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1. Introduction

The muon is an elementary particle and one of the fundamental fermions of the standard

model.

Leptons and Quarks

Leptons (Spin "2

Quarks (Spin %)

Flavor Mass Electric Flavor Approx Mass Electric
[MeV/c?] charge [e] [GeV/c?] charge [e]
ve electron |5 6 0 u up 0.0023 2/3
neutrino
e electron 0.511 -1 d down 0.0048 -1/3
Y muon <02 0 ¢ charm 1.275 2/3
neutrino
L muon 106 -1 s strange 0.095 -1/3
Ve fau <182 0 t top 173 2/3
neutrino
T tauon 1776.82 -1 b bottom 4.7 -1/3

Fundamental fermions (including antiparticles) of the standard model.




1.1 Muon properties

Rest mass, m,

Charge, ¢

Spin, I

Magnetic Moment, p,

Gyromagnetic ratio, v,

Lifetime, t

Decay,

105.658 MeV/c*
206.768 m,
0.1124 m,

+1, -1 elementary charges

V2

4.836 10° up, g =—— =0.927 - 103 Am’
2m,

2m - 135.538817 MHz/T

eh
Hy =8y KI = y“hl (gu=2.002 331 8414)

i

2.197 ps

et v+, ~100%

ut et v+, +y 1.4+0.4 107
ut et +ve+v, +ette  34£04107

e +Vgtv,

Properties of the positive muon and muonium compared with those of proton and hydrogen

Mass (m,)
Spin

Gyromagnetic ratio, y (T's™)

Lifetime (s)

Reduced electron mass (m,)
Radius ground state (nm)

Energy ground state (eV)

Hyperfine frequency (GHz)

Muon Proton
206.768 1836.15
Y Y

8.516155 108 2.675221 108
2.19709 10°  stable

Muonium Hydrogen
0.995187 0.999456
0.0531736 0.0529465
-13.5403 -13.5984
4.46330 1.42041



1.2 Discovery of the muon

1910

1911-1912

1933

Theodor Wulf performs experiments with electrometers. He detects more
radiation at the top of the Eiffel tower than on ground.

Viktor Hess makes measurements from balloons. He measures increasing
charge with increasing altitude.

Millikan uses unmanned balloons to perform experiments at even higher
altitude. He creates the expression cosmic radiation.

First muon picture (but not correctly identified) in a Wilson cloud chamber by
Kunze (P. Kunze, Z. Phys. 83, 1 (1933)).

{figure 5) shows closely

together the thin trace of an electron of 37 MeV, and a much more strongly ionizing
positive particle whith a much larger bending radius. The nature of this particle is
unknown; for a proton it does not ionize enough and for a positive electron the ionization
is too strong. The present double trace is probably a segment from a "shower" of
particles as they have been observed by Blackett and Occhialini, i.e. the result of a
nuclear explosion”.

1936

Kunze, P., Z. Phys. 83, (1933) 1

V. Hess receives the Nobel Prize for the discovery of cosmic radiation.



Muons are the main component of cosmic radiation at sea level. Identified from Andersen and
Neddermayer (1936), however first misinterpreted as so-called Yukawa particles.

Altitude [km]
15 10 5 3 2 1 0

10000 <7 , —s
— 1000 = -
' — -
7)) — 7
- — v, vy, n
” N _
100 -
£ =
¥
X N
>
=210 bin =
S N
o 1 .
- erte
a1 | n++n—\
0.01 [ || ‘ [ [ ] ‘ L | | ‘ L1 | ‘ | [ | ‘

0 200 400 600 800 1000
Atmospheric depth [g cm?]

Fig. 1-1: Cosmic rays flux.

Muons are generated at about 15 km height. They reach earth level as a consequence of
relativistic time dilatation. They have a broad spectrum of energies.

Flux at sea level: ~ 1 Muon/Min/cm2

Etypical ~2GeV

Etypiczal ~20
m“c

Time dilatation: y = Flight path : L = vyt = cyt,



1945-47 Conversi et al. measure lifetime of positive and negative muons. Lifetime is too

long for strongly interacting particles. It turns out that the Yukawa particle is
actually the pion.

1957 Garwin et al. and Friedman et al. measure parity violation of p-decay.
Prototype of a muon spin rotation experiment.

1.3 Pion properties and decay

n T °
Lifetime (s) 26.04 107 26.04 10” 0.89 107"
Spin 0 0 0
Mass (MeV/c?) 139.5679 139.5679 134.97
Decay s+, T +V, > y+y
n - T + vy
26 ns
Mass 139.6 MeV/c®  105.66 MeV/c? <0.19 MeV/c?
Spin 0 ) vz
Charge 1 1
Lepton number 0 -1 1
Decay kinematics:
p, =29.79 MeV/c
T, = 412 MeV [1-1]

B, = 0.28



Parity violation in the pion decay

Mirror

a) b) c)

a) Original decay, b) Mirrored decay (corresponding to parity operation on a)), ¢) Charge
conjugated process b).

Process b) does not exist (only left handed v,, exist, i.e. direction of spin opposite to direction
of momentum, helicity = -1). The parity violation in n-decay allows the production of
polarized muons (with up to ~ 100% polarization).



1.4 Muon decay

+ + =
el vtV

= 9

2.2 us

Neutrinos have negative helicity. Antineutrinos positive. An ultra-relativistic positron behaves
like an antineutrino. Thus the positron tends to be emitted along the muon spin direction when
ve and v, go off together (highest positron energy).

e+ energy spectrum in u decay (Michel spectrum)

0.8

0.2

0 P e e g Ly

0 10 20 30 40 50
e+ Energy E (MeV)

Fig. 1-2: Muon decay and energy spectrum of the positron (Michel spectrum).

Differential positron emission probability:

W(x)dx = i2x2(3 —2x)dx [1-2]
T
2E . m“c2 —
0<x<l, X = 62 , =E i =52.83 MeV , Mean Energy: E_. =36 MeV
m,,c 2



Asymmetric decay

Fig. 1-3: Angular distribution of the ¢" from the muon decay: The asymmetry (anisotropy) of
the distribution is 100% for the highest e energy, Emax = 52.83 MeV and zero (i.e. an
isotropic distribution) for Ec+ = Epax /2; for smaller E¢( (not shown) the asymmetry is
negative. The red curve is the angular distribution averaged over the positron energy.

W(x,cose)dxd(cose):ix2(3—2x){1 ((X 1)) } E(zx)[1+a(x)cos9]dxd(cose)
T, -2x T,

[1-3]
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0.8 i

0.6 :

04 |

02 |

0 I e — — — —

-0.2

-0.4 —

0 0.2

Fig. 1-4: Solid lines: E(x)/2: energy spectrum (Michel spectrum). Positron/electron energy
from the normal p* decay: E. = 52.83:x MeV. a(x): ¢* energy dependence of the p* decay

asymmetry (degree of correlation between ¢ momentum and i spin direction). For the p°
decay a(x) has the opposite sign. Dashed line: weighted u" decay asymmetry spectrum, the

product of E(x)/2 and a(x).

Average asymmetry:

1
Ja(x)E(x)dx
A= -

1

1 3
j E(x)dx
0

Angular distribution:

dW(0)

d(c0s ) o (1+Acos0)=(1 +§cos 0)

[1-4]

[1-5]
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1.5 Pion production reactions

To produce pions, nucleons are bombarded with other nucleons of sufficient energy so that
the available energy in the center of mass system exceeds the pion mass of 140 MeV/c’.

Typical reactions:

p+p—op+n+n’ p+p—d+n’

—>p+p+n

p+n—op+n+n’

—>p+p+m

—Sn+n+m’
These reactions (,,single pion production®) have a threshold energy in the laboratory system
of ~280 MeV. The cross section increases rapidly with energy. Optimum energy for pion and

muon production is between 500 and 1000 MeV. This defines the energy of the accelerator
needed for the production of muon and pion beams.

Iﬂﬂ!— 2
J |
$--a

10 ®o. o -

codnng "9

~ S ) |

E 9

e | B
2

g 0.1 y

&l .

0.01 Qo(p+tp=>n+p+n’) —[

®opptp=prptn) |

0.001 — — |

0 1000 10,000

Proton Laboratory Energy (MeV)

Fig. 1-5: Cross sections for single pion production (From G. Eaton, S. Kilcoyne, in Muon
Science: Muons in Physics, Chemistry and Materials, S.L Lee, R Cywinski, S.H Kilcoyne eds.,
1999).
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Tﬂ'tr T 1 T T

s

=0 0 T25MeV Haddock ol

&0 }
- <-d-- 215 600MeV CERN
% so - —&— 08 600MeV CERN )
> . =@ 195 660MeV Meshkovskn
2w ]
E
g 30 - -
‘E 20 = -
=]
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10 -
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0 100 200 300 400 500 600

Energy of x* (MeV)

Fig. 1-6: Energy spectra of ©' produced at different angles in proton-carbon collisions.

The above mentioned reactions produce 3 particles. For incoming protons of 600 MeV, pions

have a broad spectrum of energies around a maximum of 200 MeV.

With more energetic accelerators one can make use of double pion reactions:

p+p—op+p+n +n

—>p+p+n’+n’

sn+n’+n" 0t

Sn+p+n +7°

Sd+nt+n°

p+n—>p+n+nt+n

—>p+n+n’+n

Sn+n+n+n°

—)p+p+7‘c_+n0

S>d+n+1

Sd+n’+n°

13
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Pion/Muon production target at PSI (target E)

Pion production:

I, =2200 pA =1.37 - 10"°p/sec

6, ~20 mbarn =2.10"*%cm?

Target E thickness : 4 cm Graphite =d :
N= p% =2.26g/cm’ *6.10% /12g =1.13-10% Atoms/cm®

Nod =0.91%1072
I,*Nod =1.22* 10" 7/ sec (on 47 solid angle)

15



1.6 Muon beams

e Decay muon beam (1 or n)

© decay section p,, analyzer
=y
p.. selector \A "Forward” p

I
(e.g., 150 MeV/c) £ ~160 MeV/c
"Backward” p

contam. with efand =

~70 MeV/c
clean, range ~4 glcm?

Decay length :
p.[MeV/c]

26-10s-¢=0.055p_[MeV /c]
mn[MeV/cz] i

}"n[m] =VYlg =

e Surface muon beam (u" only)
(from the pion decay at rest at the surface of the production target)

Proton beam with

production target p,=29.8 MeVlc
(B=0.27)

Q:—»

“DC Separator”
E x H velocity selector
also rotates the spin

e+

polarized 4.1 MeV

Range in matter:
~150 mg/cm?

PRODUCTION TARGET

Range of "surface muons" in matter :

R=Lp =150 m_g2 ~ only weakly depending on material
cm

L: Range in [cm]
p: Density

16



Pion decay in flight

A decay muon channel delivers muons with different spin direction (with respect to the
momentum). Two useful extreme cases:

1) The muon is emitted in the direction of pion propagation. The momenta p2 and p,; of both
particles are additive. The muon is emitted in the “forward” direction, i.e. the total momentum
py is greater that that of the pion from which it originated and has a spin antiparallel to p .

2) on the other hand, a muon emitted in the opposite direction of pion propagation will carry a
resultant momentum p,, smaller than p, . Such a “backward” muon will have its spin
pointing in the direction of propagation.

F

Mt rtt

Pi Pn

-

v

17



Decay kinematics of the pion decay in flight

/f
Pion 4
Mamantum 250r /
Py r y
[NEUJ’G] /
(’ MUONS
00F packward dacay muons S —— Forward
( B=1800,p =+1) / decay muons
cm 'u+ [ 9':['0}
/ em
P = -
Working curve for / wt
highest pE1 /
150Fintensity
/ PIONS
100
S0F
Muon momentun Py (MeVi/e)
] 1 - | |
30 100 150 200 250

Fig. 1-8: Decay kinematics of the pion decay, showing the kinematically allowed region.



Momentum dependence of beam intensities (tES beam line at PSI)

N Ima " s

!oﬂ' 1 1 1 1 1 1 1
10"+ . .
|
10+ . ¥ 2 ! !
) 4 o ‘ Py =
X 4 v
" & H o & v
10°+ s ’ i v
v
¢ |\ S o »
107+ L I ’ ] n .
- ! | | . .
b T ) Measured poinis
fos' . . .,U‘. E
v W
10° B y Measured poinls | F
fo‘fF'IY"‘l""‘I""‘I""‘l"'"‘l"' 1 T T T
0 20 40 60 80 100 120 140 160
P [Mev/c]
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1.7 The PSI HIPA accelerator

PST ACCELERATOR FACILITY

W‘\'E
5
72 MeV Injector 2
|
E 870 keV
Cockeroft-
AL Walton
~Q B preact.
72 MeV prn'tnn heam ° Variable energy
for isotope prod. j Injector 1
590 MeV Ringeyelotron o ?‘—:
=
_—— ﬂ

590 MeV beam to heams for low energy exp.

meson production targets
and 10 710

neutron spallation source

: meters
0 10

krataer 1995
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Fig. 1-9: The PSI 72 MeV injector.
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Fig. 1-10: The PSI Ring accelerator.
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Experimentierhalle

Medizinpavillon SINQ- Halle

Fig. 1.11: Experimental hall and neutron hall at PSI.

Neutronenleiter
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Transport of muons to the experiment (beam line)

A beam line is an arrangement of magnetic (and electric) fields that transport and focus
charged particles.
Deflection and transport in magnetic and electric fields:
In magnetic fields':
A B BLlp) pl[GeV /¢]=0.299793 e B[T]r[m] [1-6]
p

In electric fields:

E
A oc u oc i <« non relativistically [1-7]
PP Eyn

Background suppression (e.g. positrons) with E x B fields (mass filter or Wien filter).
Total deflection (e=1):

__ Lm] E[[MV/m]
_p[MeV/ c] B

—300B[T]) [1-8]

Kinematics of circular motion (relativistic):

~ o= d. d, .
=myv F=—p=m—(yv
p=my P~ mo ()
d d d d d
F=—p=m—(yv)~my—v (|—vy|v<y—vV
P g () ((dtyj V¥
(longitudinal acceleration much smaller than transverse acceleration)
- 2
F=my v myV—
Lorentz force :
F=cvxB
F=evB
gB =my v_»p
ror
p=¢eBr

24



Focusing with magnetic lenses: quadrupole lens

The pole shoes have the shape of hyperbolas, which define equipotential lines: ®(x,y) = —gxy.
The static magnetic field B(x,y) can be written as gradient of the scalar potential ®(x,y).
B(x,y) = - grad®(x,y)  (from rotB=0 in the region between the pole shoes)
OB
g is the field gradient g=—> = By
10)'¢ oy

divB=0 — AdD(x,y)=0 — Multipole solution

Multipole n-th order = 2(n+1)Pole:

B n+l
b, =- (Orj(sin(n +1)0) , By : Field at pole center, a: radial distance from pole center
n+l)a

Special case: Quadrupole n=1 ,x =rcos0 ,y=rsin0
By
D) =- e B, =gy, By,=gx (g=Bj/a)

25



A quadrupole creates a field, which is proportional to the lateral deviation of the trajectory
and acts as a spring, (for y=0, Lorentz force F, o By=gx):

It is focusing in one direction (e.g. x) and defocusing in the other (y). For a total focusing
effect one uses so called quadrupole doublets (or triplets).

B-Field:

+J

I LLL";’

A dipole corresponds to the n=0 term.
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Fig. 1-12: Muon beam pE4 for the Low Energy Muon setup at PSI consisting of a solenoid,
magnetic quadrupoles, dipoles, a E x B filter (separator) and various slits.
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2. Particle physics aspects

2.1 Theory of the muon decay

+ + =
po et vty
B —e +Ve+v,

The decay reflects the separate conservation of muon and electron lepton number (additive
rule).

L, L. L,
vt 0
ptv, -l 0 0
C_,Ve 0 +1 0
ey, O -1 0
v, O 0 +1
oy 0 0 -1

Evidence for separate conservation of lepton number:

n e +y Branching Ratio < 5.7 10™
last PSI result, Phys. Rev. Lett. 110, 201801 (2013)

(data set with 3.6 10" stopped muons)

W —e +e +e Branching Ratio < 1.0 10"

The additive conservation of lepton numbers forbids for instance the process

e o>p +e’

A multiplicative conservation rule would allow it.

Recent observations of neutrino oscillations (Super-Kamiokande, Japan: disappearance of
muon neutrino and Sudbury Neutrino Observatory, Canada: conversion of electron neutrino in

muon and tau neutrino, Nobel Prize 2015) indicate that lepton family conservation is only
approximate.
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Some useful relations of relativistic quantum mechanics

E/c
Four-momentum: p“=[#/ J n=0,1,2,3
p
1 0 O 0
0 -1 0 0
Metrics: HY = =
' & 78Tl 0 a1 o
0O 0 0 -1

Covariant vector p, =g u\,pV , (p¥ contravariant vector. Sum is over pair of upper and

lower indices).

2
E .
Four-vector product: pup“=—2 — p2 =m0202 (Energy-momentum relation)
c

ct ct
(in analogy with x" :(QJ and X, :( Qj n=0,123 x,x"= (c*t? —=x?)).
X -X

Often in particle physics one sets c=7% =1 (natural units).

The four-vector operator is given by:

. 0
p" —>iaxi: ot n=0,1,2,3 [2-1]
Y
. 0
. 0 1—
py >i——=| ot p=0,1,2,3
ot | .=
1Y%

The Dirac equation for a spin ' particle with mass m without external field corresponds
formally to the relativistic energy — momentum relation for the operators:

iy”a—\i—m‘l’ =0 (or iy“é’u‘P—m‘P =0) [2-2]
Ox
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Yo (X, 1)
~ lPl (is t) .
Y(X,t)= ~ 4 - component spinor,
\PZ (X, t)
3%, 0 [2-3]7
the corresponding conjugated spinor
PEO=P" &by, Y &ERH= (‘PO*,‘PI*,‘PZ*,‘P;)

fulfills equation
iyM o +m¥ =0
ox*

Yu - M= 0,1,2,3 are 4 x 4 y-Matrices

y—Matrices and their characteristics

The y-Matrices can be written in term of 2 x 2 Pauli matrices 6 =(c,0y,6,):

(01 (0 i (10 y
7l o 7o %270 -1 4]
(10 (0 & s
0=y =l s o [2-5]

. .. + . ..
Yo is hermitian (y,)" =7 and y, are anti-hermitian (y “)“L =Y0YuYo
Commutation relations:

’YH’YV +YVYM =2gHVI4X4 H=O>132’3

[2-6]
Yu¥s +vsY, =0

P(KY) = (Kji)*
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Following relations are valid for the traces of products of y-matrices :

Sp(y.yy) =43,

[2-7]
Sp(YvaYch) = 8pvspc + 8vpapc - 8”68\/(5
Solutions of Dirac equation
For a particle at rest (p=0)
uO
- u
y =By u=| ! [2-8]
us
uj

If we insert ¥ in the Dirac equation, we get four solutions:

2 with positive energies E=+m and 2 with negative energies E= -m.

Particles with negative energy and spin —s correspond to anti-particles with positive energies
and spin +s. The corresponding spinors are

gl _ oHiEt Tt T+ _ b _

o o o =
oS o = O

1 0
0 1
Usp = E+m _Pz U = E+m Px ~1Py Particle
P 2m | E+m P 2m | Eim
Py +ipy P,
E+m E+m [2-9]
P, Px _ipy
E+m E+m
+1 -
Vi = E+m) Px 1By Vo = Erm) -p, Antiparticle
p 2m E+m p 2m | E+m
1 0
0 1
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A fermion (e.g. e, 1) with momentum p, energy E = \/pz +m? and spin up (in particle rest
frame) is represented by a plane wave:

Y(X,t) = %uﬁeifﬁe_ip‘t [2-10]
u four-vector spinor from [2-9], fulfilling equation:

(p " —m)u=0

(foru u(p,y" —m)=0)

The wave function for a spin-up anti-fermion (e', pu*) is then

Y(X,t) = LvaTe_iﬁie“Et [2-11]

\/v p

Field operators for fermions and anti-fermions

To describe the decay we quantize the fields. Classical fields and particle wave functions =
field operators.

From [2-10] and [2-11] we build Dirac field operators (momentum basis)

(0 = %Z\/% b 9up.)e ™ +d (PP |
p,.s

b and d are annihiliation operators for fermions and antifermions [2-12]

b* and d* corresponding creation operators
u(p,s) and v(p,s) are spinors as given in Eq. [2-9].
p Momentum four-vector

s Spin

Y is expressed in a similar way.
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Lagrange density of the weak interaction

We need a Lagrange density, which describes the weak interaction.

In general, use principle of smallest action:
S= jd4x L (¢,0,0)

Lagrange density L:

-Polynomial in ¢ and 0,,¢(x)

-Lorentz invariance €= L is a scalar field

-Locality €-> L only function of x (fourfold time-space vector)

From S extremal, Euler equation follows:

ss=0L_5 L [2-13]

o0 "o 0
For instance in classical field theory the Lagrange density for electromagnetic fields and
currents is:

L(A“ ’ apA) = Lﬁelds + L

interaction
with

L = —j A"

interaction

(b (% |
=l 4-current A" =| /€ | 4-vector potential

] A

Field quantization leads to the Lagrange density of quantum electrodynamics:

Where here

Ju= e@y“w (electro-magnetic current density associated to field y ).

In analogy, apply Fermi ansatz to describe f—decay (n > p+¢ +V,) to p'-decay

(L —>e +Vet+vy):

G _ _
Ly :_TS (Furawy ) (Per®vy) [2-15]
Polar Vector V Polar Vector V

[2-15] is invariant under Lorentz transformation (and also parity transformation).
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The Fermi ansatz describes well the transition probability in the B-decay (to first order).
In principle L could contain other terms e.g.:

(\TJMVQYS\VVH ) (\?eYQYSWVC)
%/—J %/—J
Axial Vector A Axial Vector A

This term conserves also parity. We know that parity is not conserved by weak interaction.

Solution: L must contain not only products of the form V-V or A.A but also mixed terms V-A
- V-A interaction (Feynman, Gell-Mann)

Ly = %(jxj“ + j;fj}“) + other terms for t—decay

) ) [2-16]
p ut -decay

=P 0=y)w, +¥er 0=v5)v,,

i = A=rs)ve + 1 1 (-ys)v,

For the p —decay it is:

Gor— _
Lw = £ P (-vsw, P (=15, | [2-17]
Which can also be written as follow

G _ —_
LW = T;[Teyk (1 - YS)\VH\PV“’YK(I - YS )\V\/e :|

T T [2-18]

creation e annihilation p°

. . . —+ . =+
annihilation e creation p

Equation [2-16] describes the coupling of weak currents j, , ] ;f at a time-space point (contact
coupling) and can be represented by following graph:
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The contact interaction leads to singularities in the calculation of second order corrections.
More precisely the weak interaction can be described by the exchange of a heavy boson (W,

W™, Z). The corresponding graph is then:

Coupling
g2 Gr g: ,,weak coupling constant*

SmW2 ﬁ

However, also here there are problems with singularities: the ,,naive® intermediate-boson
theory cannot be normalized.
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Note about parity operation

How do polar V, and axial vectors A, transform under parity operation P ?:

t - t
X = —X t—>t XE(J—)XE( J
X —X

Transformation for spinors:

u(X) =7vou(x)
u—> Yol
u— ﬁ'}’o

[0}

\Y% fora=0
-V, fora=123

Vo =017 Un = U170V o Yol2 :(

behaves as a polar vector

A o _ [—Aa foroc:OJ

=UYsYaUy = WYoYsYaYoU2 =
* * * A, fora=1,23
behaves as an axial vector

Ly o jj" oc V,V* + A A" parity invariant

+ VAT + A V*' parity violating

For example the Lagrange density ([2-17] and [2-18]) is not invariant under parity violation.
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Calculation of the muon decay rate (W~ —> e +Ve +Vv,,)

The differential decay probability dI" (decay probability per time) follows from the the Fermi
»golden rule" (first order perturbation theory).

,,Golden rule* non relativistic:

W.

1

2 .
T T

Dynamics phase space

In analogy, relativistically:
2 ~ - -
MI™ dk dd, dd,

2E, (2m)*2E, (2n)°2w, (2n)*2w,

dr = (2m)* 5%(k+q; +9q, —p) [2-19]

k = Electron four-momentum (E_, E)
q: = Electron antineutrino four-momentum (v, ) (w;,q;)
q2 = Muon neutrino four-momentum (v, ) (w;,q;)

p = Muon four-momentum (E,,, p)

|M| : Matrix element calculated from L, (Eq. [2-18]).

For the explicit calculation we need the field operators, commutation relation of y matrices,
trace calculations etc.

Neutrinos are not measured in the muon decay measurement. Therefore, we can integrate over
dq; and dq; .

Moreover, we sum over all possible neutrinos spin directions. Also if the electron polarization
is not observed and its mass is neglected, one finds for the differential decay probability dI"

dI" = W(x,cos 0)dxd(cos 0) =

Gr'my” > [2-20]
= —[(3-2x)—(2x ~1)cos 6] x"dxd(cos6)
192n
(see [1-3]).
Here x = 28, and O angle between muon spin and direction of electron emission.
m
n

For the uw'— decay the angular dependent part has a positive sign.

dI' = W(x,cos0)dxd(cos0) =

Gy'm,’ ) [2-21]
= T2 L [(3—-2x)+(2x —1)cos 0] x’dxd(cos )
n
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Equation [2-21] gives the differential emission probability as a function of energy of the
emitted positrons and of the emission angle with respect to the muon spin direction.

