Invitation

LMU-Seminar

Title: Unconventional Superconductivity in Noncentrosymmetric Compounds
\title{ Speaker: Mr Daniel Mayoh, Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL }
Time: Wednesday, March 20 $^{\text {th }}$ 2019, 13:30
Place: WHGA/121

Abstract

: For all superconductors, the topology of the electronic band structure, along with the underlying crystal structure, play vital roles in determining the superconducting properties of the material. Systems lacking a centre of inversion exhibit a nonuniform lattice potential, giving rise to a Rashba-type antisymmetric spin-orbit coupling which allows for an admixture of singlet and triplet pairs. This gives rise to exotic superconducting band structures, timereversal symmetry (TRS) breaking and magnetoelectric effects such upper critical fields that exceed the Pauli limit. Broken TRS is still a relatively rare phenomena in noncentrosymmetric superconductors; it been detected in some of the Re-based $\alpha-\mathrm{Mn}$ superconductors, LaNiC_{2}, members of the $\mathrm{La}_{7} \mathrm{~T}_{3}$ ($\mathrm{T}=$ transition metal) family and $\mathrm{Zr}_{3} \mathrm{Ir}$. The nature of the pairing states in these superconductors continues to be a puzzling and challenging question.

Firstly, we will discuss our recent measurements of the superconducting state in $\mathrm{Re}_{6} \mathrm{Zr}$ [1]. We will then discuss our discovery of broken TRS in the superconducting state of polycrystalline $\mathrm{La}_{7} \mathrm{Pd}_{3}$ [2] along with the results obtained for other members of the $\mathrm{La}_{7} \mathrm{~T}_{3}$ (T $=$ transition metal) family of superconductors. Finally, the discovery of two noncentrosymmetric superconductors with chiral structures, $\operatorname{TaRh}_{2} \mathrm{~B}_{2}$ and $\mathrm{NbRh}_{2} \mathrm{~B}_{2}$, has added a new twist to an already exciting area of superconductivity. Here we present our recent observation of multigap superconductivity and Pauli limit violation in $\mathrm{TaRh}_{2} \mathrm{~B}_{2}$ and $\mathrm{NbRh}_{2} \mathrm{~B}_{2}$ [3, 4].

[1] D. A. Mayoh et al., Phys. Rev. B. 96, 064521 (2017)
[2] D. A. Mayoh, A. D. Hillier, G. Balakrishnan and M. R. Lees, In preparation (2019)
[3] D. A. Mayoh et al., Phys. Rev. B 98, 014502 (2018)
[4] D. A. Mayoh et al., In preparation (2019)

