
- nesting of devices



to come:

- off-specular reflectivity



## position monitor



## divergence monitor



### high-intensity specular relectomter - principle

incoming beam with known  $\lambda/\alpha_i$  relation

& **ETH** Zurich

PALL SCHERRER INSTITUT



detection of *I* vs.  $\alpha_f$ 

conversion to  $q_Z = 4\pi \frac{\sin \alpha_f}{\lambda}$ 

#### gain:

 $\Delta \alpha_i = 1.4^{\circ}$  compared to  $\Delta \alpha / \alpha = 7\%$  gives a gain factor 20

but:

off-specular scattering leads to background

 $\Rightarrow$  method is limited to 5 orders of magnitude



high-intensity specular relectomter – implementation

# ReFOCUS concept by F. Ott





McStas simulations for selene — reflectometer using a double **ml monochromator** (m = 3)

incident angle on the ml:  $0 \dots 2^{\circ}$ with  $\lambda \propto \sin \alpha_i$ 

acceptance of the guide:  $\Delta \alpha = 1.3^{\circ}$ 

 $\Rightarrow \lambda$  vs.  $\alpha_i$  at sample position:



McStas simulations for selene — reflectometer using a double ml monochromator m = 6,  $\Delta q_Z/q_Z \approx 1\%$ 

& **ETH** Zurich



no off-specular scattering included, yet



McStas simulations for selene — reflectometer using a double ml monochromator m = 5,  $\Delta q_Z/q_Z = 7\%$ 





McStas simulations for selene — reflectometer using a double ml monochromator m = 3,  $\Delta q_Z/q_Z \approx 4\%$ 





McStas simulations for selene — reflectometer using a double PG monochromator ( $\Delta \alpha = 0.16^{\circ}$ )



no illumination correction applied yet



McStas simulations for selene — reflectometer using a double PG monochromator

comparison: mosaicity of PG



McStas simulations for selene — reflectometer using a double PG monochromator ( $\Delta \alpha = 0.16^{\circ}$ )

#### comparison: sample sizes $10 \times 10 \,\text{mm}^2$ $8 \times 8 \,\text{mm}^2$ 2 $6 \times 6 \,\text{mm}^2$ $4 \times 4 \text{ mm}^2$ $2 \times 2 \, mm^2$ $\log_{10}[I(q_Z)]$ 0 -2 -3 -4 0.04 0.05 0.06 0.07 0.08 0.03 $q_Z/\text{\AA}^{-1}$

PAUL SCHERRER INSTITUT

& **ETH** Zurich



#### reflectometer – resumee

maximum flux on the sample fo a given  $\Delta \alpha_i$ 

allows for high-intensity reflectometry:

- ml monochromator:  $q_z$ -range e.g. 0.01 to 0.1 Å<sup>-1</sup>
- PG monochromator:  $q_z$ -range  $\propto \Delta \alpha_i$

reduction of  $\Delta \alpha_i$  leads to a *conventional* angle-dispersive reflectometer

- $\Rightarrow$  off-specular measurements are possible
- $\Rightarrow$  a diaphragm-scan results in a  $q_z$ -scan







typical set-up:

source – guide – monochromator – sample



monochromator: array of flat crystals (mirrors)

 $\Rightarrow$  divergence is transported



modified set-up:

source – guide – monochromator + lense – sample



lense: mirror with continuous curvature

 $\Rightarrow$  divergence is transformed to convergence



modified set-up:

source - short guide - monochromator - aperture - lense - sample



aperture: reduces un-wanted flux

 $\Rightarrow$  reduced background



modified set-up:

source – short guide – monochromator – aperture – lense – sample



guide: reduced to the necessary length

- $\Rightarrow$  **selene**-type set-up
- double monochromator needed
- same usable intensity on the sample
- + strongly reduced background
- + fix sample position

McStas simulations for selene

## — diffractometer

& **ETH** Zurich

PAUL SCHERRER INSTITUT

using a double **PG monochromator** 







### next steps

PAUL SCHERRER INSTITUT

a prototype of 4 m length (monochromator to sample) is under construction

& **ETH** Zurich

## to be tested on **BOA**



to be used on AMOR

selene



Amor – polarised reflectometer in TOF mode





Amor with selene in TOF mode



horizontal focusing  $a_{2}$  in factor  $\sim 6$ 

gain factor  $\approx 6$ 

enables high-intensity specular reflectivity gain factor  $\approx 20$ 



Amor with selene in monochromator mode



chopper stopped double monochromator (ml or PG)

same flux, but different  $q_z$ -range

polarising ml possible

PAUL SCHERRER INSTITUT

replacement of the guide of e.g. RITAII, SINQ

- old insert / first part of the straight guide can be reused

monochromator in the 1<sup>st</sup> part of guide bunker

- guide ends within guide bunker



- $\Rightarrow$  fixed sample position
- $\Rightarrow$  large 2 $\theta$ -range accessible



## filter first:

& **ETH** Zurich

PAUL SCHERRER INSTITUT

- + reduction of radiation entering the guide to <1%
- + reduced n-background: saves shielding material
- + reduced radiation level: saves life!
- no gain in flux!
- mechanical parts close to source

## focusing guide:

- + reduces illumination of sample sourroundings
- + no direct view to source
- + allows for small monochromators . . .
- $\circ\,$  no gain in flux!
- + allows for  $q_z/\alpha_i$  encoding
- (coma) aberration
- does not work for *large* samples



## thanks to

- T. Panzner and U. Filges
  - for the McStas programmig and simulation work
- C. Marcelot and L. Holitzner
  - for support in the test and design process

- F. Ott
  - for the ReFOCUS concept which triggered this work
- P. Böni, U. Stuhr and C. Niedermayer
- for long discussions
- nmi3, MaNEP, SNF and SwissNeutronics for financial and technical support

## YOU