If we have a muon ensemble, which is less than 100% polarized (P <1), the distribution
becomes:

5

Gp’m _
dr = F—;)1(3 —-2X) {1 + MP cos 6} x2dxd(cos 0)
1927 (G-2%)

2x-1)
(3—-2x)

[2-22]

a(x)=P

, asymmetry parameter

This equation is the basis for the use of polarized muons in the Muon Spin
Rotation/Relaxation method (uSR).

Total muon decay rate

11 5 s
GF mu 1

I'= de(cos 0)dxW(x,cos0) ==
10 192x Ty

T, :Mmuon lifetime

With corrections (electro-weak interaction)

Ge’m > 2 2
1 _OF M, 8me” ), Sme > -2 —é) [2-23]
Smw 27 4

Energy spectrum of the decay positron (or electron)

After integration of [2-22] over cos0 we obtain:

2m5

1
G
W(x)dx = I dcos® W(x,cos0) =122—;‘2(3 —2x)x2dx [2-24]
T
-1

(Michel spectrum, see Eq. [1-2]).
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2.2 Measurement of the muon lifetime (1)

Various experiments have been performed in the last 30 years (see Review of Particle
Physics, K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and
http://pdg.lbl.gov/ )
Experiments are based on the observation of the decay of an ensemble of Ny muons, which
are prepared at time t = 0.

t

N(t)=Nge ™ [2-25]

The number of positrons N(t), which are emitted at time t is given by the number of muons
decaying in the interval dt at time t:

t

N, (t) _—‘ii—ljziN(t) =LN0e K [2-26]

Tu Tu

In the experiment one measures the decrease of positron rate as a function of time. To do this
it is necessary to measure the lifetime of each individual muon. Various effects can modify
Eq. [2-26]:

e Time dependent background B(t):

N, (t) = Ti N(t) + B(t) [2-27]
n

e Time dependent polarization P(t) of the muon (see Eq. [2-22])

N, (t) = N(t)d" + B(t) = {N(t)[@ 2x)+ (1- 2x)P(t) cos O(1) | x 2dx+B(t)}dQ [2-28]
Tu

We have a time dependence of 0, if the muon spin polarization P(t) shows Larmor

precession, which is the case in the presence of a magnetic field (e.g. earth magnetic field).
Depolarization processes (see Chapt. 5. Principles of Muon Spin

Rotation/Relaxation/Resonance) lead also to a time dependence of ‘f’(t)‘ . In the lifetime

experiment one tries therefore to use unpolarized muons and to shield the earth magnetic field

and other stray fields as much as possible. Moreover, it helps to have the largest possible solid
1

angle for the positron detection (since Id(cos 0)cos0 =0). Finally muons should be stopped

-1
in a material, which either depolarizes them very quickly or not at all.
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The mean value of t,, obtained from various different measurements (2014) is:

At
1, =2.1969811(22) ps —E =1 ppm

T
H
(From K.A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014)).

A recent experiment at PSI (Phys. Rev. D 87, 052003 (2013) is the most precise and
measured t, with an accuracy of 1 ppm.

T, =2.196 9803(21)(07) ps

From this value the Fermi constant (an important parameter of the Standard model) can be

derived; uncertainty in Gr is completely determined by the uncertainty in 1, .

(;1;3 =1.1663787(6) - 10 GeV2(0.5 ppm).
C

Fig. 2-1: Apparatus to measure the muon life time at PSI.
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2.3 Measurement of the muon magnetic anomaly: g — 2

The muon magnetic moment with g=2 follows from the Dirac equation

- no - . .
H, =8 2e s =v,hs Y. @ gyromagnetic ratio [2-29]
n
e:  charge (with sign)
Hy =8 h 15 T |MB| (Hp =i, Bohr magneton) [2-30]
2m, 2 m 2m,

Quantum electrodynamics effects, as well as corrections based on weak and strong interaction
lead to a g-factor, which is a larger than 2. The deviation g-2 is therefore very interesting as a
test of the standard model of elementary particles.

g -2 has been measured for the electron as well as for the muon.
The deviation from 2 is expressed as:

g=2(l1+a)
2
a= - (g-factor anomaly) [2-31]

The measurement principle is based on the difference between cyclotron frequency ®.and

Larmor frequency w; in a magnetic field B.
Non relativistically:

®, =———B [2-32]
m
n
e 1 3
op =-v,B= —g—EB | [2-33]
m,

The difference of the two frequencies gives:

ool

- . dL N - L =
*From the moment M = [ix B = d_ , with L = YHL , L angular momentum, we get d_}tl =Yu (LxB)
t

which has solutions of the form (n = 2 ):
B

A(t)=a+b cos(my t) + ¢sin(my t) = (1(0) - )i + 11 x (1(0) x i) cos(wy t) + (F(0) x 1) sin(wy t)
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aiB

e
(g-2) 5 B
my my

This formula is also valid relativistically®.

Ao =|op — o= [2-34]

A g—2 experiment has been recently performed at Brookhaven National Laboratory (BNL).
Previously, three experiments have been completed at CERN.

Magnetic moment of point-like and structured particles

_g g
H gszm

Point-like particle (Electron, Muon): g.=2.0023193, g,=2.0023318
Structured particle (Proton, Neutron): g,=2 -2.79, g,=2 - (-1.91)

The g-factor anomaly is due to virtual particles and fields surrounding the particle.

a is therefore sensitive to ,,new physics®.

AExp = ATheory— ANEW

aTheorie 18 determined by QED, weak interaction and hadronic interaction (Standard model)

* Relativistically 0, = - ° B, o = —(gLB+(1—Y)LB)
m,y 2m,, m,
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Standard Model contributions to g-factor anomaly:

QED + hadronic + weak
Interaction Field Particles
QED photons e e uu et
strong gluons n* n~ n’ quarks etc
weak W W~ Z e ey u etc
V.V, V, V,

The muon is more sensitive to new physics than the electron since coupling to a virtual

particle X oc (ﬂ)2 I=e, p. i.e. muon anomaly is 40000 more sensitive than e- anomaly.

my

QED- contributions to a

) Feynman graph
virtual photon Lowest order contribution (Schwinger 1947)

1 e 1

a=——r~r—
2n ic - 800

2
e .
o =—Fine structure constant
fic
o2

4reyhc

S a=

external magnet field

The QED contribution to the anomaly a is well known and understood. It is the main term and
amounts to 99.9930% of the anomaly.

a(QED)= 116 584 718.95(0.08)x 10™"" (error 0.00068 ppm) (~1.16 - 10™)
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Some representative graphs: there are hundreds more!

Weak interaction contribution to a

Also well known and understood. Contribution: 1.3 ppm

a(electroweak)= 153.6(1.0) x 10~'! (error contribution 0.02 ppm)

Some representative graphs: there are hundreds more!
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Hadronic contributions to a

Cannot yet be calculated by QCD (Quantum Chromodynamics).

Main term:

hadrons

Theory needs:

virtual hadrons

From experiments we can determine:

real hadrons

At the moment, the cross section o(e+e— — hadrons) gives the “leading order” [LO]
contribution

apad [LO] = 6 923(42)(3) x 107!
In addition other terms give:
aiad [NLO] =-7(26) x 107"

(but exact value of hadronic contribution still in discussion).



g-2 experiment at Brookhaven National Laboratory

The main component is a storage ring.

e Muons from forward decay of pions with almost 100 % polarization circulate on a stable
trajectory in the storage ring.

o 4

Fig. 2.2: Storage ring / Kicker (Brookhaven, BNLT

Radius : 7112 mm
Aperture : 90 mm
Field : 1.45T

Pm 3.094 GeV/c

e The positrons from muon decay are measured by several detectors placed around the ring

¢ In the storage ring the muon spin precesses with respect to the momentum with frequency
cg—2

e The parity violating muon decay gives the muon spin direction and allows to measure the
precession
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—> Spin

—>» Momentum

e
a—2B
my

Ac0:|(oL —coc| =

e
(g-2)—8B
2mu

e The frequency difference is proportional to g-2, independently of y and of the focusing
fields (at the magic momentum py,).

To obtain a vertical focussing of the circulating muons a weak field gradient in horizontal
direction is necessary. This fact has a negative influence on the achievable precision. To
determine a from A it is necessary to know very precisely the field B averaged over the
trajectory. Therefore, it is necessary to know the trajectory and the field map very well, which
is achievable only to some extent. To avoid this source of error one uses a trick. An
homogeneous magnetic field is generated along the trajectory and the vertical focusing is

ensured by an electric quadrupole field E.
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Relativistically (v, = 0.99¢ ) Eq. [2-34] is to be replaced by

Ao =2 aB—(a—%)BxE
In“ Y —1

with B=X and y = !

C /1_[32

The muon energy (or velocity) is chosen so that:

2 1
vo=1l+—
a2

re.y=29.30, E,=3.094 GeV,

[2-35]

this way Eq. [2-35] reduces again to [2-34]. Since B is homogeneous (~1 ppm) it is not

necessary in this case to know the p-trajectory very precisely.

e Measurement of the spin direction
In the center of mass system:

dN,
=n(E)(1+a(E)cos0
dF 4O (E)(1+a(E) )

»

Spin 4
pin Pe

We measure:

t
N, (t)=Ne " (1+Acos(Ant))

[2-36]
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4.5 Billion Positrons with E> 2 GeV

=
=
p—
? 45-100 ps
£
é 100-200 s
=
]
= 200-300 s
g
-~ ¢ | 300-400 ps
2 7| 400-500 ps
e i 500-600 ps
: '.,ﬁ.‘y« j’\.\ AN A A
] . ¥ ; i FER YA W P“‘- "
*h\i&’v’ﬁ M %Jn,. n EERAVER VY ERY; 1-“!\\' _«*‘" ;«. f\;soo-mom
1 Wow N A \..
LY 275 ’Y "™ Vr W “ ‘w”\f W 4""” W 'h f“%f V‘H A % || 700-800
ik w’ *WM Wﬁir 'w 'f'm’#*w* W' o
1 800-850 11s
0 10 20 30 40 50 60 70 S0 90 100

Time us

Fig. 2.3: Measured spectrum (see Eq. [2-36]). Note the increased lifetime due to
relativistic time dilatation. The measuring interval extends over 14 lifetimes.

from [2-34] we have :

A® m,
a=——— [2-37]
eB

A is determined by fitting the spectra. The other quantities must be either known or
determined with the necessary precision.

The B-field is obtained via proton NMR.
Zeeman splitting of the proton energy levels in B:

AE =2u,B=ho, [2-38]
®, : NMR Resonance frequency (to determine B very precisely).

u, : magnetic moment of the proton.

. . [ . . .
m,, : is expressed in terms of —E | since this ratio is very well known.
Hp
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with

m, =(a+ l)ze—h in [2-37] and with [2-38], Eq. [2-37] becomes
My

a0 [2-39]

Ky . . . .
—2 is obtained from other measurements (see Chapt. 3. Muonium and muonium

Hp
spectroscopy):

My
Hp

=3.183 345 107(84) (error 0.03 ppm) (newest value, PDG 2014)

The experiment at BNL gives following results for a mean value from " and
measurement, (assuming CPT conservation):

Aexp = 116 592 091(54)(33) 10" (error 0.5 ppm) [2-40]
(stat.)(system. error)

(G.W. Bennett et al. in Phys. Rev. Lett. 92, 161802(2004) and
G.W. Bennett et al., Phys. Rev. D73, 072003 (2006)).

The theoretical value is at the moment (2014, Particle Data Group)
am =116 591 803(1)(42)(26) 10" (error 0.5 ppm) [2-41]

Aexp- am = 288(63)(49) 107"

This means a 3.66 deviation between theory and experiment (errors must be combined in
quadrature). Does this point to ,,new physics® beyond the Standard Model? To solve this
puzzle new experiments are in preparation in USA and Japan with a statistical precision a

factor of 5 better.

Another interesting effect, which contributes to the precision of the measurement is the
relativistic muon life time dilatation.

7(3.09GeV) =1, ;2 =1,y =064.5us
1-p

This prediction agrees to 99.9% with the measurement.
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3 Theory versus experiment

11659350
11659300 —

11659250 [ |

' 0
11659200 |- i + # %i

11659150 —

muon anomalous magnetic moment (x 10""1”]

11659100 | | | | | | |
1998 1998 2000 2001 2002 2003 2004

Measurements of the anomalous magnetic moment of the muon at the
Brookhaven g- 2 experiment are now more precise than theoretical
predictions. Red squares show the experimental values with their error bars,
whilethe blue band represents the uncertainty in the world average
experimental value. The centre of this band is therefore the most accurate
measured value. The Standard Model prediction for the muon anomaly
{green circles) has followed a somewhat bumpier path. Since the combined
electron—positron (ee) collision and tau-decay results in 1998, various
corrections to the theory have been made. In particular, the sign of the
hadronic light-by-light contribution to the muon anomaly flipped in 2001,
bringing the theory closer to experiment. The latest theory point is a recently
suggested value in which the tau-decay results are not included (see text).
Dates refer to the vear in which the data or theory results were published.
Earlier measurements of the muon anomaly from the CERN L Hand 1
experiments are not shown because their uncertainties are so large that the
results no longer affect the world average.

From D. Hertzog, Physics World, March 2004.
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JN 09 (e -based)
~301+65 —e—

DHMZ 10 (t-based)
_197 +54 —aA—

DHMZ 10 (e'e")
—289+49 —e—

HLMNT 11 (e'e")
—263+49 —e—

BNL-E821 (world average) i
0+63 =
|
0

-f00 -600 -500 -400 -300 -200 -100

3 _ aexp
0 u

Fig. 2.4: Compilation of recent results for the theoretical value g, , subtracted by the central
value of the experimental average. The shaded vertical band indicates the experimental error.
(From K.A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014)). Note that
the quoted errors in the figure do not include the uncertainty on the subtracted experimental
value. To obtain for each theory calculation a result equivalent to Eq. [2-41], the errors from
theory and experiment must be added in quadrature.
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3. Muonium and muonium spectroscopy

3.1 Properties of muonium

Muonium, Mu = u*e™, is a true hydrogen isotope.

Mass: myg, =0.1131my = 207.77 m,
_ _ m,,m,
Reduced Mass: my, = 09956 my =(——)=m,
m, +m,
dreni?
Bohr Radius (n=1): ay, = 1.0044 a, Ay = “‘C’th =0.05315 nm
my,€
2

(aO :47—[80 2 )
€

generally (n-th level): r, = nzaMu

— 4
my,©
Ionisation energy: Ry, = 0.9956 R Ry, = —M _—13.54¢V
Mu y T (dmey )2 2m
_ mee4 _ Otzmec2
Y (4meg)?2m? 2
Ry
for the n-th level: —%
n
. 2
Hyperfine coupling: A,,, =3.1423 Ay Ayy = Euoge |MB|g“u% 3
An
= h - 4463.3 MHz

"Nuclear "- gyromagnetic
T
2n

factor : Yy =3.18335y, =13.5534kHz/ G =135.534 MHz/ T
Muonium gyromagnetic factor

o 1

in triplett state (F=1,M=#1): vy, = 1.0033 7],  vrp = S W) =

(in weak fields) = 2m-1.3944 MHz/G
= 10288y,

Awmy 1n cgs units: multiply with 4n — 8% instead of 2/3
Ho
R, : Rydberg energy. Ionization energy of a H-Atom with infinitely heavy nucleus.
R, : Rydberg constant, Ry= hc R,
Ry = 13.605 693 009(84) eV
R., =10 973 731.568 508(65) m™'
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Muonium is particularly interesting for spectroscopic investigations because:

* Simple, pure leptonic system.

* Only sensitive to weak, electromagnetic interaction, and gravitation.

« u: point like particle (from scattering experiments = dimension < 10"® m=10" fm
~ 1/1000 proton radius).

Muonium can be used to test fundamental laws and symmetries and for precision
measurements of fundamental parameters.

Examples are measurements of:

Hy My
* Hyperfine structure 2 o, —, or ——

Hp me
*  Muonium 1s-2s measurements = new determination of fine structure constant o
* Lamb shift (2S;,-2P;; ) in Mu not yet precise enough for comparison with theory

Hydrogen
Electron g-2 factor or (g-2)/2=a. and AvEfs are among the best known quantities in physics.

E.g. a. known to 0.23 ppb = a with 0.32 ppb error.
AvEfs even known to 0.6 ppt (10™'%), but theoretical description is only possible at ppm level

because of internal structure of the proton (radius, polarisibility). Similarly for 2S;,-2P;.,
Lamb shift.

Fine P Dirac

2p3/2 Aj=0

structure theory
2sq/2 s Lamb

. Al=0 QED
2p1/2 shift
Gross . Bohr theory

structure aliid Schrdédinger theory

151;:1 5 HFS AF=0 Schrddinger theory
F=0 ~(1+0/2n) and QED

Fig. 3-1: Some low lying energy levels of hydrogen atom (or muonium), not to scale.
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Energy level of muonium, n=1 und n=2

2
2P
L, 3/2 F=2
9 F=1
2S 9875 MHz Fine structure O(a)
1/2 P F = J-degeneracy lifted
N\4558MHz]l b 1047 MHz & Lamb shift
F=1
22P 187 MHz
F=0
A =244 nm 1/2
£ AV, = 2455 THz
A =244 nm
s F _=_ __L Hyper fine structure O(o*)
2 AV, o= 4463 MHz ~1.8107 eV
1S, F=0

Life time 1, = 2.2 us, both ground state and excited state decay with this time constant >

from uncertainty relation:

AEt=2h, AE=hAv_, — Avnmzzi =145 kHz (natural limit of precision)
nt
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3.2 Theory of the energy levels of a muonium atom

The total energy of an electron in a one-electron atom can be expressed in the following way:

Ewi(n; j; 1; F) = Ep(n; j) +Erm(n; j; 1) +Eqen(n; j; D+Ewrs(n; j; 1; F; I) +Egrongt Eweak + Eexotic
[3-1]

Ep:  Dirac energy for an electron in a point like infinite heavy nucleus with charge
Z , which creates a potential V =—Zq / r . The Dirac theory of the gross and fine-
structure for one-electron atom takes electron spin and fine structure into account.
i.e. it contains effects such as spin-orbit coupling + relativistic effects and Darwin
term, which originates from averaging the potential energy over the size of the
electron wave.

Ep(n; j) =mcc® (f(n; j) -1) [3-2]
5 -1/2
f(n, j){u( Za j } [3-3]
n—¢
e = j+1—\/<j+i)2 ~(Zo)? [3-4]
2 2

Erm @ Effects due to finite nuclear mass (relativistic and non-relativistic).

Eoep QED-Effects (Lamb shift): radioactive corrections to the electron propagator ,
(Electron self energy, anomalous magnetic moment), vacuum polarization.

9
(a) (b)

Fig. 3-2: Lowest order QED contributions to the Lamb shift. (a) Electron self energy.
(b) Vacuum correction to the potential. The heavy lines represent the electron in an
external static nuclear field.

Esrong Strong interaction = QED-effects of the vacuum polarization

Eweak Weak interaction (via Z-Boson exchange)

Eups  Interaction between magnetic moment of the muon and electron

Eexoic  Possible (non-Standard Model) exotic interaction between electron and ,,nucleus
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3.3 Hamilton function of the hyperfine interaction

The Hamilton function of an electron in the field of a muon is given by’
l r= - =72 - S .-
H=——[P-eA;(R)] +eU;(R)-geup(rot(A, (R))

— ﬁeﬁ

R andP are position and momentum of the electron, S its spin (in units of 7 ), e its charge.
1 is the nuclear spin (muon). Let’s consider the terms, which originate from the vector

potential A .

S i, xR

Ay(R)=to e [3-6]
4n R3

Where 1, is the magnetic moment of the muon.

The hyperfine Hamiltonian Hyy is obtained, if we retain in [3-5] only the terms linear in AI

—

e =+ = = S .
5 [ PrA+ AP g rot(A R)) [3-7]

H,. =
hf m

(4

and put [3-6] in [3-7].

Coupling of the magnetic moment of the muon with the orbital momentum of the electron

Let’s consider the first term in [3-7]. With

L=RxP [3-8]

and the fact that 1, with R and P commutes®, we get:

SHfeH

STaam R 4t B [3-9]

This corresponds to the coupling between the magnetic moment (i, and the magnetic field

(note e is negative)

> In this chapter we use [S]=[ /1 ]
“Use: P-A o 13[}1“ xR]= Hy [RxP]= Hy .L and similarly for A -P
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. L
B, :“_01_3 [3-10]
4t m, R

This field corresponds to the current generated by the orbiting electron.
(Biot-Savart law: ]§L = _Hog j m, with I= ﬂ)
4 R3 2nR

Coupling with electron spin:

Magnetic field created by the muon:

To avoid problems with singularities we consider first a muon with a finite radius po and take

R> Po

With [3-6] and BYP =rotA,

gy -t B GO0
4| R3

5
R [3-11]

with p [|Z , we get:

s
_Ho yz
y_gwu_s
2
_ky 3z°-R
BZ_H“‘H RS

[3-11] is also valid for R not much larger than py , since a spin 2 particle creates a dipolar
field.

The magnetic dipole term:

If we insert [3-11] in —geuB(%)rot(;\] (R)), we get for the magnetic dipole term (coupling

between electron spin and magnetic field, which is generated by the dipole moment of the
muon outside its “radius”).

[3-12]

i _toza 1 [ (GG
M 4non RYCH R? )
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The contact term:
It takes into account the contribution of the ,,internal field “ B; (i.e. of the interaction

between magnetic moment of the muon and electronic spin density at the muon site)
R <p,: The field inside the nucleus (B;) can be obtained by the explicit integration of the

magnetic flux @ over half a sphere surrounding the dipole, taking into account that the
integral is zero.

Ho 2
B=ro, = 3-13
P g P o [3-13]

Contact term in [3-5]:
S I I
~Zelp (ITOU(A(R)) =i - B;

The corresponding operator Hj, is obtained by calculating the matrix elements between the
basis wave functions. We get (note pp is negative here):

8 _ S . - 2 -
H§f=—“—fc—u %S(R)?guoupuea(m [3-14]

Note that the term is finite and does not depend on the choice of py.

With Hys = Hie + HOP + HE,

~ |
and i, =g,n} - [3-15]

With the three contributions, the Hamilton operator of the hyperfine interaction (g.=2)
becomes:

2 i 1.1 T.-R)YS-R) T.S .-
Hy =—boHbsg ) DL s MROR) IS, S gy | 16
[Sp—] R e e —
e-Angular moment Dipol (e-spin) Contact term

(e-Spindensity
at the muon site) |

Dipolar and contact fields are also present in the solid. For instance, localized magnetic
moments or nuclear moments produce dipolar fields and the spin density of conduction
electrons (or delocalized electrons) generates a contact field at the muon site.
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Calculation of the hyperfine structure of the 1s-level

For the 1s level the first two terms of [3-16] are zero, since
<L> and <1s |dipolar term| Is >=0 because of the spherical symmetry of the 1s-state.
Only the contact term contributes.

Matrix element of the contact term:

e S
with He = EeUB E

<n=11=0,m =0,mg, m; n=1,1=0,m =0,mg, m; > [3-17]

L
_EMOMHHeB(R)

= A<mg,m; |T-§/mg,m> [3-18]

2
A =108, HpEe

. “B‘h% <n=11=0| 8R)[n=11=0>

) 3-19
@, (0) [3-19]
with <r| n=11=0>= e ™ =g (r) [3-20]
ma,,,’
_ 2 1
<n=11=08[R)n=11=0>= ‘@13(0)‘ - [3-21]
TCaMu
2 I 1 energy
— H - = -
A= 3 Mogp.l"lBge “‘B‘ Tl:ai/[u hz [A] [ h2 ] [3 22]
4 2 m.m
With ay, = _ns—ohz (Bohr radius), My, =———= Te (takes into account the
my,© me+m, M
my,
2 1
finite “nuclear” mass), o = (fine structure constant in S units) and gopy=—
4mgyhc o2
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For spectroscopy [3-22] can also be written in terms of precisely known quantities:

2 31
A=Zgg emclat(l o) = [3-23]
3 m,, m, n?
Summarizing the contact operator for the 1s state can be simplified to
Hfp = AI-S
hf [3-24]
With A>0 and [I]=[S]=[7]
Eigenvalues and eigenstates of the contact term of the 1s-level
The degeneracy of the 1s-level is 4-fold. Instead of the basis
1 1 .
S= E,I = E,ms, my > (product basis) [3-25]
we take the basis
F,mp > (coupled basis) [3-26]
F is the total moment eigenvalue of the operator F=S+1: [3-27]
1-Sis diagonal in the basis [3-26]. With L=0 (1s level)
A”-S:%(FZ 1’ -§?) [3-28]
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2

AI-S|F,mg >= A%[F(F+1)—I(I+1)—S(S+l)] F,mg > [3-29]
2
4
2
SN F=0
4
Is
N
Fine structure shift
F=1
A
184 L2y
4
_EhZA
4
F=0

Eq. [3-23] is not accurate enough for high precision spectroscopy of muonium or of hydrogen
and positronium. One has to consider additional correction terms arising from QED, weak
interaction, and eventually exotic interactions.
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However, the hyperfine-Hamilton function has still the form:

Hf; = AI-S [3-30]

If we write the splitting in terms of frequency we get:

Epi(F=1)—Ep (F=0) =hAv, g = H°A [3.31]
16 R -
M 2 |2 m
AVhf;l = ? (ZOL) Ty_ul:l + _e:l (1 + €rad + Erec + €rad—rec ) + AVweak + AVexotic
M| ™My [3-32]
2 2
where Ry _ ¢ mee and Z=1
2

Theoretical value:

Avf&s == 4463 302 891 (272) Hz (63 ppb) [3-33]

Better known for muonium than for H. For H one has to consider additional terms due to the
proton structure:

* Enuclear radiusT  Enuclear polarization-

The theoretical uncertainty is 560 ppb (whereas the experimental uncertainty is presently
0.6 ppt).
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3.4 Spectroscopy of the hyperfine splitting in muonium

Method: Microwave spectroscopy of the ground state in an external magnetic field.
We consider the Zeeman effect on the 1Is level.

Hamilton function:

H=—fi, -B-i,-B+AI-S

[3-34]
with B || zand fi, =y, I~ ([I]=A])
and using the Larmor frequencies of muon and electron:
H=o,I,+oS,+Al-S [3-35]
where:
e
H [3-36]
e
0, = &HB NV 0
2 m

To determine the energy eigenvalues, we must diagonalize the matrix of the Hamilton
function H [3-35].

We obtain as energy eigenvalues:

AR h AR? 1
E, =T+E(we +wu)=T+E(ge|“B|_gp“%)B
N AR? 1
2 :T—_((De +®u):T_E(ge|“B|_gu“%)B
NN AR AR B3-37]
E; :——+\/(—)2+—(me—m“)2 =+ \1+x?
4 2 4 4 2
A 2 A 2 2 A 2 A 2
g A J(i)z B oyt A AN S
4 2 4 4 2
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Breit-Rabi diagram

—_ 10
2 I (Mg,M,) He My
% 8 — (142, 1/2)
= /
S
© 6 I
= B o (1/2-1/2)
2 4 - T Uy
w i
2 |-
0 =
2
s
i -1/2,-172)
s \
8 -1/, 1/2) A
_10 i 1 1 1 1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 L 1 l: T: 1
0 0.5 1 1.5 2 2.5

Magnetfeld B[ T ]

Fig. 3-3: Energy-level diagram for muonium in the 17S;,, ground state in a magnetic field. At
zero magnetic field the energy difference between the F=1 and F=0 states is the hyperfine
splitting hAvyg.

The field is generally expressed in terms of the dimensionless parameter

o el +g,np)B _ (2 ualrewb)B_ B
Ah2 hAVhfS BO

[3-38]

By is the field where the Zeeman splitting of the electron and the muon is equal to the
hyperfine splitting. For muonium B¢=0.158 T.
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In analogy we obtain the eigenstates:

| 1>=| Mg = MI:%> =| F=L,Mp=1>

1
2’

,MI:—1> =| F=,Mg=-1>

| 2>=| Mg=- :

| -

| 3>:sinB| Ms:_%,M1=%>+COSﬁ| Ms=+%,M1=—%>

| 4>:C05B| MSZ—%,M1=%>—SinB| MS:+%,MI:—%>

where

! 1/2
X
cosfl=—|1+————~

1 1/2
. X
" ﬁ{la—>}

[3-39]
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We express the energy differences as frequencies:

E —E,=hv,
[3-40]
E,-E, =hv,,
Then we get for the sum or difference of the transition energies:
hvys —hvay = 2ukig B+ hAvE [(1+x2)”2 —x} [3-41]

o (gLlup|+ gl uf)B

hA v%
To take into account the relativistic binding corrections in muonium we use in [3-41] g! and
g, instead of the values for free particles g and g ,.

a’ o’m
[ 1__+_ e
g =gll-=+- mH]
, , \ [3-42]
I — [l_a_+a_me _|_O{'_]
8 =& 3 2m, 4=n
B can be expressed as a function of p  and of the NMR frequency.
hv, =2pu B [3-43]

From the sum of the transition frequencies Avﬂg is determined and from the difference (Eq.

i

[3-41]) by using p, = g“T we obtain also the

ratio of the muon and proton magnetic moments B .
Hp
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Principle of the experiment (W. Lin et al., Phys. Rev. Lett. 82, 711 (1999))

Stop polarized positive muons in Kr in a magnetic field B antiparallel to I (initial muon spin

direction)
In Kr muonium is formed in the states (each with 50% probability since the electrons are

unpolarized)
1

1
Mi=—— M =——> level 2
My=-2.M;==_>  (level2)
1 1

and |[Mg = +E’Ml = —5> (level 3)
With microwaves one induces the transitions in level 4 (— hv.,,)
and inlevel 1 (= hv,;).
The transition frequencies are determined from the positrons rates with and without
microwave field (one can vary either the microwave frequency or the magnetic field)

o Vi ? 7, 10 cm
™ 4_| Beam Pipe
Microwave
Cavity [ Beam \Degrader
Krypton eounter - u+ —_
N\ 3 mil . M
imilcu 7| [Mylar 4 mil ‘
0.5 mil Cu ’J Kapton
W& BPM
\m\\ Aluminum | T
Positron Pressure

Counter CH2 Absorber Vessel

(¥
.

Fig. 3-4: A schematic view of the experimental apparatus
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Positron signal (as a function of the magnetic field or of the microwave frequency)

~, Conventional
410
15
T R 3.12-4.07ps
. 130 ~
R ] I
b I ] ] 2
@ | Wb | 110 &
O _| [ 1 ‘._ | M P / 0
< 3 "l 6.89-784ust A 6.92-7.87us]
s I 120
25| | ]
i - 1 10
0 - N
L I+ \ L +| L I " " " L | L L T I T ST I S T ¢\ | 0
200 300 400 400 500 600 700
V- 72000 (kHz) v - 1897000 (kHz)

Fig. 3-5: Left: resonance curves obtained by sweeping the magnetic field and from different
windows after muonium production. Right: microwave frequency sweep curves. The solid
curves are fits to the theoretical line shape.

Results

AVEP = 4463 302 765(53) Hz (12 ppb) [3-44]
Avil = 4463302 891 (272) Hz (63 ppb)
wu/pp =3.183 345 13(39) (122 ppb) [3-45]

(Ref. Liu et al., Phys. Rev. Lett. 82, 711 (1999))

m €
From [3-45] via — = Sullp Mg :
me 2 u}l up

my/m, =206.768 277(24) (120 ppb) can be determined [3-46]

Alternatively one can use m,/m. or o as parameter in Eq. [3-32] and determine them from the

experimental result for AviP .

For instance with m,/m. from [3-46] one gets:

o' =137.0359963(80) (58 ppb)
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3.5 Measurement of the 1s-2s transition in muonium

(Doppler free 2-photons spectroscopy)

1 photon transition not allowed (because of Al =+1)
Gross structure interval

2
Vi, =S R, (1= — 2 45.1015 Hy heR,, =R, =mc? =
4 m,, 2
R,, (Rydberg constant) is known to 8. 10"
v
e Natural width due to lifetime of the muon: v, = 145 kHz > —t—=~6- 107!
Vis2s

e A measurement of v at the 10” level allows an

mu : 9 mu -7
accuracy of — determined by 10" — =10

m m

€ €

[3-47]
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Measurement principle (Doppler free spectroscopy)

pt ey Eh
0 —

1 2
- g — 2 =
p Hl-l l S%,F 1

S

2

A, | —l— 1’5, ,F-t
i
) ]
laboratorv frame rest frame of atom

vV
v=0
o, z 0 . (i,
=(1-vh) @, =(1+ v 0}

Principle of the 1s-2s muonium experiment. a) The transition between the 1s- and 2s- levels is

induced by the absorption of two counterpropagating photons (A= 244.2 nm). The metastable
2s-state is ionized by a third photon. b) The transition via two photon absorption is to first
order Doppler free.
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-

e from Muon Decay

">~ Scintillation Counter

~ LensC

83

Apparatus for the 1s-2s experiment at the Rutherford Appleton Laboratory (pulsed muon
source, UK).
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Production of thermal muonium in vacuum. Efficiency for different materials. The beam
momentum is optimized for maximum efficiency.

Target material Target density Target Thickness Optimum muonium
[mg/cm’] [mg/cm?] Fraction

H+e_/ Wstop [ 70]

Si0, powder 32 4.6 17(1)
Si0, powder 32 2.8 15.9(3.6)
Si0, powder 32 9.0 8.27(31)
Si0; aerogel 5 7.5 2.32(13)
Si0, aerogel 18 9 1.57(20)
W Foil (2130K) 19.3 96.5 4(2)
Cs0/Cq¢ Fullerenes

~1400 ~210 1.85(23)
Cotton 10 3.6 2.25(16)
Cotton coated with
Si02 powder 17 5.8 11.43(31)
Microchannel Plate ~2000 ~100 2.44(31)
Results

AVEXP 2 455 528 941.0 (9.8) MHz (4 ppb)

From the comparison with the theoretical value Av{ 3" =2 455 528 934.5 (3.6) MHz

> —% =206.76838(16) (0.77 ppm)

5 |3

€

or alternatively: from the comparison with the theory and the fact that the dominant term in
4
[3-47] is proportional to Ry oc o oc qu2 ~q62 oc (q—“)z(qu) oc (q—”)2

€ a true e

> ) =1-1020) 107 (2.0 ppb)

€

This is a test of charge equality between two particle generations.
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Muon mass results, summary

Extracted from experiments:

m .
" (uSRBr)  =206.76835(11)  (0.53 ppm)
m

(S

+

B (u Atoms) =206.768 30 (64) (3.1 ppm)
m

(S

m .
—" (M 1s-2s) =206.76838(16)  (0.77 ppm)
m

(&

() =206.768 270 (24)  (0.12 ppm)
m

(S

Using the muonium hyperfine structure measurement and the theory:

m
M (M) =206.768 267 0 (55) (0.027 ppm)
m

(S

Value in Particle Data Book (2014):

n =206.768 284 3(52) (0.025 ppm)




Summary of precision experiments
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4. Positive and negative muons in matter

4.1 Energy loss of charged particles in matter

L | | [ [ i
L + |
— u" on Cu
&
§100 — = =
o C Bethe-Bloch 3
g" L/ Anderson- i
S Fs Ziegler .
2 |=<
V) =5 o -
%D E Radiative 3
= C Mmiml_un effects .
g - T Nuclear ionization reach 1% b
n "\, & losses ) T [
1 4 |
0.001 0.01 0.1 1 10 100 1000 104 105 106
Py
| | | | | | | | | |
| 0.1 1 10 100, 1 10 100, 1 10 100 |
[MeV/e] [GeV/e] [TeV/e]

Muon momentum

Fig. 4-1: Stopping power (= < —dE/dx>) for positive muons in copper as a function of
By=p/myc over nine orders of magnitude in momentum (12 orders of magnitude in kinetic
energy). Solid curves indicate the total stopping power. Vertical bands indicate boundaries
between different approximations. The short dotted lines labeled p” illustrate the “Barkas
effect”, the dependence of stopping power on projectile charge at very low energies.

Interaction between a charged particle and matter leads to energy loss and scattering.

Energy loss:
dE dE dE
= +

dx  dXelectronic  dX nuclear

[4-1]

The energy loss is proportional to the density. Therefore, often the density is included in the
length, x=/.p [X]Z[g/cmz]

The most important contribution is the so-called electronic energy loss arising from inelastic

collisions with electrons (ionization, excitation,..).
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Generic Bethe-Bloch formula for electronic energy loss:

2n2. 2 2
_dE—:KEZQ% lln(zmec B Y TmaX)_B2_§ MeV -cm [4_2]
dx A 2 I 2 —

electronic

Z : Target atomic number

A: Target atomic mass [g/mol]

M: Target mass

z : Charge of incoming particle

I: Mean excitation energy

Tmax: Maximum energy transfer to a free electron in one collision

rm 2B o
Toax = mnelc p Zn Non relativistically: T, =2m_v? [4-3]
142y +(—2)?
M M

For v>>v, (v: Projectile velocity, v.: velocity of the electron to be ionized)
and z << Z, the energy loss can be calculated classically (non-relativistic Bethe-Bloch
formula).

dE oo - [4-4]

T 2
dXelectronic v

Energy loss occurs via inelastic collisions with the shell electrons of the material.

Assume M>>m, and electrons at rest before collisions:

M,a’_ v
«—

N |s

.,

hs

Me

79



Momentum transfer:

+00
Ap = I FCouldt
—0

Longitudinal component of force averages out. Only the transverse component contributes to
the integral:

b b
Fé_oul =Fcou = = Fcou ——=—=, b impact parameter
|r| Vb? +x?
with
Ap = 0 ze? b dx _ 27¢?
o b2 +x? \p2ix2 VWb
Ap2 27%e*
AE(b) = = o)
2m,  m.v°b

where v and z are velocity and charge of the projectile.

Determine minimum and maximum impact parameter from maximum and minimum energy
transfer.

Maximum energy transfer:
AP pax =2mgV

A 2 o) 2 4
AE oy = Tuax 21’neV2 =AE(b ) = %
2me mgv bmin
2
VA4S
> bmin :—2
meV

Minimum energy transfer: from AE, ; =1 (mean excitation energy of the atom)

ze’ 2

> by = |

max
v \\m.I

Energy loss in a collision with one atom (Z electrons, atomic number A, density p):

bmax bmax 2 2 4
dE=7 I AE(b)27bdb =7 _[ 2% _orbdb
g m,v°b

min min

On a length d/ there are p%dﬁ atoms per cm”. With dx = pd/ we have finally (and

introducing a minus sign to take into account that energy is lost in the collisions):

dE _ 4nz’e*Z N, In /2mev2
dxelectronic meV2 A 1

which is the classical derivation of Bohr of the Bethe-Bloch formula (Eq. [4-2]).
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For v<<v, a quantum mechanical calculation is necessary (for instance energy loss in an
electron gas). At low velocities the energy loss is linearly proportional to the velocity.

dE
Stopping power in  Carbon (C)
100 I= 73.?EV /= 6 A= 12 p= 180 g/cn?
?S
[ns]]
™~
=
[1¥]
P
1000

Kinetic

Fig. 4-2: Stopping power in Carbon.

Energy

100

(MeV)
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4.2 Range of muons

Total range
0 1
Ry, = I Gk [4-6]
dE
E, Ax

Important for practical purposes is the projected range along the incoming trajectory.
Projected range and range straggling of surface muons:

R = ap3'5 pin MeV/c
AR _ \/(0.1)2 +(3.52P)2 [4-7]
R p

For surface muons (p~ 30 MeV/c) R is typically 130 mg/cm?®, Ap/p = 0.03 and

AR = 15 % of R. Typical values of R lie therefore between 0.1 and 1 mm.

Surface muons stop in the bulk of a sample. For higher ranges (e.g. for pressure cell
experiments) muons from pion-decay in-flight are used (see Chapt. 1. Introduction). For thin
films we use the so called low energy muons obtained by moderation of surface muons (see
Chapt. 9. Thin film and heterostructure studies with low energy muons).

Slowing down or thermalization time t

0 0
d_E:d_E :tzjdt:.[%: dE = dE ~107'"' s in solids
d¢  vdt v v dE v CLE o
Vin Em dg Ein dX
o p ' (density)! [4-8]

(G B
p cm
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Range in Carbon

(C)

2 p= 180 g/cm?®

/

/

e

g/cm?

/

10
Kinetic

Fig. 4-3: Range in Carbon.

Range scaling :

dE
R a2
“laE
dx
dE 1 m
oC

d 2 E

2
—>RochdEocE—
m m

E2 E2

Energy for whichR, =R, — B

m

n p

m

Range at the same energy E — R, =—%R

m,

100

Energy ™MeV)

[4-9]
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Multiple scattering

A charged particle traversing a material experiences many small scattering events.
Therefore, the angular distribution resulting from Coulomb scattering can be approximated by
a Gauss distribution.

- X

Y

- XxX/2— >

]
/

==_TN X
—_—— i IlJp]ane j
Sglhahﬁ'é““x N plane\
‘ Y
$ ep].ane

A

Quantities used to describe multiple Coulomb scattering. The particle
is incident in the plane of the figure.

The spatial and projected angular distributions are given by:

0;
pace
exp| — dQ [4-10]
210} 20

eIz)lane
eXp| — YU dQ [4-1 1 ]
27[90 260

With 0, = 0 = _1_gmms [4-12]

plane \/5 space

0, = 13.6MeV 2 (1+0.038In(—))
Bep VX %o

Non relativistically : [4-13]
1 1

mv-  Eyy,

X . . . . .
A is the thickness of the material expressed in so called ,,radiation lengths.
0

Radiation length: Mean distance where the energy of an energetic electron is reduced to 1/e of
the initial energy by bremsstrahlung.
716.4A g

Xo is a material property, X, =
O Z(Z+1)In(287/VZ) " em

] [4-14]
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4.3 Thermalization of muons in gases

u* & Mu in Gases
;I;Tiz:sn:?'rlss ﬂ+|_5_ veral MeV)

T LOMIZ|ATION (Bethe - Bloc B)
~10 ns 4R

; e [+
N S— 30 kel

T _ Charge Exchange
€ CAPTURELOSS e
~0.1ns comrE[TITION T — Mu
L T T
___.l__._. LU ey
.
/ * e M ited stat
U excited sTates
-
S MUYy retastable 25)
~10 ns / | Y
HASTLE .-'"I& MMBLASTIEC N SCATTHRIMNG
¥ ;
.Y Thermal _u+ or
& molecular jon
“HOT"
. Therm{:l Mu
) SPIM'Y, EXCHAMEE
y \
" RS Dramagne tic Depolarized
Molecule s
.Y _ Radicals
' y~ Precession Mu Precession

Thermal e CAPTURE 18 puss'ble. inthe GAS [imse orl.ly via

donor atoms whose ionization potential is less than 135 eV,

(graphics J. Brewer, UBC)
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Electronic collision processes contributing to the energy loss (gas model)

Process: Energy loss or gain:

Ionization:

n"+A-out+AT e AE = Ion. energy of A [4-15]
Mu+A ->Mu+A" +e AE = Ion. energy of A

Electron capture (Mu formation):

u"+A->Mu+A” AE = Ion. energy of A - Ion. energy of Mu

Electron loss (Break-up)

Mu+A—->u"+A+e AE = Ion. energy of Mu=13.6 eV [4-16]

Processes involving Mu™ (negatively charged muonium) can be neglected.

a,, [10™ cn]

001F .~ —Ar
i ------- Xe ;
e — N,
0.001 bt i
10" 10° 10’ 10°
Energy/nucleon [keV]

Fig. 4-4: Tonization cross sections in different gases.
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Fig. 4-5: Muonium formation (C: electron capture, solid line) and breakup (L: electron loss,
dotted line) as a function of muons energy.
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Energy transfer in elastic collisions (,,nuclear stopping power)

Stopping cross section (energy loss per atom/cm?):

_dE1 _dE A _ dE A

. [S,]1=[eV.cm?] [4-18]

N: Atomic density [Atoms/cm ], A: Atomic weight in g, Na: Avogadro number.

S,(E)= JT—dQ [4-19]
T kinetic energy transfer, E initial energy. From kinematics:
4m, m 2m m;
T= H—U‘gtE sin® = v H—E(l cos0) [4-20]
(m“ + mtgt) 2 (m + mtgt)
2m, m
=k & g j 99 1 _ cos0)d0 [4-21]
(mp + mtgt) dQ

1

6(I-<cos>)= AE-o [4-22]
mtgt

A calculation with a screened Coulomb potential gives:

8.462:10"°Z ym, eV - em?2

g) [——]
(m, +m )(1+Z52) " atom

Sp(E,)= [4-23]

Where ¢ is a reduced energy and S,(¢) the reduced energy loss:

32.53m B, _ 3253E,[keV]
€= 023 0.23 [4-24]
Zig (M, +myg )(1+ Zigg ) Zig(1+Zg™)

0.5In(1 +1.1383¢)

S (e)=
T (6+0.013216%21220 1 0.195938%)

[4-25]
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Fig. 4-6: Elastic energy loss (nuclear stopping power) of muons in Ar.

The elastic (or “nuclear”) stopping power is important only at very low energies. It can be
neglected for the stopping processes of surface muons. However, it is important in the
mechanisms leading to the generation of low energy muons (see Chapt. 9. Thin film and
heterostructure studies with low energy muons).
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4.4 Muonium formation in gases (prompt or epithermal muonium
formation

TABLE II. Relative fractions (in percent) of muonium (fy,) and of diamagnetic u* (f,)
found in different gases.

Pressure or range

Target gas in pressure (atm) fu Smu i
1.2—-3.1 100+1 0+1

He 50° 9945 145 15
1.2 034+5° 745

Ne 268 10042 042 20
1.0-2.8 26+4 T74+4

Ar 30° 35+5 65+5 83

Kr 0.4—-0.95 0+5 100+5 100
0.4-—-0.65 0+4 100+4

Xe 4.4° 1045 100 100

H, 3.0 3944 61+4 95

N, 1.0-2.4 16+4 8444 90

NH, 2.8 9+4 91+4 100

CH, 1.2—-3.0 13+4 87+4 100

*Higher-pressure values from earlier study of Stambaugh et al., Ref. 17.

PExpected neutral fraction from proton-charge-exchange studies (Refs. 3 and 4).

“Taken from the research grade Ne result of Table I which gives the most reliable u* and
Mu amplitude.

The thermalized muonium fraction fyy, increases with decreasing ionization energy.

Gas Ionization potential fvu
[eV]

He 24.5 0

Ne 21.6 0.06+0.05
Ar 15.8 0.74+0.04
Kr 14.0 1.0+£0.05
Xe 12.1 1.0+£0.04
N, 15.6 0.84+0.04
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TABLE III. Number of charge-changing cycles and slowing-down times for the ut in
gases.

Gas N* Pressure (atm) t1(ns)® t,(ns)® t1(ns)
He 111 3.1 30 0.077 0.63
Ne 53 1.2 18 no data 8.2
Ar 76 1.0 14 0.014 19.1
Kr 95 0.8 10 0.014 50.2
Xe no data 0.6 11 <.014° 101
H, 71 3.1 30 0.043 0.32
N, 77 1.0 18 0.030 134

“E;>35 keV, E;=1 keV, except in case of Ne where available proton data extends down
only to an equivalent 4.4-keV ut energy. _

®Bethe-Bloch ionization, from 3 MeV to 35 keV.

“Time spent as neutral during the charge-exchange regime, from 35 to 1 keV. The actual to-
tal time ¢, spent in this region would be a factor of 2—3 longer.

dFinal thermalization time from 50 eV to 0.035 eV (300 K) assuming elastic collisions only
and an energy-independent cross section of 10~" cm?.

‘Complete data not available, but ¢, expected to be less than in Kr.

(from D.G. Fleming, et al., Phys. Rev. A 26, 2527 (1982)).
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4.5 Thermalization of muons in solids

u* & Mu in Metals

Typical + L
Timesea les ﬂ (several MeV)
f L7 ATDON (Perbe-Bloch)
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----- ~al key
! /
“T ra T "
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/
Electronic damage Plasmans s rapidly healed
/ Excitons
Pho nons
/ Magrns
¥
b Interstitial p* Substitutiona u*
repelled by positive lons fvery rare)
Ineachcass, the muon is screemed by conduction electrons,
S
,t._f: Precession
¥

--------- All the interesting physics . .



p* & Mu in Liquids and Solid Insulators & Semiconductors

Typical

Timeseales ﬂ (several MeV)
LOMIZ|ATION (Pethe-Bhch)
~10 ps / \\.\t
e e
J' ~10 ke¥
= Charge Exchange
e carTulREoss Zi

"lips ) ocw.PE rrmN [T _\.111
--------- ~20 eV

I ELASTIE & TMELASTIC SCATTERING
~1ps 7}

~ps to ~ps PHONONS ExeTTaMS

R Thermal y* or THERMAL €~ Ther'mﬂl Mu v /

4 Molecular Ton CAPTURE

e SPIM' EXCHAMGE
@?*-;%f,bﬂﬁ
, e L2 Depolarized
Diamagne tic Mu
~Es Molecules
" OR
. y
' . ¥ Radicals A
u” Precession Mu Precession

v Thermal Mu sometimes forms in "shallow” states.
These may be long-lived if electron mobility is high.

(graphics J. Brewer, UBC)
More similar to slowing down processes in gases.



The Coulomb attraction between a thermalized positive muon and an electron from the track
may lead to “delayed” muonium formation, i.e. muonium formation after thermalization of
the muon. The formation probability depends on the electron transport properties in the
corresponding medium.

Consider the thermalization track in insulators and semiconductors:

il = Rl - Charge exchange

W ol | R leaves behind cations
4 | A pg- €,y - - -  &e dong track.
- - - B € IUS# e +

TN ol

(still "forward")

RESULT (sometimes):

R"'e e . R eu O +
Coulomb attraction to Coulomb attraction M
"geminate"” recombination  to form muonium

“forward" direction (u* beam)

CORN SN €D

Applied electric field

Fig. 4-7: Model for processes occurring at the end of the muon track in a frozen Van der
Waals gas. (from D. Eshchenko et al., Phys. Rev. B 66, 035105 (2002)).
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Solid N>, E-field dependence of u and Mu formation

L 009
|
Zoost @ Wwoo |
T d
C 0.07 F Mu |‘D¢® -
E I @(b(])ﬁ
? Q.06 I ** 7
< | Iy
_ 005 : % -
= + (D * _
0o L ut (D) * |
2
o 0.03 | % ¥ | .
o 3-8 el
= —

-0 =5 0 D 10

Electric Field (kV/cm)
E<O0 E>0

< >
— — — e
- + - +
€ L e vl

R¢, (mean distance between electron and muon) and t (muonium formation time) can be
determined from the field dependence of the muonium formation probability (proportional to
the muonium initial asymmetry Ay, (0)). In 0-N; at 20K one obtains <R, > = 50 nm. From

this experiment the electron mobility b, can de derived microscopically (v, = bel::) and the
state of the electron investigated (V. Storchak et al., Phys. Rev. B 59, 10559 (1999)).

Example:

B-N; (hcp), =30 ns, R, =25 nm, be~ 107 em*/V/s (T> 35.6 K)
—> Electron localized

a-N; (fee), ©<<I ns, Re, =50 nm, be> = 10°cm?/V/s (T<35.6 K)
—> very large electron mobility, e.g. electron is delocalized
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4.6 Positive muon in metals

A positive muon represents a positively charged impurity at a generally interstitial position of
the lattice. To first approximation the muon behaves like a proton (but with different zero
point energy, quantum mechanical effects... ). The charge and spin of the muon change local
the electron and electron spin density.

Electron- and spin distribution around a p* (p) in a metal:

_I_E__r_l_rf!'lllulllll

i

=T T T

CHARGE AND SPIN—DENSITY DISTRIBUTION
=]
|

T 177

Tty

Fig. 4-8: Charge- and spin-density distribution around a positive muon in a spin-polarized
electron gas with rs=2 and polarization &, =0.17. The solid and dashed curves correspond
respectively to normalized charge density n(r)/ny and normalized spin density
n'(r)-n*()

n ~ng

. From P. Jena et al., Phys. Rev B 17, 301 (1978).

ng: free electron density. Definition of ry : Radius of a sphere (in units of Bohr radius), which

. 1 .
contains one electron: ny = ———— , & : Bohr Radius

3
gn(rsaO)

The charge impurity represented by the muon increases the electron density at the muon site
(see figure 4-8) from ny to n(r) and modifies the spin polarization of a spin polarized gas
T Ty 4
from &, = To Mo &(r)= n (H-n7(r) :
n, n(r)
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Fig. 4-9: Charge- and spin-density enhancements at a p" site for bulk densities 1< r,<5. The
solid and dashed curves correspond respectively to normalized charge density n(0)/ny and
n' (0)-n*(0)

ng —ng

normalized spin density . From P. Jena et al., Phys. Rev B 17, 301 (1978).

Note that the spin density at the origin is enhanced over the ambient polarization to a much
lesser degree than the charge density.

Comparison of local electron densities:

- Electron gas (undisturbed) with r=2 (typical): ny(, =2)= !
~n(2a,)’
3 (2a9)
- Electron gas with muon impurity (see Fig. [4-8]): n(0) =16n, = 16
~m(2a,)’
3
- Free muonium (density at muon site): = ln(O)
3 na03 2

In a metal the electron density at the muon site is comparable to the value in muonium. In
spite of this, if we stop muons in a metal we do not observe muonium formation: the
screening of the Coulomb potential hinders its formation and the scattering of the electron

with the conduction electrons makes such a state very short lived. A short lived ,,bound state”

with two electrons (Mu’) and very small binding energy is however in principle possible.

97



Screening in a metallic medium

Macroscopically there is no electric field inside a metal. This means that a single positive
charge must be screened within a few Angstroems.

The semi-classical Thomas-Fermi approximation describes the static screening response
(0=0) at long wavelengths ( k<< kg ), which corresponds to a slowly varying potential as a
function of position 7 relative to the impurity charge.

In this approximation the dielectric constant can be approximated as:
2

kg
(0, K)=1+ (see e.g. Kittel, Solid state physics) [4-26]

and the screened Coulomb potential becomes:

V. () = [4-27]

In this potential the long-range nature of the bare Coulomb potential is exponentially
suppressed with a screening length scale of s, = 1/kg r.

4Tt80 |f|

For a 3D free electron gas

~ 0. 5( )*”6 [4-28]

For a typical metal (e.g. Cu) we get Iy, = 0.054 nm. This indicates that the Coulomb potential
range is cut off within a lattice parameter. In a semiconductor, the screening length can be
considerably longer because the carrier concentration is much smaller; for a typical value of
n. = 10" em™, 1/kg ¢ ~ 1.7 nm.

A refinement to the original Thomas-Fermi calculations was done by Lindhard (J. Lindhard,
Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd., 28 (1954)) predicting a lesser degree of
screening and an oscillating structure at larger distances from the impurity.

Since the Thomas-Fermi approximation is a long-range approximation it cannot adequately
describe the response of the electron gas to a short-range perturbation caused by a point-like
charge. In order to get a more accurate description, Lindhard replaced the T-F dielectric
function with:

2

g(0,k) =1+ —=-—F(—) [4-29]
k> 2kg

where

R = "o Ifj [4-30]

and obtained the following expression for the screened impurity potential
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k.t k
Vot S0l x=t [4-31]
Q+x’)} ot 2k,

The main feature of this potential is the oscillatory 1/r° behaviour also known as Friedel or
RKKY oscillations (see Chapt. 6. Some applications in magnetism).

Muonium
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Fig. 4-10: Range of carrier concentrations in various groups of material with
their characterization with respect to experimentally observed muonium (from
J. Chakhalian, PhD Thesis, UBC 2002).
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4.7 Negative muons in matter: muonic atoms p'Z

A thermalized " is captured by the Coulomb potential of the atoms and forms an excited
muonic atom. The negative muon behaves as a heavy electron (capture in an atomic shell,
followed by cascade de-excitation via Auger and X-ray emission). After the cascade the
muon can be captured in the nucleus.

The thermalized p” will be captured in an excited state with similar energy and size as the 1s-
level of the corresponding hydrogen-like atom. Initial state of the muonic atom:

. a
Bohr radius: r,° = -2 n?, . =——%n
n Z n

m
from =, — n=|-+t=14
me

The formation of muonic atoms leads to depolarization as a consequence of spin-orbit
coupling, cascade and hyperfine interaction with the nucleus I # 0.

(This is one of the reasons why negative muons are less useful than positive muons for muon
spin rotation and relaxation experiments).

Estimate of depolarization:

Classically the initial polarization Pj, is reduced by a factor 3 because of the spin orbit (LS)
coupling (here §“ - wspin, L: angular momentum of the atomic shell of capture):

1
I (cos 0)2d(cos 0) <
p, ! :éPin ,(cos 6)2 oc (I:-’gu)(i-gp) "

1
J' d(cos0)
|

The analog quantum mechanical expression is:

1 2 1
P=-P (1+——), for J=L+—
3 in 2L+1) 2
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Atomic capture of u
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Fig. 4-11: Energy levels of hydrogen-like muonic neon.

Comparison of binding energies in electronic and muonic atoms:

Bohr model:
2
Efl = 13.6Z—2 [eV]
n [4-32]
2m
EY =13.6Z—2—“ [eV]
n- m

€
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Muonic x-rays

1200 ] ] | | ]

energy (keV)

Fig. 4-12:
Energy spectra of muonic x rays observed in deuterium

at various target densities @ (given in units of LHD): (a) @

=1.145, (b) ®=0.0783, (c) ®=0.0399, (d) ®=0.0133. The lines

corresponding to the K*?, Kﬁd , and K“;d transitions are separated.

The solid lines indicate Gaussian fits. The density dependence of

the line intensities is clearly visible. The x-ray peak at 1.74 keV is

due to fluorescence excitation of the detector’s silicon material. The
isotopic energy shift compared to muonic hydrogen is demonstrated

in (d), where the dotted lines display the corresponding K*# lines

which were observed in muonic hydrogen [8].
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Life time of negative muons in muonic atoms. The capture process

B +p—on+v,

shortens the natural lifetime of p .

Muon capture probability in the nucleus as a function of atomic number Z:

0 1T E T T

=TT

2.2 psec for free muon

N
T T T I

~N
I

Meon lifetime (sec)

T 1T

> I YT O O 8 B

11

I T ]

n
o

L1 deerel
Free decay branch (%)

2 5 10 20 50 100
Atomic number (Z)

Fig. 4-13: Negative lifetime and free decay branch as a function of atomic number.
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Up to Z =~ 10 the total rate is comparable with the decay rate.
The decay rate (1/lifetime in matter) is proportional to the probability to find a negative muon

in the volume of the nucleus, where it is then captured:

j 05 (P ~] 0" (O)PRyerens

Nucl. vol.
1

Ryucteus =1.75 Z [fm]

_T
0" (r) = 1 eA, a=20(2ey 4, =0.053nm

na’ Z m,,
1
[9°O)F =—5
na
10" (0)*R 3y yetens € Z°Z = capture probability o« Z*
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Fig. 4-14: Basic properties of the muonic hydrogen atom and of the muonic hydrogen
molecular ion.
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4.8 Muon Catalyzed Fusion (LCF)

Muon catalyzed fusion: Idea: induce nuclear fusion via formation of muonic molecules and
muon capture. Can we gain energy by this process?

Fusion rate is determined by:
* Collisions between muonic atoms and atoms
+ Elastic collisions
* W - Transfer
» Resonant processes (depend on hyperfine state of the molecule)

Energy cycle:

dut — po+n

(3.5MeV) (14.1 MeV)

o, Sticking
probability

Other possible reactions:
ptd > He+y (5.5 MeV)
ptt> ‘He+vy  (19.8 MeV)
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Energy production via uCF ?

The fusion yield is limited by the sticking process.

Fusion yield per muon:

v- 1
GO+ W)
}\'C
1
Ao =— muon decay rate
Ty

A, cycling rate

W~ o

S

for W—0 Yn—>§t—cz430
0

for A, >> A Yn%%zlﬁ = 17.6 MeV - 175 = 3 GeV per muon

Energy production?

Assume a flux of 10'® p/sec

Power: 10'%/s -3-10° eV =3-10%° eV/s

(To compare: the Leibstadt nuclear power plant delivers 1275 MW).

. 1.6-10"%)eV > 5MW
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5. Principles of Muon Spin Rotation/Relaxation/Resonance

The expression uSR is the acronym for Muon Spin Rotation/Relaxation/Resonance and
underlines the analogy with NMR (Nuclear Magnetic Resonance). There are, however,
important differences (see key features of uSR, next page). For instance with uSR it is
possible to perform measurements without applying a magnetic field (so called zero field
uSR, ZF) a big advantage with respect to NMR because this allows to investigate magnetic
systems without perturbation. NQR (Nuclear Quadrupole Resonance) is also a zero field
technique, but for magnetic investigations less direct than zero field uSR.

The method is based on the observation of the time evolution of the polarization P(t) of an
ensemble of muons implanted in a sample. This quantity contains the physical information
about the interaction of the muon magnetic moment with its local environment. P(t) is
obtained from the intensity of decay positrons as a function of time after implantation.

The muon acts as a local very sensitive magnetic probe. Value (o =yMBIOC ), direction,

distribution and dynamics of internal (microscopic) magnetic fields can be measured. Such
fields may be produced by electronic moments, nuclear moments or local currents as those in
superconductors. With uSR it is also possible to determine magnetic, non-magnetic, and
superconducting fractions. Muonium acts as a Hydrogen isotope, e.g., in chemical reactions
or as impurity in semiconductors and insulators and gives information about its electronic
environment.

In a uSR experiment one measures the positron rate with scintillators, which are placed
around the sample.

The positron is emitted preferentially in the spin direction of the muon at the moment of the
decay.

dN . (t) = oA
—= —~oc (1+APcos0)=(1+AP(t)-n) [5-1]

dQ
A: Asymmetry parameter (the theoretical decay asymmetry averaged over the positron energy
is 1/3, see Chapt. 1. Introduction). n is the direction of observation, defined by the position
of the detectors.

After detecting the positrons from several 10° stopped muons, one obtains histograms as in
Fig. 5-1, which in the ideal case have following dependence (t=0 is the implantation time, Ny,
is a time independent background):

t

N ()=Nge ™ (1+AP()R)+Ny, [5-2]

The recorded events in the positron histograms reflect the time evolution of the polarization of
the muon ensemble. Ay is the experimentally observable maximum asymmetry, generally
smaller than 1/3.
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5.1 Key features of uSR

Muons are purely magnetic probes (I = %, no quadrupolar effects’)
Local information, mainly interstitial probe - complementary to NMR

Large magnetic moment: Hp = 3.18 pu, =8.89 u, > sensitive probe

Particularly suitable for:

Very weak effects, small moment magnetism ~ 10~ pig /Atom
Random magnetism (e.g. spin glasses)

Short range order (where neutron scattering is not sensitive)

Independent determination of magnetic moment and of magnetic volume fraction
Determination of magnetic/non-magnetic/superconducting fractions

Full polarization in zero field, independent of temperature = unique measurements without
_yNAl(d+1)

disturbance of the system (typical polarization in NMR <1, > T
B

B is very small.

NMR needs high magnetic fields and low temperatures)
Single particle detection = extremely high sensitivity

No restrictions in choice of materials to be studied

-5 -1
Fluctuation time window: 10 <t<I0 s

Bound state: p'e” muonium, used as H-Isotope for spectroscopy, impurity studies, radical
chemistry, reaction kinetics

Other features:

Number of implanted muons << number of atoms = negligible sample damage

No perturbation of the system (unlike spin probes in EPR)
No special isotope is needed (as in NMR, Mdssbauer)

7 Q=<I,MI=I‘3Z2—r2

LM =1> since 322 12 o« Y, o (irreducible tensor operator), by Wigner-

32% —1?|,1>=C < L1312 - I?

(see C. Slichter, Principles of Magnetic Resonance, Chapter 9).

Eckart theorem: Q =<1, 1

LI>=C-1(2I-1),i.e. Q=0 for I=0 or I=1/2
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5.2 Experimental details
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Fig 5-1: Principle of a uSR-measurement in transverse field (TF) (Time differential uSR).
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Fig 5-2: a) Schematic of a uSR apparatus, top view. b) Detailed view of detectors and c)

sample region of the General Purpose Spectrometer (GPS) at PSI.
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One distinguishes between continuous muon beams (PSI and TRIUMF, Canada) and pulsed
beams (ISIS/RAL, UK and J-PARC, Japan).

At PSI the accelerator time structure (50 MHz microstructure) and the pion lifetime (26 ns)
leads to a practically continuous surface muon beam:

proton beam, 50 MHz
El
L)
o 4T
=
=
S
E 2T
0 L ) L L | L | L | L |
0 20 40 60 a0 y“’*
=100 -
:\’ wss Y N N N NN
®
5 50
3
£ 108 -
0 ) ) . . . . ) ) ) | ) 20000 20050 time (r2|2)1 00
0 10000 20000

time (ns)

Fig. 5-3: Build-up of the muon rate at PSI.
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In a uSR experiment with continuous beam one has to take care that only one muon at a time
is present in the sample before decaying, otherwise the time correlation between muon and its
decay positron is lost (see Fig. 5-1). This is done electronically (rejection of second muon
event by analysis of the timing diagram) and by limiting the incoming muon rate.

1stp? 2nd p*
data gate

| 10 us [
1ste” 2nd e"

1st pu*: there was no other p* for at least 10us in the past
(no 2nd ') « (no 2nd &)

R.cc =R, xexp(-2AtR ), At=10 ps

Fig 5-4: Timing diagram of a uSR experiment at a continuous muon beam facility such as
PSL
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?.’_ 20 - R,..= Fluxexp(-ZAt Flu), At=10ps
x
3
o 15
10
5
0 PR S T SR [ TR TR TR S A TR S SR S I S S S
0 50 100 150 200
R, (keps)

Fig. 5-5: Accepted rate as a function of incoming rate for a time window of 10 us.
exp(-2AtR,) is the probability that there is no second event in an interval At if the rate is R,.

At a pulsed machine all the muons are contained in a pulse (50-100 ns wide) with low
repetition rate (25-50 Hz). The implantation time is given by this pulse. All the decay
positrons of a pulse are measured at once. This allows a higher rate. However, one has to take
care either to have only one positron in a detector within the observation time, or if there are
more than one to get the time stamp for each one. This requires a high segmentation of the
positron spectrometer.

A big disadvantage of a pulsed machine is that the time resolution is given by the pulse width
(50-100 ns), whereas at a continuous beam line the time resolution is determined by the muon
counter which is typically better than 1 ns.

A pulsed beam has in principle a lower background than a continuous beam and allows a
better exploitation of a pulsed environment. At PSI, the so-called muon on request
electrostatic kicker device (MORE) allows only one muon at the time in the apparatus. This
reduces the background, while keeping the excellent time resolution of the continuous beam.

~25 us

Reset if muon 1s
detected in

muon counter
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In the MORE mode the muon detector (M-counter) in the spectrometer (GPS or LTF) is used
to trigger the kicker. The kicker is switched to the spectrometer running in "MORE mode"
(say, GPS) for a maximum of Sus at a fixed repetition rate (max. 40 kHz). The signal of the
first muon hitting the trigger detector (M-counter) after a minimum delay of 200ns is used to
switch the kicker back to the spectrometer running in "parasitic mode" (Low Temperature
Facility, LTF in this case). The delay is necessary to avoid damage to the power switches.

e :
: Muons on Request (MORE):
Kicker Septum Magnet

~ Spin
| Rotator
“-Q\ |
' GPs o uor @ U
10000 = .
3 Silver
1 B,=10mT
1000
£ 3
2 ] Conventional uSR
5 .
o
B 1m-§ 2 | Fitted function :
c By + N, 6 [T + A 6™ cosat + )]
m E
>
w

10 12 14 16 18 20
Time (us)

Fig. 5-6: Top: Layout of the GPS/LTF beam areas at PSI with spin rotator and MORE.
Bottom: Example of uSR in silver in an external magnetic field of 10mT, taken with the GPS
instrument (General Purpose Spectrometer) at PSI in MORE mode. For comparison a
conventional spectrum taken at the same event rate is shown. The background in MORE
mode is at least a factor of 100 lower than in conventional mode, thus easily allowing the
study of muon-spin precession and relaxation up to 20 ps. Insert: Reduced asymmetry plot for
the first 2us in MORE mode.
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Conventional MORE Pulsed uSR
Trigger none GPS 50 Hz
By/Ny[107] 660 8.7 ca. |
Time resol. [ns] <1 <1 80
Event. rate [10°/h] 12 20 20-100

Table: Comparison of results obtained with GPS in conventional and in MORE mode (using
the GPS muon-counter as trigger). Values for pulsed uSR (at ISIS Rutherford Appleton
Laboratory, UK) are also shown.

After background subtraction the number of events in a detector placed in direction n
(normally defined by the direction of the incoming muon beam or of the initial polarization):

t

N_ (t)=Nge ™ (1+A P(t)h) [5-3]

<I(t)-fi>

P(t)h =P(t) = 10

< > Average is over the muon ensemble

e.g. for forward (F: forward with respect to muon spin 1) and backward (B) detectors we
have:

t
Np(t)=Nge “(1+AP(1)-fip)

ot t >4
Np(t)=Nge ™ (1+AoP(t)-ig)=Nge ™ (1-A P(t)-fig)
The asymmetry A(t) is obtained from:
A = AgP() = ~F D= N6 [5-5]

Ng(t)+ Ng(t)

Ay is a parameter to be determined experimentally. It depends on factors such as detector
solid angle, efficiency, absorption and scattering of positrons in the materials on the way from
sample to detector. Generally, Ay < 1/3 (intrinsic decay asymmetry). Typical values lie
between 0.25 and 0.3.

The function A(t) contains the information about the physics. In a real spectrometer one has to
consider that the solid angles and efficiencies of the detectors may be different. This is taken
care of by introducing in [5-5] one or two additional (fit) parameters (so called o, most
important, and B parameters) (see exercise).
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One distinguishes between transverse field- (TF) (B, P(0) longitudinal field-
(LF, B__|| P(0) ) or zero field measurements (ZF, EcthO).

ext

LF (and ZF) uSR H,

B T F
= g
u v

TF—u5SR
B F
spin ,//,M ,//,
~ {b)
L
TF—uSRk

Fig. 5-7: a) Longitudinal (LF) and zero field geometry (ZF). b) and c) Transverse field
geometry (TF).

Often the direction of B,,, is taken as z-axis. With 13(0)” n then the measured polarization
directions are indicated as:

In LF und ZF: P(t)
In TF Py(t)
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TF- spectrum and polarization function:
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Fig. 5-8: Examples of uSR spectra and polarization functions.
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5.2 Polarization and relaxation functions for static fields

Spin precession in a static field.
Static means: the local field experienced by the muon is constant over times t = 5-20 1.

Fig. 5-9: Muon spin precession in a constant field (E or EH ). The initial polarization is along
the z-axis, which is also the observation direction ().

<1(t)-1(0)>

P(t)="—
\1(0)\

[5-6]
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5 5 2 B2+B/?
P(t) =P,(t) = P5(t) =cos” O +sin” Ocos(wy t) = BZ2 + 7 Y cos(y,,Bt)

Py (t) = %sin 20sin @(1 —cos(wy t)) —sin O cos @sin(wy t) [5-7]

P, (t) = %sin 20cos @(1—cos(my t)) +sin Osin @sin(wy t)

B=B,>+B,>+B,’

By making use of Eq. [5-7], with a single crystal sample one can determine the direction of
the internal fields from the angular dependence of the amplitudes of the oscillating
components.
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An example is a measurement of the tetragonal heavy fermion compound CeRhlIns (A.
Schenck et al., Phys. Rev. B 66, 144404 (2002)).

3.0 T . T v T v T v
S 25f L 4-. . .
© .
= s J \ 1 c-axis
e i’ \ A
5 20 1’ § -
2] ’ A}
g ’ \
, A
w  15F ' \ h
@ / N ’
8 ll \\ i ,
‘5_ 1.0 |- ’ \ I' -1
Y ’ \‘ ,
R 2 \ .
o 0.5 " \\ N .
g_ k4 ~ "i'
g oop E
-0.5 1 i 1 . 1 i 1 i
0 50 100 150 200
Angle

Fig. 5-10: Crystal structure of CeRhIns. Amplitude of the precession signal as a function of
the rotation angle of the crystal. From the measurement a local field pointing at 26° with
respect to the c-axis is determined. The local field in this case is produced by an
incommensurate helical structure of the Ce moments and also induced moments at the Rh
sites.

If the field distribution probed by the muon ensemble p(B) is known we can calculate the
corresponding polarization function:

j P, ()p(B)d’B

Ip(ﬁ)d3B

Pz (t) =

This expression can be used to calculate the muon spin polarization in several special very
useful cases.

122



A) Zero Field case with ‘E‘ constant, random direction isotropically distributed (e.g. in

domain structures of magnetic materials or in ferromagnetic or antiferromagnetic powder
samples).

In this case:

p(B)d’B = %5(}3 ~B,,)dBdQ
T

1 . 1 2
P(t) = EJ.(COS2 0+ sin? Gcos(y“B“t)) d(cos0)dd = §+§cos(yuBut) [5-8]

If the fields are isotropic in the xz or yz planes, we obtain P, (t) = %+%cos(ypot)

1.04
| n
0.8 |
0.8 0.64
. 0.4 1
= 2 T ] 3
11) 0.2
o
0.4 0.0
0.2_ _0'2- U U U U U U u u
-0.4-
OO X T * " T ) T = T = T * 1
900 950 1000 1050 1100 0.0 0.2 0.4 0.6
B-Field [G] time [us]

Fig 5-11: Polarization and corresponding magnetic field distribution in the case of equation
[5-8].
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Eq. [5-8] and Fig. 5-11 correspond to the ideal case. In the real case, there is distribution of
fields around a mean value; i.e. the field distribution is not a delta function but has a finite
width, better described e.g. by a Gaussian or Lorentz distribution. In the case of a Gaussian

field distribution of width < ABi >=< AB?, >=< AB% >=< AB? > small compared to the

average field B, [5-8] becomes for instance:

1
1 2 -1 (AR
P(t):§+§e 2 cos(y,Byt)

< AB? >=< (B; —<B; > >, iExyz < ABi >=< ABi >=< AB% >

0.30
0.25 |
0.20 |
0.15 |
0.10 |
0.05 |
0.00 |

-0.05 R —
00 05 10 15 20 25 3.0 35 40

PrBa,Cu,;0-_5 powder
T=100K

A'Px(t)

Time (us)

Fig 5-12: Polycrystalline PrBa,Cu3;07.s5 , ZF measurement, AF order of the Cu moments. The
asymmetry shows the 2/3 precessing component (damped) and the 1/3 non-precessing
component (B.M. Wojek et al, Physica B 404, 720 (2009)).
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Fig 5-13: ZF uSR spectra in the CaV;0; antiferromagnet. The local field is a consequence of
the AF order of the V moments. We observe two precession signals corresponding to two
different muon sites and in addition the non-precessing 1/3 component. The bottom curve
shows the corresponding microscopic magnetization curve (R.E. Walstedt, L.R. Walker,
Phys. Rev. 9 4857 (1974)).
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Fig 5-14: Zero field measurement. Initial asymmetry A(0) as a function of temperature in two
polycrystalline samples. a) GdNis (ferromagnet) b) UPt,Si, (antiferromagnet). At T, and Ty
respectively the asymmetry falls to 1/3 (from P. Dalmas de Réotier, A. Yaouanc, Journal of
Physics, Cond. Matt. 9, R9113 (1997)). The origin of the jump can be the formation of large
local fields or of fluctuating moments, so that the precessing 2/3 part of the polarization is

suppressed.
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Fig 5-15: ZF uSR spectra in an organic antiferromagnet, showing the magnetic phase
transition (S. Blundell et al., Physica B 289, 115 (2000)). The T-dependence of the
spontaneous precession frequency gives the local magnetization. The peak in the relaxation
rate M(T) at Ty is typical of a phase transition. In this case only the local magnetization is of

interest so that P(t) = A} +Ate” D

cos(2nv“ (Mt+o).
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B) E Gauss distributed in x, y and z direction

<B;>=0 and 1=X,y,Z

[\

<AB12>:<(B1—<Bi >)? > = <Bi2>—<Bi 2= <B2> =2 [5-9]

i 2
Yu

A Gauss distribution of fields is obtained in the case of a dense arrangement of randomly
oriented moments (for example nuclear moments, which on the uSR time scale can be
considered as static) and is justified by the central limit theorem.

Magnetic field distribution:

v - v,B!
G _ u 2 .
p (Bl) - 5 20 1=X,y,Z2 [5_10]
\27no
AR Y
I =1 =
7 I 5
i ™~ B i
T e b‘;! L\\ LT L (B )
muon L] p i
i Er 2R
[ = TS i)
kY i A
i) ™ M
Ny i q\x M Bi

(a) (b)

Fig. 5-16 a) Randomly oriented dense moments. b) Resulting distribution of fields
projected onto an axis. The projection is a Gaussian distribution in each of the field
components.

The distribution function for the absolute value ‘B‘ =B is

v,B’
G o Tn 37 he 2
P (B)dB_(f) e 20 .47B%dB [5-11]
2nc

Which is a Maxwell distribution with maximum at B = \/5 o and < B>~ § 2 .

Ty T Yy
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Fig. 5-17: Distribution of the field value p(B) for Gauss distributed By, By and B, (c=1 ps™.

The relaxation function is obtained in this case from:

POKT(0) = € (B,p° (B, )p" (B, )Py (014B, dB, dB, [5-12]

Where Pg(t) is given by [5-7].

The integration in [5-12] can be explicitly performed, by using for instance spherical
coordinates. We obtain the well-known Kubo-Toyabe relaxation function (Fig. 5-19)
(R. Kubo and T. Toyabe in Magnetic Resonance and Relaxation, edited by R. Blinc .
North-Holland, Amsterdam, 1967):

PRI (1) = %+§(1 -o’th)e 2 [5-13]

T

On average one third of the muons does not precess or relax.

Damped oscillation (with damping o, relaxation rate) around maximum
of ‘B‘

The 1/3 and 2/3 components can be qualitatively understood by considering that the local
field is random in all directions: about 1/3 is parallel or antiparallel to the muon spin and
about 2/3 is perpendicular.
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In the paramagnetic state, a Kubo-Toyabe function is very often observed reflecting the field

distribution of the small fields created by the nuclear moments.

Polarization

0 2 4 6 8 10
Time (microseconds)

Fig. 5-18: Observation of a Gauss Kubo-Toyabe relaxation in semiconducting InN, Y.G.
Celebi et al., Physica B 340-342, 385 (2003).

C) If the local fields instead of Gauss are Lorentz distributed:

3

L Tu 2
p (B)JdB=(—%) ——————-4nB“dB
n (a2 + yle2 )2

a

One obtains the so called static Lorentz Kubo-Toyabe function (ZF):

P KT () :%+§(l— at)e™ [5-14]
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(a) (b)

Fig. 5-19: a) Randomly oriented dilute moments. Muons at site A feel weak fields, while
those at B feel stronger fields. b) Resulting distribution of fields projected onto an axis. The
projection is a Lorentzian distribution.

It holds:
L L Y“ a
(B )=Hp (B)dB,dB, = ()&
* R g (a2+yﬁB§)
(X = HWHM)
Yu

and in analogy for By and B,.

But differently from the Gaussian case:

p"(B)dBdQ = p" (B, )p"(B,)p"(B,)dB,dB,dB,

Sometimes a general relaxation function, which in the limiting case gives the Gauss and
Lorentz Kubo-Toyabe function, is used:

}\‘(lt(’.
pGenKT 1 2 ye0)e o 1<a<2
303
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Gaussian

Y
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{Kubo-Toyabe, 1967)
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{Kubo, 1979)

Fig. 5-20: Static ZF polarization functions, corresponding to Gaussian and Lorentzian field
distributions.
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D) Longitudinal field case

LF Gauss KT: as example B) but in addition an external field ]§em|| z is applied. In this case
the (total) field distribution modifies to:

_ 1.(By-B,)’

LT 2¢° [5-15]

NP

The B, and By distributions remain unchanged and the B, distribution is offset. If we integrate
[5-12] with the new distribution we get the so called Gauss-Kubo-Toyabe relaxation in
longitudinal field (R.S. Hayano et al., Phys. Rev. B20, 850 (1979)).

p9(B,) =

2.2 t 2.2

o't ) 4 _ ot
+ % e 2 sin(y,Begyt)dt’
(yuBext) 0

_ 267 -
POKT (B ) =1-———|1-¢ 2 cos(y,Beyt)

(1uBex)’
[5-16]
If Bexe is large with respect to the local fields the spin will be aligned along the z-direction (so

called decoupling of static fields). LF measurements are used to distinguish between static
and dynamic contributions to the relaxation.
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Fig. 5-21: Field dependence of the polarization function for isotropic Gauss distributed fields.

Time scale in units of 1/c (here indicated as AG'I). Bex: 1n units of o/y,.The zero field curve
corresponds to the Kubo-Toyabe function.
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Fig 5-22: Example of Gauss Kubo-Toyabe relaxation and longitudinal field-decoupling:
Muon spin relaxation in the paramagnetic phase of MnSi (R.S. Hayano et al., Phys. Rev B 20,
850 (1979)). The local field is produced in this case mainly by the Mn nuclear moments. The
electronic Mn moments fluctuate very fast and do not contribute to the muon spin relaxation.
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The behavior of the LF relaxation can be understood qualitatively by considering that the 1/3
component of Eq. [5-8] corresponding to the muons with spin parallel or antiparallel to the
local field is increased in By, whereas the 2/3 component is reduced while still showing
indication of a precession around the external field.

—»>k —

Bext = 0 Bext?l: 0

E) LF with Lorentz distributed local fields, B_|| Z.
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0.0 [ | | l S
o 2 4 6 8 10
at

Fig. 5-23: G,(t): Muon spin polarization in random distributed Lorentz fields as function of
the external field (wp /v, ) (Y. Uemura et al., Phys. Rev. B 31, 546 (1985)).
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pLoKT (t,Bex) =1-——7—]j (yuBextt)e_at —(

a 20 . _
(Y B t) Y B t) [JO(YMBextt)e at_l]
pu-ex p-ex

[5-17]

yu ext

t

a ; N a—at’ 1.

_{1"'( B )ZIaIJO(YpBextt)e atdt
0

jo and j; are spherical Bessel functions.

F) Transverse field case. Relaxation in an external field: B,,, L P(0) and || Z.

ext

If the internal fields are Gauss distributed, we have
7B, 7,B; v, (B, ~B,)’
G, D\ _ Yp - 262 Yu - 25> YH - 267
p (B)=—=e¢ 4 —e¢ %0 ——c¢ G [5-18]
\2no \2no \2no

with |B

ext z

>> g, in [5-7]: For all fields © = 90°, Pz(t)=cos(y,Bt) and y,B=y,B
T

POTF (1) = [p° (B, )p° (B, )p (B, )Py (1)dB,dB, dB,

_ 1.(B,—B,)’ B, 1B

= J‘(ﬁ)% Zﬁzcos(y“BZt)deje_ 2" ¢ 2szdBydBX = [5-19]

Gt

=e 2 cos(y,Bext)

The Gauss relaxation does not depend on By, if |B

ext | >> 2. Fig. 5.8a shows an example of
Y

n
Gauss relaxation (depolarization due to dephasing, inhomogeneous broadening).

Q) If the local field is Lorentz- instead of Gauss distributed, we obtain:

PLTE (1) = e cos(y, By t) [5-20]

In both cases the oscillation frequency gives the average local field (in this case Bey) and the
damping gives the local field width.
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Depending on the physical conditions, there may be various contributions to the average field,
which is then not given simply by the external field. An example is the Knight shift K where
Bexi= Bext(11K), another example is the vortex state in a superconductor, where B> <B>,
average field generated by the vortices, see Chapt. 7. uSR studies of superconductivity.

. c .
In the static TF case, when <B, > >> —=4/< AB% > , a Gauss relaxation reflects a Gauss
Y

distribution of local fields and an exponential relaxation reflects a Lorentz distribution of
local fields (polarization and field distribution are related via a cosine Fourier transform).
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5.3 Special cases of polarization functions

In some cases the interaction with nuclear dipoles can give rise to coherent muon spin
precession in ZF even if the nuclear dipoles are randomly oriented. This has been observed in
materials, where there the muon is close to one or two nuclear spins. In ferroelectric
potassium dihydrogen phosphate KH,PO,4 (KDP) and antiferroelectric ammonium
dihydrogen phosphate NH4H,PO4 (ADP), the muon forms an oxygen-hydrogen-like bond
and is relatively close to a proton which is responsible for the hydrogen bond between two
adjacent phosphate tetrahedra.

Fig. 5-24: Top: Unit cell of KDP in the paraelectric phase (K: red, P: grey, O: blue, H:
green). The muon forms an O-p bond and probes the dipole field of the nearest H nucleus.
Bottom: Possible muon and proton sites between oxygen atoms of neighboring phosphate
groups.
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The time evolution of the polarization of a muon interacting with a single proton's dipolar
field is obtained by solving the Hamilton operator of the dipolar interaction between two spin
1/2 particles:

S G T S R B R (i, -R)(H, -R)

[5-21]

Where R =Rii defines the p-p axis direction and f,and {, are the magnetic moments of

muon and proton. Expressing the magnetic moments with the gyromagnetic ratio and the
spins (in units of 7 ), the operator can be written as:

. l -~ - ..

HY = hop, h—z[lu 1, -3(1, 1), -n)} [5-22]
i 3

with op, =200 2 27.0.00038238 MHz 22

The eigenvalues of [5-22] are 0, -0.5wp, -0.50p, ®p . Three components with definite
frequencies (0, 0.50p, ®p and 1.5 op) should be observed at an arbitrary angle 6 between the
muon spin and the muon—proton bond direction (see P-F. Meier, Hyperfine Interactions, 17-
19, 427 (1984) and K. Nishiyama et al., Hyperfine Interactions, 106, 111 (1997)).

P, (t) = (cos 0)* P (1) + (sin 0)° P (t) [5-23]

Where B (t) and P, (t)are the time dependent polarization (for initial spin parallel or

perpendicular to 7, taken here as the muon-proton axis direction # )®:

P(t) = %[1 +cos(opt)]
{ 3 [5-24]
P (t)= EI:COS((OTD t)+ cos(% t)}

¥ The muon spin precession frequency and depolarization depend on the temperature. This opens the possibility
to study ferroelectric and antiferroelectric transitions with a magnetic probe (B. Wojek, Diplomarbeit, ETH
Ziirich, 2006 and E. Morenzoni et al., Physica B 388, 274-277 (2007)).
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Fig. 5-25: Asymmetry spectrum in KDP at T=80 K, showing the spontaneous oscillations

observed along different directions. P(0) L c-axis, ¢ axis in plane (B. Wojek, Diplomarbeit,
ETH Ziirich, 2006).

Another special case is the formation of the so called F-pu-F complex, where the muon is
located between two F ions ("°F has high electronegativity and a small spin % nucleus with
high nuclear moment and ~ 100% abundancy). This leads to coherent oscillations.

Assuming r;=r1; and 0=180° one has the analytic solution for a powder averaged polarization

h
Lo MYuYF
Op =—
(op 4n RS )

3 1 3+43
os(T

P, (1) =% 3+ cos(xBopt) + (1—%) cos(3_Tcth) + (l+ﬁ)c

N

opt) [5-25]
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Fig. 5-26: ZF asymmetry spectra for several metal fluoride crystals (<100> axis parallel to
P(0)). The solid line is a fit to Eq. 5-25 including a multiplicative relaxation function and a
background contribution (from J. Brewer et al., Phys. Rev B 33, 7813 (1986)).

Details of the uSR spectra are very sensitive to the relative distance r; and r, from the two F
ions and the angle a between r; and r,. This property has been used to identify various classes
of sites that occur in molecular magnets (T. Lancaster et al., Phys. Rev. Lett. 99, 267601
(2007)).

Comparing the experimental data with the refined structure obtained by Density Functional
Theory (DFT) the correct location and shape for the F-pu+-F complex has been predicted in
YF; (F. Bernardini et al, Phys. Rev. B 87, 115148 (2013)).
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Fig. 5-27: Possible muon sites in YF;. The label A identifies the expected site.
The localization volume surface is shown in dark yellow.
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Fig. 5-28: Fit of YF; data (D. R. Noakes et al., J. Phys. Chem. Solids 54, 785 (1993)) with the
conventional axial F-u'-F model (Eq. 5-25) and with the depolarization calculated for the
DFT predicted site in the fully relaxed structure (from F. Bernardini et al, Phys. Rev. B 87,
115148 (2013)).
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5.4 Example of TF-spectroscopy: paramagnetism of the conduction
electrons (Knight-shift)

The magnetic properties of simple metallic systems are determined essentially by the
conduction electrons. The magnetic response and susceptibility is determined by the Pauli
paramagnetism (related to the spin of the conduction electrons) and Landau diamagnetism
(related to the orbital moment of the conduction electrons).

The local spin susceptibility can be probed by NMR or uSR via the so-called Knight-shift
measurement.

Experimentally, one measures in TF the small shift of the muon spin precession in a well-
known external field By (accuracy needed 1-10 ppm).

In systems without localized electronic moments the shift is determined by the contact

interaction between u' spin and spin of the conduction electrons (in the presence of localized
moments, e.g. rare earth, additional dipolar and hyperfine terms have to be considered):

Bexp = Bext+ < Blclf > [5_26]

In our case the Knight-shift K is then:

Bexp= Bex(1+K) [5-27]
BC
K= <B¢> [5-28]

ext

It is proportional to the density of conduction electrons at the muon site (which gives the
strength of the contact interaction, see contact interaction in muonium) and to the Pauli
susceptibility (which reflects how much the conduction electrons are polarized by an external
magnetic field).

Pauli susceptibility

In a free electron gas, the density of states is:

D(E) = % Erj/z JE [5-29]

n: Electron density
Er: Fermi energy

Without external field, spin up and spin down states are equally populated.

If a field B 1s applied, the band with magnetic moment parallel to B will be lowered by
upBey and the band with antiparallel moment will be raised by the same amount. Since both
bands are filled up to Ep, there is an overweight of electrons with magnetic moment parallel to
Bext- As a consequence the metal develops a weak spin polarization.
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Electron density for both states:

nt = %jD(E + uBoy )F(E)E [5-30]
L1
0’ =2 [ DEE-pBe F(E)E [5-31]
1
F(E) = T F(E) Fermi-Dirac distribution, p chemical potential9

For small By the magnetization becomes:

{dD
M= (0" =1") 2 "By, [ FOENE = 15" Boy | DFB), - —D(E)dE
0 0
[5-32]
%Y—J
D(O)-0F(@@)=0 =-3(E-E,)
= MBzBextD(EF)
2
M=3Ds g [5-33]
2 E,

The Pauli susceptibility is:

M _pM _ én”Bz

XP ) Hext - Bext - uo 2 EF

[5-34]

The magnetization of the conduction electrons can be also expressed in terms of their average
spin <s,>:

B B
M=ngug<s,>=yp—t - <s,> =—7L 4, [5-35]
Ko NHBEeHo

' w=E {——(kBT ((k'i)“ﬂ, at T=0, 1=F
EF
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the average spin polarization <s,> can be written'” in terms of the average hyperfine contact
field <Bhfc>

. - . . = 2 2 .
With AI-S=-4, By and A :guoguuggeuB|cp(O)| (equation [3-19]):

2 2
<Bp; >= Ho 3 &cMp <5, > lp(0)]" = A [5-36]
BC
and K = =Zhr > we obtain'":
Bext
2
0
K =2y, 190 [5-37]
3 n
Up to a factor 2/3, K is equal to the Pauli susceptibility multiplied with the enhancement
O 2
factor M , which gives the ratio between the electron density at the muon site (in uSR
n

measurements) or at the nuclear site (in the case of NMR measurements) and the average
density of electrons.

' Here is the spin dimensionless

"'n general the hyperfine field at the muon site from the polarized conduction electrons can contain other
contributions and is given by:

By (R,) = :%Jld% D;(F - R, )M;(T)

where M(T) is the conduction electron magnetization and Dj; is the tensor expressing the coupling to it:

D;(X)=(V;V; —l5i'A)l —ggi'Al

379 7x 3 Y x
The first term expresses the dipolar coupling (see Eq. [3-16]). Polarized conduction electrons can also produce
dipolar fields if the corresponding magnetization (or spin density distribution) is not of spherical or cubic
symmetry with respect to the muon site. Since the first term transforms as a spherical harmonics of order 2, for a
spherical symmetric screening cloud only the second term contributes to the hyperfine field. With

1 -
A— = —41d(X) the second term yields the contact term:

i
BEr (R,) =2 gM(R,,) with By, ||2 R, =0)= 2 e obiai
ne(Ry) _EMO (Ry,) with By [|Z and M, (R, =0) = g up <s, > ¢(0) |~ we obtain [5-36] and
[5-37]. A more accurate way to write the Knight shift is the following:
Y&\t (@
n (Rp) —n (Rp) 2

K= %XP < T = EXPOL(RH)’ where nT(ﬁH) —n‘L (RM) is the actual (up and down spin)
o —1y

electron density at the muon site and nolr - noi' is the corresponding average density (see Chapt 4.6 ). The spin

enhancement factor a(ﬁu) has to be provided by theory.
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O -
— =0 1S
n

the so called ,,spin density enhancement factor®.

Since |(p(0)|2 is proportional to the hyperfine coupling A (Eq. [3-21] and [3-23]), it holds:
Koo Ayp [5-38]
Often the units are chosen in such a way that:

Ay
Naug

K =

[5-39]

y is the molar susceptibility ([emu/mol=erg/(G mol)] in cgs), N the Avogadro number and
A is in Gauss (given as G/ug because of 1/ ug in [5-39]). Measurements of the Knight-shift
contribute to the understanding of the local electronic structure of hydrogen in metals.
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Fig. 5-29: Top: Knight-shift at muon site (K,,) as a function of the Knight-shift at the nuclear
(lattice) site (Kyost) plotted for various metals. Bottom: Muon Knight-shift as a function of the

electron spin susceptibility from M. Camani et al, Phys. Rev. Lett. 42, 679 (1979).
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FIG. 1. Muon Knight shift in monovalent metals. The black dots are the experimental results from Ref. 3. The open

circles and triangles are the calculated Knight shifts for the octahedral and tetrahedral interstitial sites, respectively. The
solid line shows the jellium result, and the dashed line is the jellium result without the diamagnetic shielding.
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FIG. 2. Muon Knight shift in divalent metals. The black dots are the experimental results from Ref. 3. The open cir-
cles and triangles are the calculated Knight shifts for the octahedral and tetrahedral interstitial sites, respectively. The

solid line shows the jellium result.

Fig. 5-30: Self consistent calculations of the Knight-shift in mono- and bivalent metals.

(M. Manninen, Phys. Rev. B 27, 53 (1983)).
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5.5 Example of field distribution: field distribution from the sum of dipolar
fields produced by nuclear moments

Nucleus

Spin Iih_

Magnetic moment pih_
Polar coordinates

9. @

Fig. 5-31: Muon in the field of a nuclear dipole.

Magnetic field from a nuclear dipole with spin Ix:

T 2\ 2 T 42
Edip(f)zz—;’cm 3y r)rsr It [5-40]

Dipole-dipole coupling of the p" with all nuclear spins (lattice sum over i):
Hdip = _ﬁu Zi Bidip Gi) = Zi Hvijip

2 T =yTi =
e v s o 30 DN E)
H, :ﬁr—‘;[lu- IN—“r—3 [5-41]

If Bey is large with respect to the nuclear dipole fields (~ 10 T) and to the muon dipole field
at the nuclear site (e.g. Hzeeman™>Haip), then the nuclear dipoles also precess around Bext .
Only <I,> # 0, whereas <I,> = <I,> = 0 (time averaged).

Therefore, one has to consider only the z-components of the spins and the effective
Hamiltonian contains only such terms:

2

i Lo MY YN i ;
Hp = o5 {1, Tn (1= 3c0s” )] = =y A, B, [5-42]
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A quantum mechanical calculation of the second moment of the field distribution, which is
Gauss like, gives (for a classical derivation see Eq. [5-45]-[5-47]):

Iy +1
o* =% <AB}, >= NN D 13\]+ )

1
(Z—i)zhzyﬁyﬁ —(1-3c0s%6,)? [5-43]
r.

1 1

o’ depends on the pi” site and, in single crystals, also on the orientation of the crystal with
respect to Eext . Formula [5-43] (Van Vleck formula) can be used to determine the muon site.

For polycrystalline samples we integrate the angular dependent part of [5-43] over all possible
directions. This gives:

<(1-3cos*0,)* >= % [5-44]
6lusec 1] ool ]
030F ____ e -
0,20t 1
010 !
0 L ’
40 100 1000 10000

Bext, [GAUSS]

Fig. 5-32: Relaxation rate o in Cu as a function of the external field for different crystal
orientations (M. Camani et al., Phys. Rev. Lett., 39, 836 (1977)). The Van Vleck value (right
lines) is reached at large fields. If the nuclei have also a quadrupolar moment as in Cu (I1=3/2),
then at small fields the precession of the nuclear spins is around a new axis determined by the
electric field gradient and B_,, and not simply around Bext (O. Hartmann, Phys. Rev. Lett.,

39, 832 (1977)).

ext

From this experiment it follows:

e Muon site determination: in fcc Cu pi” is at an octahedral position (see Chapt. 5.7 )

e The next Cu neighbors around the muon shift 5% away from their undisturbed
position (solid curve in Fig. 5-32: calculation with shifted Cu atoms; dotted curve:
without shift).

e The electronic field gradient generated by " interacts with the Cu quadrupole
moment.
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5.5 Classical calculation of nuclear dipolar broadening in transverse and
zero field

Muon in the field of a nuclear moment (see Fig. 5-31).

We calculate classically the field width at the muon position (origin of coordinate system).

Dipolar field at the origin generated by a classical nuclear moment fiy; :

_ 3N 1) T — g ; ; . T
Bi :M—OMNJ (“‘N,l 1)3 1 “N,l where plN,i _ I"I“N,l _ lj’N,l and 2 :%
4r I, M ‘HN,i‘ | i|
The total field is given by the lattice sum over all dipoles:
~ - I B — (i s
B:Z B :Z H_OMN,i (R i 1)3 i — N
" . 47 T
1 1 1
Consider only z- component (parallel to Bext ).
With:
i =cosO;, [y;"=cos9, [y T =cosY;cosb;+sinY;cosq;sinb;
(By), = ZL_OMI\;i [(3coszei —1)cos 9, +3sinO; cos O; sin I, cosq)i] [5-45]
T r.

1

TF case with yn Bext >> v, Bi

Y . _
By >> y—”Bi = Larmor precession of iy ; around Bey averages out the second term of
N
[5-45] (so called non secular term).

Mean square of the secular component along Bext || Z is given by:

otr =(07), =1h[<(Q_Bi, )? >=< ) Bi, > [5-46]
i i

Average is over all possible orientations of iy ; (i.e. over 9y,9;).
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1
The second term in [5-46] is zero since average gives terms of the form Z J- cos 9;d(cos 9;).

-1
1

The first term contains only sum of squared term Z I cos? 9;d(cos 9;) which properly
(.

: 1
averaged gives 3

1 p (3cos2 0; —1)2
> o =), =D AIRAIR D¢
i fi

Substituting I* with the quantum mechanical value I(I+1) we get Equation [5-43]

2 2 1 Hov2.2 2 2 (30052 Gi —1)2
o =(O =—(—)"h Iy(Iy +1 5-47
TF =(07), 3( I )Ry pynIn )Ei 6 [ ]

1

where 0; is the polar angle of the position of the i-th dipole (with By || z). This value of the
width is the so called van Vleck value.

. . 4
Polycrystalline average (with average of (3 cos? 0, — 1)2 = 3 ) we have:

2 4 Up.2,2 2 2 1
OTF,Poly Eg(ﬁ) noypynIn Uy +1)ZF [5-48]
i h
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ZF case

In this case the non-secular term cannot be dropped and the muon spin feels the full
magnitude of fiy;.

The mean-square of the full magnitude of iy; is given by:

cstzot :yfl <(Z]§i )2 >—<Z]§i >2 :Z:<]§i2 >
i i i

or

2 2 2 2
Giot =(07F)x +(07F)y +(07F),

For the z-component we have for instance

2
(G%F)z =V52< Bi,z >

1
where now for B;, the non-secular components have to be taken into account (see [5-45]).

This gives terms of the form:
[(30052@ —1)% cos® 9, +9sin? 0; cos” 6; sin’ Y, cos? (pi}

to be averaged over d(cos9;) and do;.

One obtains:

2 1 Wo 2,2 2 2 (3cos” 0; +1)
c =—(—)"h Iy(Iy +1 5-49
(07F), 3(471_) TuYNIn(In )Ei 6 [5-49]
Similarly, for the x and y components in the crystal case:
2
2 2 1 o 2,2 2 2 (5—-3cos” 6;)
c +(oc =—(=)"h Iy(Iy +1 5-50
(ozr)x +(o7F)y 3(415) YuynIn Iy )Ei i [5-50]

1
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) ) . . . 1
Polycrystalline average or if the muon site has cubic symmetry (in both cases < cos? 0 >= 5)

1 2 1
OZF Poly :g[(G%F)x +(o7p)y +(G%F)z]: g(ﬁ)thYﬁY%\IIN (In +1)Z—6 [5-51]
i G

Note also that

2 5 o 5 o

GZF.Poly = OTF,Poly = 5 OVV,Poly [5-52]

The results obtained here are also valid quantum mechanically (see R. Hayano et al. Phys.
Rev. B 20, 850 (1979).

The prediction of equation [5-52] is confirmed experimentally in the ZrH, system, by
comparing G,(t) the relaxation at zero field and Gy(t) the relaxation at high transverse field
(Bex= 5 kG).

ZrH; is ideal because there is no electric quadrupole moment, the dipolar field created by the
protons is large and the muon is diffusing very slowly. From the experiment

(R. Hayano et al. Phys. Rev. B 20, 850 (1979 ) one obtains:

2
GOTF,Poly

o
&)
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Fig. 5-33: Observed zero-field relaxation G,(t) and high-field transverse relaxation
G(t) in ZrH, at room temperature.
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5.6 Dynamic spin relaxation

In the previous chapter we considered the muon and the local fields as static during the
observation time. In this chapter we consider the effect of dynamic and of fluctuations on the
polarization of the muon ensemble.

A) Simple model: Brown motion of the phase

The muon stays at a site where the field fluctuates with correlation (or fluctuation) time

T between the random values +B, or —B (]§1 1 P(0)). Analog is the case where the muon

jump after a time t (average dwelling time) from a position to another where the field can take
the random values +B; or —B; .
The phase of the muon spin precession @ makes a ,,random walk* with step:

0P =y,Bjr=01 [5-53]

After N steps (time t = Nt) the variance of the phase is:

2
<(D—< D >)? >=< D? >= (Z J_rBCDJ = Z&DZ =N(5®)? = N(o1)? =o’1 t

[5-54]
N N
=0
LN
+B o . _
1
_____________________t
-B L || ]
1 .
Phase ;;Phase in constant field B1
@ (t) /\/ Phase in random field 1B,
------------------ >

Fig.5-34: Phase of the spin in a constant field, compared with the case where the muon
experiences a field randomly fluctuating between two values.

153



The increase of the phase variance leads to a loss of polarization of the muon ensemble. We
estimate the relaxation time T as the time after which the phase variance reaches the value of
one radian i.e.

1_ 2. o [5-55]

where v=1/1 is the fluctuation rate of the local fields, experienced by the muon, or it is the
hopping rate in case of muon diffusion.

Eq. [5-55] has more general validity. It is obtained also in the case that the fluctuating fields
are Gauss distributed (Eq. [5-10]) and an external field B, L. P(0) is applied (dynamic TF
relaxation).

The polarization function becomes:

2

Pt)=e Vv =e °° [5-56]
Higher fluctuation rate (or hopping rate) leads to an averaging of the field distribution =
reduction of the damping or relaxation (so called “motional narrowing®).

In the TF case fast fluctuations are described by an exponential relaxation:

t

P(t)= e_ E T,: relaxation time [5-57]

B) Better model: Strong Collision Approximation (SCA)

Assumption: The muon jumps between different sites with an average rate v (muon diffuses,
filed is static). The same model can be used in the case that the muon is immobile and that the
local field changes its value with an average rate v (muon static, field dynamic).The
probability that the muon after time t is at the same position or experiences the same local

fieldis e ™',
After one ,,jump* (or ,,collision®), the local field is randomly chosen from the field

distribution p(B). There is no correlation between the fields before and after the jump (with

the exception of possible external fields).
The field correlation function is given by:

<B;(1)B;(0)>=3; <Bf(0)>¢ ™" ij=x.y,z [5-58]

The muon polarization at time t is the sum of the contributions from muons which have
experienced no jump, one, tWo or more jumps:

P(t,v) =2 g (1) [5-59]
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No ,,jump*:  g,(t)=¢" "G (t) [5-60]
Where e™ is the probability that no ,,jump” occurred within the time t and G, (t) s the static

relaxation function corresponding to the field distribution p(B) (i.e. in ZF the Kubo-Toyabe
function, Eq. [5-13], if we have Gauss distributed fields).

t t
Ljump' g0 =v[dye™ 6, (1) G, (-t =ve™ [dG, () G, (1)
0 0
[5-61]
2, jumps:

t t,
&0 =ve™ [dt, [ 446,1)6, (4 -1)G, ¢ ~t)
0 0 [5-62]

o gi(ty)
and so on.

The higher terms can be calculated recursively:
t

g, (1) = v[dt'go(t)g, i (t—1)
0

The dynamic relaxation (Eq. [5-59]) can be calculated numerically for any field distribution
(e.g. Gauss or other, with or without external field).
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Fig 5-35: Dynamic Gauss Kubo-Toyabe in ZF case: Strong Collision Model for an isotropic
Gauss distribution of fields (with variance G), Bex=0. The fluctuation rate v is given in units

of o. The dashed curve is the motional narrowing limit (exponential) for Y =3.
c
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Special cases:
a) ,,Motional narrowing limit*“ in ZF (v >> o):

26’

— t )
P()ze Vv =e 2° =g M [5-63]

(exponential relaxation, see [5-56])

In an external field (LF) (with o, =y, By ):

PLF — o hut [5-64]
where
261
Mp=—75 [5-65]
1 + (DLT

b) Quasi static case in ZF (v << o):

2t2

2
_7Vt —
Pz(t)%e 3 +§(l—02t2)e 2 [5-66]

The first term (damping of the ,,1/3 tail*) depends only on v. This fact can be used to
investigate slow dynamics (time window ~ 10 ps) also in systems where o is large. However,
some caution is due. The Kubo-Toyabe expression does not take into account the coupling of
the muon moment with the surrounding moments (e.g. nuclear moments).

A classical or quantum mechanical treatment of this effect may lead to deviation from a pure
1/3 behavior (see P. Dalmas de Réotier et al., Phys. Lett. A 162, 206 (1992), M. Celio and
P.F. Meier, Phys. Rev B 27, 1908 (1993)).
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Fig 5-36: Schematic representation of the time evolution of the average muon spin
polarization in the SCA model for Gauss fields. The behavior of the dynamic relaxation can
be obtained from the envelope of the static functions.
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Hopping (or fluctuation) effect on the relaxation function of Cu (Fig. 5-32). At small rate
(compared to 6 = 0.25 us™ , see Fig. 5-32) there is no sizeable effect on the ZF relaxation up
to large times (t = 6 us), whereas, in weak LF, changes appear at an earlier stage.

1:0 T T T T T T
0.8 Zero Field .
— vpe ]
- 08 v=185us )
e
N 04 b v=0.03us |
- = v=0.0
o v=0.70us
<
0.2 1 b
v=0.2us
co b -—--—-————————==-==— —‘
702 | | | | 1 1
0 2.5 5 7.5 10 12.5 15 17.5
Time (us)

Fig. 5-37a:  Muon polarization in zero field (ZF) for several
muon hop rates, calculated from static relaxation function
using the strong collision model.
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Fig. 5-37b: Muon-polarization function in weak longitudinal
field (WLF) at several muon hop rates, calculated using the
strong collision model.

G.M Luke et al., Phys. Rev B 43, 3284 (1991)
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In the TF case a relaxation function, which describes static as well as dynamic processes, is
the so-called Abragam function:

P () =G ()=e" "

_t ¢ [5-67]
C(t)t=A%t?(e T—1+-)
T

Dynamic limit:

T—>0,t>1 P, (t)—> e N M (as in Eq. [5-65] up to a factor 2 )

Static limit:

At
T—> o P (t)—>e 2
1.0
74=0.05
0.8 | \
0.1
~ 0.6 |
- 0.2
ko4
(D 0.4 —
0.5
0.2 | _
\\r‘“-l
a.0 } |
] 1 2 3 4 S 6 7 8
t(a™")

'

Fig. 5-38: Transverse relaxation function in high fields according to [5-67] for different
correlation times 1. A is the field width. Contrary to ZF measurements, from these curves it is

difficult to extract information about slow fluctuations (tA>>1). From R. Hayano et al. Phys.
Rev. B 20, 850 (1979).
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5.7 Example of dynamic relaxation: muon diffusion in Cu, quantum
diffusion

The muon diffuses between nuclear moments. As a consequence the local field is a stochastic

function of time. From the muon spin relaxation one can obtain the jump rate v =— and its

T
temperature dependence.

Jump rate and diffusion constant are related by (Random-walk model, Einstein):

polg2l [5-68]

C: Constant, depends on geometry of the diffusion jumps (for instance for jumps between
octahedral sites in a fcc crystal C=36, a: lattice constant).

Fig. 5-39: Muon site in Cu in the
center of an octahedron. Shown is
also the tetrahedral site.

! Tetrahedral Site % Octahedral Site
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In the early measurements the temperature dependence of the hop rate was obtained from
measurements of the TF relaxation rate (graphics J. Brewer, UBC).
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Fig. 5-40: Temperature dependence (90 K < T <250 K) of the muon hop rate in Cu (V.G.
Grebinnik et al., Sov. Phys. JETP 41, 777 (1975)).

For classical diffusion we expect an Arrhenius law:

Ea

1 =vee T [5-69]
T

vo = local vibration frequency (attempt frequency) of the p' in a potential well
E = Potential threshold = Activation energy

The values from Fig. 5-40 indicate a quantum nature of the process.'
Quantum diffusion of a light particle such as the muon or the proton is based on:

- Tunnel effect (E <E,)

- Small polaron picture (= p" + lattice distortion) = Phonon assisted tunneling (Energy
levels in occupied and non-occupied states in the potential well must be degenerate for
tunneling to take place. This degeneracy can occur as a consequence of lattice
vibration, phonons, see Fig. 5-41).

"2 The value for V, is too small to be valid classically, where v should be of the order of the vibration

frequency 10'%/s.
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Fig. 5-41: Local lattice distortion and phonon assisted tunneling.

At the lowest temperatures the p1” can move in a band state as a Bloch wave (coherent
motion). The rate is given by the finite range of the motion, which is limited by lattice defects.
Important is the dissipation due to the concomitant motion of the electronic screening cloud.
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More precise determination of the hop rate is obtained in weak LF fields (see Fig. 5-37):
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Fig. 5-42a; \WLF time-differential uSR spectra for applied
fields 8 (squares), 16 (circles), and 24 G (triangles). Muons
are nearly static: T=45 K.
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Fig. 5-42b: WLF time-differential uSR spectra for applied
fields 8 (squares), 16 (circles), and 24 G (triangles). Muons
are diffusing rapidly: T=150 K.

G.M Luke et al., Phys. Rev B43, 3284 (1991)
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Fig. 5-42¢ Positive muon relaxation functions in Cu crystal for zero
applied field (ZF) at 4.2 K (squares) and 0.7 K (circles) and for
9 G longitudinal field (LF) at 4.2 K (triangles) and 0.7 K (dia-
monds)., The data were fitted with one common value of
A4=0.380(4) ps~! and with common values of u* hop rates
7o' (4.2K)=0.158(13) pus~' and 77'(0.7 K) =0.432(14) ps-",

J.H. Brewer et al., Phys. Lett. 120A, 199 (1987)
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Fig. 5-43: Muon hop rate in Cu from ~ mK to room temperature. Different mechanisms
determine the motion in the various temperature intervals (for an overview see V.G. Storchak,
N. V. Prokofev, Review of Modern Physics 70, 929 (1998)).
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Quantum Diffusion ———— Temperature dependence of hopping rate v
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Fig. 5-44: Left: schematic representation of
coherent and incoherent tunneling. In T ;

Right: theoretical prediction of the temperature Coherent ' Incoherent
Dependence of the hop rate. tunneling tunneling

} crystal with defects

Jounneling matrix element (renormalized by phonons)

The behavior v oc T™* is theoretically predicted (Kondo in Perspectives of Meson Science,
T. Yamazaki Editor, North Holland, 1992). The theory predicts a smaller exponent o for
muons in metals than in insulators. This is a consequence of the additional dissipation by
electronic mechanisms in metals (,,electron drag®).
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Fig. 5-45: Time window of different methods for magnetic fluctuation and relaxation
phenomena, showing the complementarity between uSR and neutron scattering and NMR.
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6. Some applications in magnetism

6.1 Local magnetic fields in magnetic materials

As a magnetic probe the " is well suited to investigate local magnetic fields and fluctuations.

The internal field is generally a combination of dipolar fields and contact hyperfine fields.

N T )
5 ooy Mo 3(Hi %) -E—Hin
B, (t)=-%
dip g Ar rij
By = Ho Hi  Milke] ¢ Typically some 0.1 T (kG)

The contact field is usually
smaller than the dipolar field.
However, note that for Mu in the
Is state it corresponds to a field
Bur (r,)=32.8 T. This large value
1s more similar to the NMR case,
where the spin probe is at a lattice
site and the electronic s-wave
component is large.

Contact interaction:

Bhf(r )_ 3 gequSpln( )— ge“B‘(P(r )‘
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The dipolar field is anisotropic. The field at the muon site is not necessarily parallel to the
magnetization.
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The measured field value and direction depend on the muon position in the lattice. Fig. 6-1
shows the dipolar field in MnSi.

N

Fig. 6-1: a) Dipolar field in MnSi arising from Mn magnetic moments of 0.3 pg in the FM
phase. b) Sketch of the crystallographic structure of MnSi (Mn ions are drawn in purple, Si
ions in blue. Note that six Mn ions, which do not belong to the primary unit cell, are also
displayed. The muon position (0.532,0.532,0.532), in units of the lattice constant, is also
indicated (red) as well as the other three equivalent sites. There are totally 4 equivalent
crystallographic positions in the unit cell (corresponding to the so called Wycoff position 4a):
1 _ 1 — 1 1 .
(x,x,X), (2 X, X, 5 +X), (2 +X, 5 x,X), (X, 5 +X, 5 X) , giving rise to up to four
different muon precession frequencies (from A. Amato et al., Phys. Rev. B 89, 184425
(2014)).
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In a magnetic material the total local magnetic field Eloc at the muon site can be generally
written as:

Bioc =Bext ¥ Bgem T Bror + Bdip + By [6-1]

B dem

Fig. 6-2: Schematic representation of the different contributions for a ferromagnetic material

in saturation (sample of ellipsoidal shape). This representation is also applicable to polarized
paramagnets.

B, :Applied external magnetic field
By, :Demagnetizing field

Edem = —Nu01\7[ N: Demagnetization factor. It depends on the sample form. In the
general case it is a tensor and can depend on position.

For a sphere N = % Another important example is an infinite plate (an

ellipsoid with two of its axes going to infinity) which has N=1in a
direction normal to the plate and N=0 in parallel orientation.

M : Macroscopic magnetization of the sample

B, :Lorentz field; Field of a hypothetical hollow sphere (Lorentz sphere)

- 1 -
Bl = gqus [6-2]

Mg : Saturation magnetization in a ferromagnet or vector sum of

the magnetic moments inside the Lorentz sphere divided by its
volume.
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Edip : Field of the dipoles in the Lorentz sphere

SO 3(H; ) E - Byt
Byp()= 2 = [6-3]

i, : Dipole moment of the lattice atoms
t. : Vector radius from muon site to dipole

1

B, Hyperﬁne field or Fermi-contact field

Bhf(r ) = ge“Bpspln(r ) = ge”B ‘(P(r )‘ [6'4]
Pspin () = pT (T —py (1) - Electron spin density at the muon site

Most of the uSR-measurements in a ferromagnet are performed without external field.
Then we have B, , =B, =0.

EM:EMH+EM+EM [6-5]
At a muon site with cubic symmetry Edip =0, so that

Bioc = Bror + By [6-6]
For an antiferromagnet, Bdem and I§L0r are zero so that

Bioe = Bdip + B¢

If a saturated FM sample has a spherical shape Lorentz field and demagnetizing field cancel

each other By, =By,

Bioc =Bgip + Bur
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Fig. 6-3: Absolute value of the hyperfine field in Fe and Ni as a function of temperature.

Nickel has a cubic face centered structure (fcc). The dipole field at octahedral and tetrahedral
sites is zero because of the cubic symmetry.
T=0: B,=+0.148(1)T
B, =+0221T
B, =—0.071T
Ehf is not strictly proportional to M (in Ni poM(0)=0.66 T). Possible reasons:

- Spin density at the muon site is not simply linearly proportional to M
- Zero point motion of the muon
- Thermal volume expansion

The sign of Bloc can be obtained from a measurement of By, as a function of B, -
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Example: Magnetic order in organic compounds (containing only C,O,N,H)
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Fig. 6-4: (Left) ZF spectra for p-NPNN with fits. (Right) Temperature dependence of the

p
local magnetic field at the muon site By,.. The solid line is a fit with B, (T) o {1 — (Tl)“} .
C

The dashed lines are fits with a molecular-field model with spin S=1/2 (S. Blundell et al.,
Europhys. Lett. 31, 573 (1995)).

- uSR gave the first observation of magnetic order in p-NPNN.

- The compound are based on the nitronyl nitroxid group (N-O) (ex. p-NPNN C;3H;¢N304).
- An unpaired electron is associated with this group.

- The residual molecules ensure the overlap of the correct orbitals with the neighboring
molecules so that 3D FM order appears.

- The transition temperature depends strongly on the crystal structure.

- Critical behavior of Eloc (T) consistent with 3D- Heisenberg magnet.

B (T) oc (1- (Tl)“ )[3 describes the spin-wave region (T<<T() as well as the critical region
C

(T=Tc) (a=1.7(4), B =0.36(5)).
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6.2 Magnetic volume fraction

With a so called weak transverse field experiment (WTF), it is possible to determine the
fraction of a magnetic phase and the transition temperature.

The amplitude of the muon signal precessing at a frequency corresponding to By reflects the
volume fraction of the sample, which is paramagnetic or not ordered magnetically. Muons
stopping in the magnetically ordered regions will experience a broader field distribution,
which leads to a rapid decay of the muon-spin asymmetry at early times. Therefore, the
amplitude of the muon signal precessing at a frequency corresponding to By will start to
decrease at the magnetic transition and reach a level determined by the non-magnetic phase
(which can also include some background signal).

The magnetic volume fraction is the given by

AE(T)

) Arp(t) = ATp(T)R(£)c0s(,Bey +¢)  [6-7]
0

Ay is the experimental asymmetry of the spectrometer, R(t) takes into account some field
broadening.
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Fig. 6-5: Example of temperature scan in a wTF, used to determine the magnetic transition
and corresponding volume fraction in CeNiy 743Bi; .

Also from ZF data it is possible to determine the magnetic volume fraction. However, one
needs to know the depolarization function appropriate for the physical situation (see details
below).

Example: Magnetism in ferromagnetic semiconductors

An example is shown for Li(Zn,Mn)As, which is as a new generation ferromagnet based on a
I-1I-V semiconductor (Z. Deng et al., Nature Communications 2, 422 (2011)).
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Magnetization measurements show FM behavior (Fig. 6-6).
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Fig. 6-6: Magnetization M(H,T) results of Li; j(Zn; - y\Mnx)As with x = 0.0-0.15 showing
(left) the T dependence of M in H = 2 kOe (no difference in Field Cooled and Zero Field
cooled procedures) and (right) M at T = 2 K in various values of external field H. The grey
symbols show a hysteresis loop in x = 0.03 system plotted for small field regions (top
horizontal axis), which demonstrate a very small coercive field of 30-100 Oe.

From pSR measurements (Fig. 6-7 and 6-8) one can deduce that the FM is homogeneous and
that the magnetic volume fraction reaches 100% at low temperatures.

Li; 4(Zng.0sMno o5)As WTF =30 G

Asymmetry

Time (us)

Fig. 6-7: uSR time spectra in the wTF of 30 G in Li; 1(Zng.9sMng os)As. The oscillation
amplitude corresponds to the paramagnetic volume faction. See Fig. 6-8c (Z. Deng et al.,

Nature Communications 2, 422 (2011)).
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Fig. 6-8: Results of uSR measurements in sintered polycrystalline specimens of

Li; 1(Zng9sMng gs)As: (a) time spectra in zero field that exhibit onset of extra relaxation below
T~30 K. The solid lines represent fits to the relaxation function for dilute spin systems in zero
field for the static case (often used for dilute-alloy spin glasses), which exhibits a fast
relaxation, plus a non-relaxing paramagnetic component (b) the depolarization rate a of the
signal that exhibits fast relaxation; (c) the volume fraction of the magnetically ordered region,
derived from the the wTF measurement (Fig. 6-6) and from the amplitude of the fast relaxing
signal.
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Details about the analysis of ZF muon spin relaxation spectra

For the analysis of the zero-field (ZF) uSR time spectra in polycrystalline sample of
Li; 1(Zng9sMng 5)As one assumes a two component function:

ApiagG KT (0 + A e
[6-8]
G X (1) = %+ %(1 —at)e ™

GLxr is the relaxation function for a static magnetic field with Lorentzian distribution (see
Eq. [5-14]). a/y, represents a field amplitude for the half-width at half-maximum. The
Lorentzian field distribution is expected for dilute Mn moments randomly substituting Zn
sites.

The first and second terms of Eq. [6-8] represent the magnetically ordered and paramagnetic
volumes, respectively (B is a temperature-independent parameter). The ZF spectra above 30 K
can be fitted to the second term of Eq. [6-8] without the first term. The ZF spectra below 10 K
can be fitted to the first term alone. As shown in Fig. 6-8, however, both terms are needed to
fit spectra in the temperature region between 15 and 25 K, suggesting coexistence of the
paramagnetic and magnetically ordered volumes.
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Fig. 6-9: uSR time spectra in zero-field. ZF pSR time spectra in Li; 1(Zng 9sMng o5)As at
T =20 K (open circles). The solid line represents the best fit to Eq. [6-8]. The black and green
broken lines show the first and the second terms, respectively, of this fitting function.
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6.3 Magnetic ordering in spin chains and ladders

The uSR technique has been used to determine the magnetic properties of the ground state of
systems consisting of one-dimensional chains and ladders of copper and oxygen atoms with
the aim of eventually learn about the high-T. superconductors where Cu—O planes play an
important role.

The oxides Sr,-1Cu,+10,, (n=3, 5,..) are realizations of such ladders. Indeed, one observes that
the geometries of the ladder structure and of the CuO square lattice layer are related.

1D 2D
ladders
Ji

Yy

I,

The lattice structure is composed of (n+1)/2-leg spin ladders, namely strips of CuO, square
lattice which have (n+1)/2 Cu®" ions across their width (Fig. 6.10, for a three-leg structure).
Each Cu®" ion has spin % with AF coupling in the “rung” and “leg” direction (strength J). In
the two directions, differences in the coupling strength are presumably small, because the
Cu-O-Cu bond lengths are almost equal in both directions. Neighboring ladders are displaced
by half a lattice constant, making the interladder interactions small and FM (-J° , J’/] = 0.1-
0.2). The spin of the end of the ladder are frustrated because of the triangular structure with
two FM and one AF interaction.
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Fig. 6-10: The three-leg ladder structure (n=5, Sr4Cus019) (from Kojima et al 1995). Oxygen
ions locate at each corner of the drawn squares. The ferromagnetic interladder interaction J” is
much smaller than the antiferromagnetic intraladder interaction J.

A key theoretical prediction is that only ladders with even numbers of legs have a singlet
ground state separated from the triplet state by a large spin gap. The odd-leg systems are
expected to reach a magnetically ordered ground state in the presence of interladder
interactions. Zero-field and longitudinal field uSR measurements have tested these theoretical
predictions for Sr4CusO; and Sr,CuysOg (K. Kojima et al, Phys. Rev. Lett. 74, 812 (1995)).

In Fig.6-11 spectra recorded on the three-leg system are presented. The strong
depolarization of the zero-field spectra at low temperature shows that the ground state

1s magnetic. Since no wiggles are detected (in contrast to the observations for the organic
magnets; see section 6.1), the disorder in the compound is important or the number of muon
localization sites with different local fields are large. Comparing the spectra recorded at 50 K
and 60 K, one infers that a 3D magnetic phase transition occurs between these temperatures.
The longitudinal field measurements confirm the interpretation of the zero-field spectra,

i.e. the ground state of the three-leg system with interladder interactions is a conventional
static ordered state rather than a spin-liquid system.
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Fig. 6-11: puSR-spectra recorded on SrsCusO;o which has a three-leg spin ladder structure.
The solid lines are fits (From K. Kojima et al.).
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Fig. 6-12: Temperature dependence of the Gaussian field distribution width and of the
paramagnetic volume fraction.

The data can be analyzed with a functional form of

P,(t)=f

para
frara 1 the paramagnetic volume fraction in the sample and G is the static Gaussian Kubo-

Toyabe function for T<30K or static Gaussian function %+ ge

+ (1 - fpara )Gstatic (t’ A)

_ A*t?
2 atTz 40K. Ais

proportional to the size of the static component of Cu moments. From Fig. 6-12 one
determines an ordering temperature of about 52 K with a distribution of £+ 5K.
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The absence of muon spin precession in Fig. 6-11 suggests that the magnetic order of the 3-
leg ladder system is random freezing of moments rather than true Néel order. A possible
source of randomness is the frustration at the edge of the ladder.

The magnetic behaviors of the two-leg and three-leg ladder systems differ remarkably as seen
in Figure 6-13.

I B L R e
Sr;Cu O (2-leg ladder) | Sr,Cu, O (2-leg ladder) -
1.0 B tmT ] 1.0 B 20 mK N
a 05+ & os |
0.0 - 0.0 L
L ! ! ! L ! | |
0 2 4 6 0 2 4 6
Time (us) Time (us)

Fig. 6-13: Some spectra recorded on Sr,CuyOg (n=3) which has a two-leg spin ladder
structure. The solid lines are fits (from Kojima et al 1995). Note that the horizontal scales are
~10 times larger than in Fig. 6-11.

Vit

The depolarization functions are described with a square-root exponential function, «ce ™,
appropriate for dilute fluctuating moments. Therefore no static magnetic ordering is detected.
The depolarization originates from dilute unpaired spins which may be associated with
defects in the sample. In conclusion, the work of Kojima ef al. confirms the theoretical
predictions (M. Rice et al. Europhys. Lett. 23, 445 (1993)) that a three-leg system becomes
magnetic at low temperature but a two-leg system does not.
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6.4 Spin Density Wave

In general, the periodicity of a magnetic structure can be expressed as a rational fraction of the
periodicity of the underlying crystal lattice (commensurate magnetic structure) or as an
irrational number (incommensurate magnetic structure). A well-known example for an
incommensurate magnet is metallic chromium, whose magnetic structure below 123 K is
described in terms of a longitudinal spin-density wave characterized by an incommensurate
wave vector and magnetic moments parallel to the [100] axis of the body-centered-cubic
structure.

In the commensurate case a discrete number of local fields will be experienced by a muon for
a given interstitial site (Fig. 6-14a).

For the incommensurate structure we consider here the simple case of an amplitude (cosine)
modulated magnetic structure (Fig. 6-14b).

it L L

Fig. 6-14: a) Commensurate magnetic structure b) incommensurate magnetic structure.

Crystallographically equivalent muon sites will probe different magnetic fields corresponding
to the different phases of the cosine-modulation. Instead of a single or a finite number of
discrete values of the local field B, as in the case of commensurate magnetic structures, we
expect a continuous set of local fields for the incommensurate ones.

We assume the local field to be proportional to the magnetic moments and

to be directed along the y axis and describe the modulation as a spin-density wave.
The field can be expressed as:

B(x) =B, cos(x) [6-9]

The probability to find a field B(x) is given by the (uniform) probability that the muon probes
a phase x, i.e.

dx = d—XdB =p(B)dB ;dB
dB sin(x(B))

183



The field distribution normalized to one becomes

1 1
pPB)=——— [6-10]
/B, -B
B(x)
| [ U g g———
| ; .| I‘I I.I ILI 'i |i 1| I'Il.
:‘ ‘: ] ‘. " IJ k: / ', Lw ; P{ B)
‘\ ‘ I| 1' l| ; I\ III
-E‘U ;‘ | | 'B (1] —

Fig. 6-15: Field and field distribution of an amplitude modulated spin density wave.

This distribution is also called Overhauser distribution and is displayed in Fig. 6-15. Itis a

symmetric continuous distribution with an appreciable weight at B=0 p(B=0) = % . This
0

means that there is a finite probability for a vanishing local magnetic field at the muon site.
Following our assumption that the field is along the y axis we have for the polarization

P, (1) = [ p(B)cos(y,B)dB = J, (1, B,1)

Where Jj is the zeroth-order Bessel function of the first kind.
When t is large relative to 1/ v,B, we can use the approximation

cos(y, Byt ——) [6-11]

JO (YHBOt) = 4

n—0

Thus a weakly damped precession with negative phase shift of 45 degrees appears when the
field at the muon site is modulated according to Eq. [6-9]. Eq. [6-11] is a very good
approximation to the Bessel function even at quite small times.
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Fig. 6-16: Polarization function for a cosine modulated magnetic field at the muon site. Time
is in unit of 1/y,B, .

Note that whereas a single k incommensurate amplitude-modulated magnetic structure leads
to Bessel-like oscillations, the converse is not always true, i.e. the observation of such
oscillations does not unambiguously guarantee that the magnetic structure is incommensurate.
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Example: Spin-density-wave (SDW) phase in (TMTSF),-X

One of the first observations of a SDW behavior by uSR is in the
tetramethyltetraselenafulvalene (TMTSF),-X family where X denotes a monovalent anion (X
= PF¢, NO3, and C10y). These conducting organic compounds display many fascinating
properties, such as spin-density-wave magnetism, superconductivity, anion ordering, field-
induced spin-density-wave states. The interplay and competition between different ground-
state are related to the highly anisotropic electronic structures of these compounds.

(TMTSF),—X
Hext=0

ext

clo, 2.6K

0.12

0.08

0.04

Corrected Asymmetry

0.00 ' ! |
Time (us)

Fig. 6-17: ZF-uSR time spectra observed in (TMTSF),-X below Tspw. The depolarization and
oscillation due to SDW magnetic order are seen in the PFg, NO3, and C104 systems.
From L. P. Le et al. Phys. Rev. B 48, 7284 (1993).
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Fig. 6-18: ZF spectraat T=3.7 K, 12.15 K, and 12.25 K in (TMTSF),PF¢. The clear onset of
depolarization due to static magnetic order is seen below Tspw = 12.2 K. (b) Fourier
transform of the time spectrum at 3.7 K. The real part of the Fourier transform reflects the
local-field distribution and corresponds to the expected distribution (Fig. 6-15) folded around
B=0 and including nuclear moments broadening (L. P. Le et al. Phys. Rev. B 48, 7284
(1993)).
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Fig. 6-19: Temperature dependence of the muon-spin precession frequency in zero field
observed in (TMTSF),-X. Note the first order like phase transition. The magnitude of the
internal field at T=0 is approximately the same for the three systems, suggesting a common
SDW amplitude in these systems. Overall the data (e.g. spin stiffness) are incompatible with a
Heisenberg model for a localized spin system and demonstrate the importance of using an
itinerant-electron picture to describe the magnetic behavior of this system.

188



6.5 Relaxation via fluctuating fields (stochastic theory)

S

Consider a muon in the environment
of fluctuating internal fields B;. We have:

<Bij(t) >=0 but
< ABiz(t) ># ()

Bext ” Z

In addition an external static field is applied

B,.||P(0)]|Z .

B VWA AMA A e

t

Zeeman splitting of a spin ' level:
=-%
AE =2p,Bex= hoy, =Ny, By

v m="Y%

The total Hamiltonian is then:

H = -y, (B, +B;(t)hl [6-12]

Where B;(t) is a stochastic function of time. The fluctuating field induces transitions

between the two Zeeman levels, so that the initial muon spin polarization is lost (spin

relaxation via spin flip)
t

P(t)=e M=¢ T

[6-13]
T): is the so-called spin-lattice relaxation (NMR concept, where the spin-lattice (or
longitudinal) relaxation time T quantifies the rate of transfer of energy from the
nuclear spin system to the neighboring molecules (the lattice). This is relaxation in the z-
direction and leads to restoration of Boltzmann equilibrium in the nuclear ensemble.

With the Redfield theory (see C. Slichter, Principles of nuclear magnetic resonance) one can
describe the relaxation rate as a function of the field fluctuations (< AB?(t) ># 0) (LF and ZF
case):
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2 o0
1 Y ' io, t' 4 i t' !
T2 [ (BB, (1) > 4 < By 0B, (14 1) > at [6-14]

—00

in the transverse field case B, ||Z, P(0)||X one finds:

ext |

2 o0
Ti = %‘ J. [<B,(t)B,(t+t") > +%(< By (1)By (t+1) >+ < B, ()By(t+1) >)ei°’Lt']dt’
2

—00

[6-15]

<Bg(t)B,(t+ t')>, g=x,y,z is the autocorrelation function of the local field, which

depends only on t’.

Remark:
- No cross-correlation: <Bg (t)By (t+ t)>=0 forqz k.

- The T, relaxation depends only on the transverse fluctuations (transverse to P(0),
observation direction).

Often we can assume a simple exponential correlation function (one single fluctuation time):

t!

' 2 _Z ~
<Bgy(1)By(t+t) >=<B (0)>e =

t!

[6-16]

N o 2 B .
<Sq(Sq(t+1t)>=<8 (0)" >e °

1. is called correlation (or also fluctuation) time. It gives how fast a well defined
configuration (of fields or spins) decays, i.e. how fast the correlation disappears. This quantity
contains the physics of the dynamical processes producing fluctuating fields or moments.
With [6-16], [6-14] and [6-15] become:

Te

1 2 2 2
—=7,(<By>+<B, >)——— [6-17]
T RS RSP

2 2
1 <B: >+<B; >
= V(KB > T XL [6-18]
T2 2 1+O‘)LTC

Note the similarity between [6-17] and [5-64], obtained with the strong collision

approximation.
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< B)z( >, < B?, >, < Bi > are obtained from the static field components. In a paramagnet <B,> =

0, then < Bf1 > 1is the second moment of the g-component of ]§i.

T; minimum or relaxation rate maximum if t.(T) = /o

Relkaxation Rate [a.u.]

Fig. 6-20: Dependence of relaxation rate on fluctuation time according to Eq. [6-17].
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Fig. 6-21: Example of slowing down of spin fluctuations close to the transition temperature
Ty of the Ising AF LaMnOs (from M. Cestelli et al., Phys. Rev. B 64, 064414 (2001)).

Fit function (after polycrystalline averaging):

t

t
A ot
At) = TO Z file " +2¢ ™ cos(y,Bi)]
i=1,2
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6.6 Relaxation and spectral density

The Fourier transforms J(®) of correlation (fluctuation) functions are often referred to as
spectral density. The relaxation rate gives information about this quantity. In simple cases the
field correlation function coincides with the electron spin autocorrelation function, i.e. the
response function of the electron system, see [6-16].

Eq. [6-14] shows that the longitudinal relaxation rate is proportional to the Fourier transform
of the correlation function of the local field, evaluated at the Larmor frequency.

This can immediately be seen in the case of exponential field correlation:
t/

<B,(0)B,(t)>=<B;(0)>e * [6-19]
+00 _ M
J(w) =< Bé(O) > J- e e lOldt o TCZ 5= ZVC 5
I+t v, +o

1, [6-20]
— =y (o
Tl ’YH ( L)

i.e. the relaxation is induced by fluctuations of the local field with uSR frequency wp

4 I I
3 ]
Y 10° + W=w, .
~
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~ ‘“
=
10_1 —1 I0 1
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1\ 1/t. = v.
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09,

Fig. 6-22: Spectral density at different correlation times 1. .The muon spin relaxation is an
intrinsic resonant phenomenon. The muon picks up only the component at @ of the possibly
much wider spectrum J(w) of the fluctuating local fields (see [6-17], [6-18] and [6-20]).
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Example: Anisotropic fluctuations

Spin fluctuations slow down (freeze) on approaching a magnetic phase transition.
In an anisotropic antiferromagnet the spin fluctuations are anisotropic, e.g. in Er.

Er single crystal H=0 Er single crystal H:?
6r i 1
0.2+ P
i
0 o ‘oo ::' S I B :
|
E ‘o F T . P(O)Lc
= £ o
= " =<3 i 4
<01t m
5]
I
i m
PO |,
: [u]
] " g0 *..l ® : = :
¢ i
0 I 1 1 1 0 1 1 I 1
0 50 100 150 200 0 50 100 150 200
T(K) T(K)

Fig. 6-23: Muon-spin-asymmetry and lattice relaxation rate A for different orientations of an
Er single crystal with respect to P(0) . The AF transition is at 85K (O. Hartmann et al. Hyp.
Int. 64, 381 (1990)).

The figure shows that the slowing down of fluctuations (increase of A, decrease of the
amplitude) is only observable if P(0) is perpendicular to the hexagonal symmetry axis

(c —axis). The fluctuating fields at the muon site have only components parallel to the c-axis.
Weaker components perpendicular to it do now show any freezing process.
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6.7 Distribution of relaxation times and spin glasses: stretched exponential
relaxation

Spin glasses are dilute magnetic alloys where the interaction between spins is randomly
ferromagnetic or anti-ferromagnetic. They are considered as paradigmatic examples of frozen
disorder. The presence of disorder (the random interactions) induces frustration and leads to a
greater difficulty for the system to find optimal configurations. As a consequence, these
systems exhibit non trivial thermodynamic and dynamic properties, different and richer than
those observed in their non-disordered counterpart. Spin glass systems have been extensively
studied as a prototype of complex systems, since their magnetic ordering resembles the
positional ordering of a conventional glass.

Spin glasses can be modeled using Ising-like Hamiltonians where the bonds between spins
can be positive or negative at random. Due to the heterogeneity of the couplings, there are
many loops of spin sequences which are frustrated and for which there is no way of choosing
the orientations of the spins without frustrating at least one bond.

?
t e

- o+

=

Fig. 6-24: Example of frustrated interaction: + : FM, and — AF.

Since there are many configurations with similar degree of frustration one may expect the
existence of many local minima of the free energy.

energy

- / B
|¢(j1)' |d>j(Zl' |®j(3)'
phase-space coordinate

Fig. 6-25: Schematic representation of the free energy of a spin glass vs. a phase space
coordinate, which measures a particular ordered state (from K. Binder, A.P. Young, Review
of Modern Physics 58, 801 (1986)).
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The most familiar and well-studied spin glass systems are the dilute magnetic alloys such as
AuFe, AgMn and CuMn, so-called canonical spin glasses. In diluted magnetic metals the
interaction between localized moments is mediated by the metallic electron gas. This type of
exchange was first proposed by Ruderman and Kittel and later extended by Kasuya and
Yosida (Ruderman—Kittel-Kasuya—Y osida coupling, RKKY interaction). A magnetic ion
induces a spin polarization in the conduction electrons in its neighborhood. This spin
polarization of the itinerant electrons is felt by the moments of other magnetic ions within
range, leading to an indirect coupling.

This indirect exchange couples moments over relatively large distances. It is the dominant
exchange interaction in metals where there is little or no direct overlap between neighboring
magnetic electrons.

Jij(R)
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Fig. 6-26: Random distribution of magnetic moments in a metallic matrix and the resulting
RKKY exchange interaction plotted as a function of distance.

The interaction is characterized by a coupling coefficient, j , given by

2
i -7)= 9n(é—]F<sz % - %)) [6-21]
F

where kg is the radius of the conduction electron Fermi surface, r; is the lattice position of the
point moment, Ef is the Fermi energy and

X COS X —Sin X

X4

F(x) = [6-22]
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The RKKY exchange coefficient, j, oscillates from positive to negative as the separation of
the ions changes and has the damped oscillatory nature shown in Fig. 6-16. Therefore,
depending upon the separation between a pair of ions their magnetic coupling can be

ferromagnetic or antiferromagnetic.

These spin glasses have Curie-Weiss susceptibilities at high temperature and form strange
“antiferromagnetic” low temperature state at low temperatures. There is no sign of any sharp
feature in the specific heat: only sometimes a broad bump. However, low field ac
susceptibility shows a sharp cusp as a function of temperature, clear evidence for a well
defined transition temperature (freezing temperature Tr). There is a consensus that the spin
glass transition is a “true” thermodynamic phase transition.
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Fig 6-27: Specific heat per Eu atom versus temperature for Eu,Sr; S with x=0.54. The spin
glass transition temperature Tr and the Curie temperature T (transition to a ferromagnetic

phase) are indicated by arrows.
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Fig. 6-28: Static susceptibilities of CuMn vs temperature for 1.08 and 2.02 at. % Mn. After
zero-field cooling (H<0.05 Oe) initial susceptibilities ( b) and (d) were taken for increasing
temperature in a field of 5.9 Oe. The susceptibilities (a) and (c) were obtained in a field of
5.9 Oe, which was applied above T before cooling the samples. From S. Nagata et al., Phys.

Rev. B 19, 1633 (1979).
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The apparent freezing of the spin dynamics below T leads to random but static order of the
spin orientation. Above Tr the relaxation of spin glasses is highly anomalous compared to that
of standard paramagnets, where one can assume an exponentially damped auto correlation
function for the impurity spins, with one single correlation (relaxation) time t.:

t

6-23
<S(0)* > [6-23]

The experimental data suggest that a single relaxation time is not correct.

USR can probe slowly relaxing spin systems with a wide relaxation rate spectrum.

In the temperature regime above the freezing temperature the muons initially polarized are
gradually depolarized by the fluctuating dipolar fields coming from neighboring local
moments. The faster these moments relax the more slowly the muons are depolarized; it is the
familiar motional narrowing effect.

Experiments on moderately concentrated spin glasses (5 to 10% magnetic sites) show

depolarization functions above Ty, which can be fitted very satisfactorily by stretched
exponentials

— (Kt)ﬁ

A is a depolarization rate and f3 is an exponent, both are temperature dependent.
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Fig. 6-29: Raw muon depolarization data in AgMn 7% at T=26K just above Ty=25 K. The
upper part/lower part show data from the forward/backward counter. Fit parameter f=0.32(1=

and A=40(6) us™'. The inset shows a blown up of early times of the forward time spectrum.
From LLA. Campbell et al., Phys. Rev. Lett. 72, 1291 (1994).
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Fig. 6-30: The stretched exponent  as a function of temperature for ZF data (a) 4gMn 5 at.
% and (b) AgMn 7 at. % and (c) ) AgMn 10 at. % (closed symbols). The values indicate
the T¢values. Just below Trthe apparent value of f increases sharply; this is an artifact as
the stretched exponential is an inappropriate fit function below Tr. Above Ty the
longitudinal field data are essentially identical to the ZF data, while below T they are quite
different and can be fitted with a constant § of about 0.3 (the open squares of (b) are 0.6 T
LF data). From I[.A. Campbell et al., Phys. Rev. Lett. 72, 1291 (1994).
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Fig. 6-31: The temperature dependence of the muon depolarization rate A for ZF data on
three AgMn samples (10% sample: squares; 7% sample: open circles; 5% sample: closed
circles). LF values are identical above Ty. From 1. A. Campbell et al., Phys. Rev. Lett., 72,
1291 (1994).

While A increases when the temperature is lowered towards Ty, B drops from a value near 1 at
high temperatures to a limiting value near 1/3 as T is approached. This behavior seems to be
very general and a number of other spin glasses or glassy systems have been found to follow
the same pattern.

At high temperatures 3 tends to 1; the relaxation becomes “normal’: to a good approximation
we have a regime with a unique exponential relaxation for all spins.

Lower values of [ reflect a widening of the relaxation spectrum specific to spin glasses.

Formally we can write a stretched exponential as superposition of independent exponential
relaxations A; (each proportional to a correlation time t;):

P(t)=e ™' = JG(xi L B)e A, [6-25]
0

In the special case p =1/2

A
Vo T

1
G, AP=7)=—=—=¢
27 2dm

[6-26]
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Fig. 6-32: Distribution of relaxation times G(Aj, A) for p=1/2 and different values of A.

The distribution width is determined by  and A. Small 3 gives a broad distribution of
relaxation rates. A large A value further broadens the distribution.

B=1 corresponds to a single relaxation rate and an exponential muon spin depolarization.
G, L,B=1)=8(k—%;) and P(t)=e™

An exponential muon spin relaxation with rate A reflects an exponential relaxation of the
impurity spin autocorrelation with correlation time 1. (A oc t,,)

Pi)=e™ & q(t)=<S;(1)S;(0) >=<S;(0)* >e '™ [6-27]
In the general case with A; « 1;, 1.e. T; = aA;, the autocorrelation function will be given by:

t

a(t) = j GOpPle W, [6.28]
0

For =1/2 we obtain

1
q(t) = T ar [6-29]
1+

ar’t
This reflects a strongly non-exponential relaxation of the impurity spins.

Remarkable is the degree of universality of the behavior found in canonical spin glasses. It is
found in other metallic spin glasses, in insulating and even in particular cases of pyrochlore
spin glasses. This implies that there is a universal from of dynamics, with its associated
temperature dependent time spectrum, which is a consequence of spin glass ordering.
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7. USR studies of superconductivity

7.1 The vortex state and the corresponding field distribution

Superconductivity characteristics:

Bex= 0
P /_/
Super- Normal
conductor conductor
P=0 P#0
0 T, T

Fig. 7-1: Zero resistance. Resistance versus temperature.

Normal
conducting
state

Supex conductmg f
Me1ssner state 7

,/B/{%%

Fig. 7-2: Diamagnetism. Schematic phase diagram of a superconductor of type I, x=—<

| >

-

Upper critical
field Ho(T)

Normal
conducting
state

iperconducting
- Abrikosov state
N

Fig. 7-3: Schematic phase diagram of a superconductor of type Il k=—>

o | >
-
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Superconductors of type II have above H.; a mixed phase, where the magnetic flux can

penetrate the sample in the form of fluxoids (vortices). Each vortex contains a flux quantum

h _ . .
D, = % =2.07-10""° T-m?. The vortices may form a regular lattice, mostly of hexagonal
e
symmetry (flux line lattice, FLL). The FLL is obtained by cooling the superconductor in a
field.
h Flux generated
D, =— B e guaneum
28 0 =q=h/2e
H (9

Field direction

L-Vortex core
composed of
normal single
electrons

Vortex made
of circulating
currents of <
Cooper pairs

Vortex of supercurrents

Fig. 7-5: Structure of a vortex
Fig. 7-4: Mixed state (Abrikosov

lattice).

H, “Flux Line Lattice”
H.,(0)

5

15950555505

H. () H [
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51}.1-!!1;-'.!‘-'-!"$_ E'
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- o ity

NATAN

Fig. 7-6: Visualization of a vortex lattice. Top left: Bitter decoration technique. Pb-4at%ln,
1.1K, 195 G. (U. Essmann and H. Trauble, Phys. Lett. 24A, 526 (1967)). Top right: Surface
image by Scanning Tunnel Microscopy NbSe,, 1T, 1.8K, H. F. Hess et al. Phys. Rev. Lett. 62;
214 (1989) the vortex spacing is ~ 479 A. Bottom: The hexagonal Abrikosov lattice showing
the contour lines.
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(London) magnetic penetration depth:
Clean limit:
mean free path >> BCS coherence length

1>>8 = e
A,
Penetration o
depth A: MT)= =
Magnetic extent Hoe ng(T)
: — ns* is called superfluid density
AT m

Ay : superconducting gap at T=0

For a clean sc: ng(0)=n

m* : effective mass
. . ng : density of the superconducting carriers
Superconducting Local internal field i ]
wavefunction n: :carrier den51ty
h(r)

‘Y(r)

For a “dirty” superconductor:

g

Ao A1+ 70 and the superfluid density is

reduced by = £
0

Fig. 7-7: Characteristic length scales in the vortex state. Order parameter y(r) and magnetic
field h(r) as a function of distance from the center of an isolated vortex (k=8). The order
parameter squared is proportional to the density of supercarriers n;.

The field distribution around a single vortex can be obtained from the London equations':

() r
B, (r) = moz Ko () [7-1]

Ky is the modified Hankel function zeroth order.

dj I = -
" London equations: 9 _ 5 E(t) and rotj =- 3
U poAL Ho/AL

diamagnetic shielding in a superconductor.

B(t) describe perfect conductivity and
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This function can be approximated as follows:

(0] A
B.(r) > —% In(Z for & <<r<<Ai
0> inC) :
q)o _i
B,(r) — R for >> A
2nAS N T

[7-2]

[7-3]

USR can measure the local magnetic field distribution in the vortex state. Qualitatively, we

expect following picture:

B(r)
a)

B(r) r
K LA

B(r); o
c)

Fig. 7-8: Spatial distribution of fields inside a superconductor (schematically) a) Normal state,

b) Vortex state, T = T,. ¢) T << T,. Right: corresponding asymmetry spectra.
From S.J. Blundell, Contemporary Physics 40, 175-192 (1999).
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Fig. 7-9: Spatial distribution B, (7) of a regular vortex lattice (E Z).

ext
The corresponding field distribution p(B,) is given by
1 - -
p(B,) =< [ ¢’ 3(B, ~B,(P)
S

(S is the surface of the 2D unit cell). The field distribution (and corresponding contour plot in
the inset) has the form'*:

Bmin Bsad E

'* Note that the maximum field (at the center of the vortex) is infinite in the London model. The field profile has
been cut here near the flux line center.
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The expected uSR signal (TF geometry, Bex || z) can be written as (N, number of detected
muons):

P (t)= Niicos(yuBit +4)

w il

P (1) = j p(B)cos(y,Bt +)dB

Polarization and p(B) are related via a Fourier transform.

7.2 Second moment of the field distribution of an extreme type 11
superconductor

The second moment of the field distribution can be calculated explicitely.
Assumptions:

-Ginzburg-Landau parameter k >>1 (we neglect the extension of the vortex core)
-London model valid (up to ~ B,/4)

-Vortex cores are separated and non-interacting

-Linear superposition of the vortex fields

d

Vortex distance d:

Area of the unit cell containing one vortex:

o3
2

[ 20
®,=S<B> — d= |—2—
<B>\/§

The special field distribution B(r) can be calculated from a modified London equation taking
into account the flux source given by the vortices'”:

B(F) + 2.2 (rot rot B(¥)=®, Z 8(f-T,)2

[7-4]
B(f) - A2AB()=0, Z S(F—1,)2

In an ideal vortex state the vectors 1, form a periodic two dimensional lattice. Therefore [7-4]

can be solved in Fourier space (E space):

'* The left hand side is obtained by applying the rot operation to the Maxwell equation rot}§=p0] then using the

second London equation and rot(rotB) = grad divB—-AB.
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For an hexagonal lattice: b

|5|=‘B‘=d, a-b=cosl20°

o)

Reciprocal vectors: .
5* = 27[_}34, B* =2n
a-(bxc)

\/_d

—ma +nb

X
X | ey

oy
—~ | ol
(ol

%

=b

k

(also hexagonal symmetry)

m,n

B() :ZBkeﬂ?f [7-5]
K

With Fourier components:

o1 [ 5y anikE g2+

b :§IB(r)e d°r

London equation becomes (fields parallel to z-direction):

Z(b” szzb )elkr :éq)o Z IEf

k

We find:
- <B> .
e 7]

Where <B> is the (space) averaged internal field (<B>= N®,, N=1/S: vortex density).

<B> i
B (r) 1 T
Z k27\.2
With b, =< B > we obtain for the second moment of the field distribution:

<AB, >= Z‘bﬂz

k=0

In a perfect hexagonal lattice:
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2 167’[2

k* =k ,” = e (m?> —mn+n?) and with kA >>1 (<B>>> By))
5 30,2 1
<AB," >=—— ) Z 2 2,2
641 A (maye(0.0) (m”“-mn+n~)
2
<AB% >= (—0'003}?0 ‘DO) [7-7]

The quantity < AB? > is directly related to the magnetic penetration depth A.
The measurement of the second moment of the field distribution allows therefore to determine
the London penetration depth. Note that [7-7] predicts a field width independent of the

external field. The formula is valid for small inductions b =<B>/B., << 1 and large «, more
precisely in the range 0.13/ k> << b << | (H. Brandt, Phys. Rev. B 68, 054506 (2003)).

It holds also'®:

Buin—<B> ocL

22
1
Bax—<B> OC}\,_Z
1
Bgg—<B> OCX_Z

If we cannot neglect the coherence length & (radius of the vortex core), we have to introduce

16 About demagnetization in vortex state. The quantities H;, magnetization M, demagnetization factor N
(0 £ N £1) and mean magnetic flux <B> (which is the mean internal field measured by pSR) are related to each

<B>

1o
materials), the muon spin precession shift is given by: <B > —pgHeyt = 1-N)pgM (M<0).

other by: H; = —M =Hgy; —NM. Since the 1" Knight shift is generally negligible (e.g. in high-T,
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in [7-6] a ,,cutoff* of the terms with k~1/§ 1i.e. 17,

- <B> . . <B>e XY
be=m53? 7 s o
1+k“A 1+k“A

(E.H. Brandt, J. Low Temp. Phys. 73, 355 (1988)).

B(r) FF

_»2 LR R I R
2 LA A A A L L L
2% ssssssee
LA A A A L L L J

‘A A A A 2 L L

(A A A A A L1

LA A A A A L L

LA A A A A L L

LA A A A L L L

17 Near b=1 the Abrikosov solution of the linearized Ginzburg-Landau theory yields for all « values (H. Brandt,
Phys. Rev. B 68, 054506 (2003)):

752 107 @ k*(1-b)?

<AB,% >=(
’ A4 (2 = 0.069)°
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0.12| A =40 nm
A =50 nm
A =60 nm
r
0.08 ¢ &=20nm .
b=0.3
<B> <B>=246.8mT
0.04 + -
OOO ] ] ] L A N )
220 240 260 280 300 320

B (mT)

Fig. 7-10: Calculated field distributions. From A. Maisuradze et al., J. Phys.: Condens. Matter
21, 075701 (2009).
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Fig. 7-11: Measured field distribution in YBCO obtained from the Fourier transform of the
USR spectrum.

To determine the magnetic penetration depth the magnetic field is applied above T, in a TF
configuration. Then the temperature is gradually lowered below T, (field cooling). This way
one obtains a regular flux line lattice below T, (H¢;<Hex<Hc). In a high-T, material A as well
as the diamagnetism are anisotropic.

In principle one needs the full field distribution p(B) to determine A. However, depending on
the physical situation the relaxation of the transversal field uSR signal below T, can be
approximated by a Gauss function. In a polycrystalline sample the signal is the integral over
all possible orientations of the crystal grains. This leads to a more symmetric p(B), whose
Fourier transform (=relaxation function) is closer to a Gaussian function. In this case the
second moment of the field distribution can be obtained from the uSR spectrum fitted with a
Gaussian relaxation (which implicitly implies that p(B) is Gaussian) and the field width and
the magnetic penetration depth are directly related to the Gaussian relaxation rate o:

cgc :yﬁ <AB? >= yﬁ(< B’ >—<B>2) [7-8]

To obtain o one has generally to subtract from the measured o the temperature independent
contribution of the broadening due to the nuclear moments o, which is obtained by a
measurement above T.:

6yo(T) =c*(T) -0}
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Assuming Eq. [7-7] and Ose _ V< AB? > thereis a simple numerical relationship between

Tu
the muon depolarisation rate o, and the superconducting penetration depth A namely
327.5 S ) . "y
A=——, O Inpus 1, A in nm. A Gaussian fit is only sensitive to the central part of the
G

SC
field distribution of a non-Gaussian distribution. This is sometimes taken into account

empirically by using the expression A = M, Gy In us"l, A in nm.
CYSC
2 0081 YBazCu30e6.97 .
2ol %= 130(10) nm

0.04

0.02

0.00 oo
44 46 48 50
Frequency (MHz)
u.U6 T U T J T g T ' T ' T T T
b) .
0.05} -
I YB82CU306_95
004 single crystal -
0.03 } )
' A =150 (4) nm
0.02} d
001} |
0.00 | 1

L i L i L i L i L i L i L
811 812 813 814 815 816 817
Frequency (MHz)

Fig. 7-12: Comparison of p(B) (a) in a polycrystalline YBCO sample (from B. Piimpin et al.,
Phys. Rev. B 42, 8019 (1990)) and (b) in a single crystal (from J. Sonier et al., Phys. Rev.
Lett. 83, 4156 (1999)).
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7.3 Field dependence of the muon spin relaxation rate

If the applied magnetic field is not small with respect to B, the decrease of the intervortex

distance may lead to a decrease of the width of the internal field distribution. Also the vortex
core where the superconducting order parameter is suppressed cannot be neglected any more
@

2mEG,

the second moment of the field distributions has been calculated within the Ginzburg-Landau
model (E. H. Brandt, Phys. Rev. B 68, 054506 (2003)) and a modified London Model with a
Gaussian cut off to take into account the finite size of the vortex core (E. H. Brandt, Phys.
Rev. B 37, 2349 (1988)).The two expressions differ essentially in the higher order
corrections to the linear field dependence (b =<B>/B.,), generally <B>~B.y, see 16y,
Calculations based on Ginzburg -Landau can be well approximated by:

(remember B, =

, ©y flux quantum ). In this case, the expected field dependence of

1

7L[nrn]2

Gy, [us‘l]=4.854-104(1—b)[1+1.21(1—JE)3] [7-9]

whereas the modified London model gives:

0 [us']1=4.846-10%(1-b)\/1+3.9(1-b?) ! [7-10]

7u[nm]2

An example of such a behavior in the iron pnictide RbFe,As; (T.=2.52 K) is shown below.
(Z. (Shermadini et al., Phys. Rev. B 82, 144527 (2010)).

08 m——T——T1—

0.2 1

0.0 —
T T T T T 1 T T T T
0.0 0.5 1.0 1.5 2.0 2.5
T (K)

Fig. 7-13: Temperature dependence of the depolarization rate oy, due to the FLL in RbFe;As;
and obtained in fields of 1.5, 0.5, 0.1, and 0.01 T (lines are guides to the eyes). Inset: field
dependence of o, obtained at 1.6 K and analyzed using the Eq. [7-9].
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By analyzing at each temperature (not too close to T.), the field dependence of o, with
Eq. [7-9] one obtains A(T) and B»(T). From the temperature dependence of 1/A(T) 2 we
obtain information about the superconducting gap of the material (see section 7.6).

T (K)

Fig. 7-14: Upper critical field for RbFe,As;. The open circles are obtained by analyzing the
field dependence of o using Eq. [7-9]. The diamonds are the value obtained by analyzing the
temperature dependence of o.. The stars correspond to the complete disappearance of the
resistivity in field. The line is a guide to the eyes.
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0.0 0.5 1.0 1.5 2.0 2.5
T(K)

Fig. 7-15: Magnetic penetration depth as a function of temperature obtained with Eq. [7-9].
Above 0.5 K only the values measured in a field of 0.01 T are plotted. The red dashed line
corresponds to a BCS s-wave gap symmetry whereas the solid one represents a fit using a
two-g%p s+s model (see Section 7-6). The inset exhibits the penetration depth as a function of
(T/Te)".
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7.4 Uemura relation: correlation between T.und o

Since the discovery of superconductivity in the copper oxide materials there has been a
considerable effort to find universal trends and correlations amongst physical quantities to
find a clue to the origin of the superconductivity. One of the earliest patterns that emerged
was the linear scaling of the Gauss relaxation os. with the superconducting transition
temperature (T.). This is referred to as the Uemura relation (Phys. Rev. Lett. 66, 2665 (1991)
and works reasonably well for the underdoped materials.

The linear relation between T, und . (Fig. 7-16) implies a direct correlation between T,

) ) . 1 : . .

and the superfluid density p, = n_s* since Gy, o€ )7 oc ns* . The magnetic penetration depth in
m m

cuprates is anisotropic. For polycrystalline samples A is an average of A, and Ay, (ab = CuO;

planes). For A, >> A,p, O 1s only sensitive to A,, (W. Barford and J.M.F. Gunn, Physica C

153-155, 691 (1988)).

— 150 - T T T T & T
e : ~
— Te Lf UBey
wotE
~ 100 F SR 2223 _
20 osl

0 ST e Upt,
5 0.0 ,
-EIJ 00 05 10
s1 ¥ 2o
5
= 60 -
_E 214
~ 30 r & =
2 gEDT BKBO Nb
o ¢ Chevrel a
— 0 I 1 | 1 »—

QO 1 2 3 4 4]

Reloxation Rate o(T-0) [M5_1]

Fig. 7-16: 7 vs muon depolarization rate o(0) in (i)
the  high-temperature  superconductors:  YBa,Cu;0;_;
(123), La,_,Sr,CuOy  (214), Bi;SrpCaCuyQg,  and
Il-lﬂ__q Ph”_,-,S I'z'[-:ﬂ'[-: llz{-.]j.' (22 l 2) . and le —y Ph-L Sr:(.-.‘az C ll_?,{-.] 101+
ThLBaCa;,CuyOy, and Tl sPby sSr;CayCusyOy  (2223)  [note:
hole doping increases with increasing or(0) |; (ii) Ba, _, K, BiO;
(BKBOY; (iii) the Chevrel-phase systems LaMogSes, LaMogSs,
and  PbMogSg;  (iv)  the  organic  superconductor
(BEDT-TTF),Cu(SCN),; (v) the conventional supercon-
ductor Nb; and (vi) the heavy-fermion superconductors UPt;
and UBe;s;. From Uemura er al., 1991,
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Such a correlation is not consistent with conventional weak coupling BCS theory for phonon
coupled superconductors, where

T, =2 "D VDE) [7-11]

op = Debye frequency (phonon coupling)
D(Er) = Density of states at Fermi level Eg
V= effective attractive pair potential (= Cooper pair).

In [7-11] T, is proportional to wp and not simply related to ns.

Fig. 7-16 indicates that these ,,unconventional* superconductors belong to a different class of
materials than that of the previously known “conventional” superconductors (such as Nb,
Al,..).

If the energy scale of the pairing is of the order of the Fermi energy, one would expect:

T, o Tg [7-12]
For a 2D electron gas the Fermi energy is given by:

hm
Ep =kpTp =——=24 [7-13]
m
High- T, superconductors are to large extent two dimensional, since the CuO, planes contain

most of the supercarriers (electrons or holes).

One obtains:

A linear relationship between critical temperature and superfluid density is also obtained if T,
is primarily determined by long range phase ordering.
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Fig. 7-17: Crystal structure of
YBayCuz07_g with 2 CuO» planes

Q Ba and CuO chains as charge reservoir.

@0
@ Cu

USSR measurements of the penetration depth in the vortex state and the Uemura plot are used
to classify superconductors (e.g. Fe based superconductors, discovered in 2008, Y. Kamihara,
T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc., 130 (2008) 3296).

120 | Bi2223 - :h--dnped .
| cuprates
100 F .
L | 0O i
80 - Y123 |
I e-doped |
W cuprates
5 60 \\ -
ol La214
a
L : IPEELE.
40 4 o © e sLeo
I-J* - a="
L u---A 4
20 2--"Neeo
L PCCO
D A i 1 i I § 1 L
0 20 40 60 80
2 2
by, (M)

Fig. 7-18: Uemura plot for hole and electron doped high T, cuprates and for the
LaFeAsO; «Fx pnictide (*) (from H. Luetkens et al., Phys. Rev. Lett. 101, 097009 (2008)).
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7.5 Measurement of the anisotropy of the magnetic penetration depth

Measurement with oriented YBCO single crystals. The theory predicts:

2

o, (9) = Somst \/sinz 9+L2cos2 9 [7-14]

ab’c xab

In this equation, Ay, and A, are the principal values of the London penetration depth for a

superconductor with uniaxial asymmetry: A,, and A, are determined by superconducting

screening currents flowing parallel and perpendicular to the CuO; planes, respectively.

9 is the angle between external field and c-axis.

From the measurement one can determine the anisotropy parameter 7.

»_ e _m,

M
7\‘ab My

[7-15]

9 =0, Hey || c-axis. Shielding currents flow in (a,b) plane
9 =90, Hext L c-axis. Shielding currents flow along ¢ and a (or b) axis

2
1.5 F -
o
E
—~
m
2
1 _
0.5 1 | l l 1
-40 -20 0 20 40 60 80 100

¥ (deg)

Fig. 7-19: Angular dependence of the second moment of the field distribution in YBCO single
crystal. The curve is a fit to [7-14], y=3.9(6). From E. M. Forgan et al., Hyperfine Interact. 63,

71 (1990).
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7.6 Temperature dependence of A(T ) and of the superconducting carrier

density and gap symmetry

. 1 n
From a uSR measurement we obtain ¢ oc — o — .| The temperature dependence of ng

*

A2 m

contains information on the superconducting gap A(T). Therefore, an accurate measurement
of the temperature dependence of A provides information on the superconducting gap such as

value at T=0 K and symmetry.

N(E) h

L
SO0 0. ¢ 0
S e s e
o 07000 0% e et bt
D000 000 0.0.0.0.9)

R XX
I RS
mrsleelolelelel

Fig. 7-20: Density of states and state population at different temperatures in an s-wave
superconductor, showing the opening of the superconducting gap with temperature.
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By taking into account the thermal population of the quasiparticle excitations of the Cooper
pairs (Bogoliubov quasiparticles) BCS theory predicts:

ng(T) =n,(0) l—ﬁjf(s,T)[l—f(s,T)]de [7-16]
B
0
1
f(g, T) = W [7-17]
l+e NT

where ¢ is the energy of the normal state electrons measured from the Fermi level
_[2 2 . .
(E=4/e"+A(T)" energy of the quasiparticles measured from Fermi level).

For isotropic s-wave pairing (as in the case of conventional BCS superconductor) and T<<T,:

ny(T) =ng (O)(l _ |2=A00) exp [—A(O)/kBT]] [7-18]
B
and
_ TA(0) B i
MT) = X(O)(l+ —2kBT exp[ A(O)/kBT]J [7-19]

(B. Miihlschlegel, Z. Phys. 155, 313 (1959)).

The wave function of the two paired carriers can be written as the product of a space and a
Spil’l part: lP(fl »815 i:2 > SZ) = ¢(fl > fZ )X(Sl ’ SZ) .

The wave function must be antisymmetric with respect to particle exchange.

If the spin state is a singlet S=0, y = %(‘ T~L> — ‘ ¢T>) the space part must be even, e.g.. s-

wave (1=0) or d-wave (1=2). Conventional BCS superconductors are so-called s-wave
superconductors, whereas high-T, cuprate superconductors have d-wave symmetry, with a
gap which is angular dependent in k-space. This is observable in a measurement of the
temperature dependence of the magnetic penetration depth.

Instead of Eq. [7-16] we have for a d-wave superconductor:

2T ©

I
- .([ .([ £(e,T)[1 - £(e,T)] dpde [7-20]

ny(T)=n,(0)| 1-
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with:

1

&2+ A(T)cos(29)]
KT

f(e,T) =

l+e

/]\ k Gap function A(K). It has lower
(0 symmetry than the Fermi surface

dyp2_ 2

As the gap disappears along some directions of the Fermi surface (“nodes’), extremely-low-
energy quasiparticles excitations (and therefore significant pair-breaking) may occur at very
low temperature.

This is reflected in a more pronounced temperature dependence of A than for s-wave
k

pairing. Remembering that A = one gets for T<<T, a linear T-dependence:

Ho€ Dy

[7-21]

MT) = X(O)(l 48 ZkBTj

A(0)

(P. J. Hirschfeld and N. Goldenfeld, Phys. Rev. B 48, 4219 (1993)).
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Fig. 7-21: Top: Temperature dependence of k;ﬁ in a YBa;Cu30Og 95 single crystal.

Measurement of AA,, with microwave absorption normalized to the pSR measurements.

Dashed line: temperature dependence for an s-wave superconductor. (LSR measurement: J.
Sonier, Phys. Rev. Lett. 72, 744 (1994), microwave measurement: W.N. Hardy, Phys. Rev.

Lett. 70, 3999 (1993)). Bottom: A, (T) showing the linear dependence at low temperatures.
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7.7 Melting of the flux line lattice

The vortex state of a High-T. superconductor represents a unique state of the solid that can be
compared with a crystal and its lattice. The “lattice constant” of the vortex state can be
changed by the external field and the temperature in a wide range.

Especially in a HT, superconductor, the combination of extreme anisotropy, thermal
fluctuations (important since T, is large) and material defects lead to a complex behavior,
which can be described by a corresponding phase diagram with phase transitions solid-liquid
or ordered-disordered.

uSR measurements were the first microscopic investigations that demonstrated the melting of
the flux line lattice.

The vortex state is characterized by the moments of the field distribution.

s 5 i
_SABT>7 <AB"> = [ (B-<B>)"p(B)IB [7-22]
0

o represents a measure of the asymmetry of p(B).

In the extreme anisotropic HT.-superconductor such as Bi; 5Sr; 3sCaCu,0s.:4 (T=84 K)
following is observed (S.L. Lee et al. Phys. Rev. Lett. 71, 3862 (1993)):

a) Until 54K and He=45.4 mT the expected distribution is found.

b) Increasing the temperature to 54 K (Hex= 45.4 mT) leads to a dramatic change of
p(B). o jumps abruptly to a negative value. This behavior is interpreted as melting of
the flux line lattice (Fig. 7-19).

c) Increasing the external field at constant temperature (in a field cooling procedure) one
observes above a critical field another phase transition (Fig. 7-22), which is not so
drastic as the previous one and which is also characterized by a change of a.. This
behavior is interpreted as a transition to a less ordered solid state, with a
dimensionality change from 3D to 2D (formation of so-called pancakes vortices).
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Fig. 7-23:Magnetic-field dependence of the skewness parameter o in single crystal

Bi,.15S11 3sCaCu,Og.5 after field cooling at T=5K. The sharp drop in a at poH ~ 50 mT is
attributed to a 3D to 2D crossover in the vortex lattice. From S.L. Lee et al. Phys. Rev. Lett.
71, 3862 (1993).
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Fig. 7-24: Phase diagram of the vortex state of BSCCO, determined from uSR and small
angle neutron scattering experiments (SANS).
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7.8 Coexistence of magnetism and superconductivity

Example : YBa;Cu3Ogx (ref. S. Sanna et al., Phys. Rev. Lett. 93, 207001 (2004))

(x Oxygen give h=x/6 holes per Cu planar atom)

Coexistence of magnetic (AF order and correlations) and superconducting phases can be
investigated by a combination of ZF and TF (in vortex state) measurements.

ZF:
A, (1) =a; G, (1) +a1Gy (1) cos(y, [By] )

B, : local field

for a homogeneous magnetic (polycrystalline) sample:

a1y a_ng

azp 3 azg
if only part of the sample is magnetic:

>l and a—T<z

az;p 3 azp 3

ar

The volume fraction is given by:

fAFzéa_T

:i(l_a_L)
2azp 2

azp

TF in the vortex state:

A () =a16G, (1) cos(y,B,1)
_ (o +0,))t?

G, (t)=e 2

B, =poH(I+y) and x<I

o, is the contribution of the nuclear moments
The volume fraction is given by:

a . .
foo =—£  where a is obtained at T>T,

a9
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Fig. 7-26: Local field vs T at
different doping x.
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Fig. 7-27: (a) magnetic transition temperatures
A from aj/azp, ® from 1/T; and sc critical
temperature T, vs hole concentration /; three
samples show a distinct Ty>Tr.

(b) Muon volume fractions vs 4: AF (O at T=0
K) and SC (A, for T<T<T,). Lines in (a), (b)
are guides to the eye.
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Fig. 7-28: TF pSR data (u,H =22 mT). Asymmetry (a) for Tr <T = 20 K<T, and (b) for T =
3K < Trin sample Y15; solid curves are best fits to a Gaussian damped precession. (c)

Relaxation rate o (here labelled o) and (d) internal field B, from the best fits for samples
Y15and Y17.
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Determining the electronic phase diagram of the LaO,«FiFeAs superconductor
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Fig. 7-29: a) Typical zero-field uSR spectra. Only for x<0.04 a spontaneous muon spin
precession indicative of long-range-ordered magnetism is observed. For x>0.05 a
paramagnetic signal is observed down to the lowest temperatures. For x=0.05 a weak
electronic relaxation typical for diluted static magnetism is detected below 5 K in <30% of the
signal (visible on the long timescale in the inset). For x>0.075 the uSR data prove that no
static magnetism is present. b), Temperature dependence of the magnetic volume fraction for
x=0 and 0.04. Both samples show a transition to a 100% magnetic volume fraction. The ~ 5%
non-magnetic signal is attributed to muons stopping in the sample holder. c¢) Typical
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transverse-field uSR spectra measured in an external field of 0.07 T (for clarity shown in a
rotating reference frame with frequency 7.8 MHz). The additional Gaussian relaxation due to
the formation of the flux-line lattice in the superconducting state is clearly observed below 7¢.
Note that for x=0.20 a signal fraction of 15% does not show this additional relaxation,
indicating the presence of a non-superconducting volume fraction (from H. Luetkens et al.,

Nature Materials 8, 305 - 309 (2009)).

140 | thomg,
- o
120 ! Tetragonal
= 100 '
i E e T, from XRD
FBOE Smﬂ. ] e T, from (T}
| magnetic | A
SN T, frompuS
& | n T, from g5k
40 = i
20F W M
(N Soeorconductdy " " TH———
0 002004006 008 00 012 034 016 038 020
Mominal F content x
b wof
60 [ |
140 B
120 F & B _frompuSk
E m 12 from uSk
E 100 ab I1OM A
2
o
a0 Superfluid density |

pbe— e R

0 002004 006 008 00 012 034 Q16 038 020

Mominal F content x

5

= {pwl 337

By

i

Fig. 7-30: a) The doping dependence of the magnetic and superconducting transition
temperatures determined from the uSR experiments. Also shown are the tetragonal-to-
orthorhombic structural transition temperatures Tgs determined directly from X-ray diffraction
and from susceptibility measurements, which show a kink and subsequent strong reduction
below Ts. b) The doping dependence of the low-temperature saturation value of the magnetic
order parameter Byuon(T—=20) and of the superfluid density ns/m* measured through
1/Aa>(T>0) in transverse-field pSR experiments. The grey data points at x=0.03 and 0.08 are
taken from another work. The error bars indicate one standard deviation.
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8. Muonium in semiconductors

In semiconductors and insulators the positive muon can capture an electron and form stable
muonium. This state corresponds to a non-ionized hydrogen atom in the solid. With muonium
spin rotation it is possible to study electronic states and position of an isolated hydrogen atom
(impurity) in the solid. Muonium states have been detected in various semiconductors and
insulators. Muon spin rotation spectroscopy has played a pioneering role in the discovery and
identification of intrinsic hydrogenlike states in semiconductors. Detailed investigations have
been performed in SiO,, in the pure semiconductors Si, Ge, in diamond, in the
semiconductors of the group (III-V) and (II-VI) and in various oxides.

Contrary to the muon in magnetic substances or superconductors, the positive muon in a
semiconductor is an active probe. With this we mean that we use uSR spectroscopy to
investigate a state, which is created by the muon itself.

We consider in the following as examples Si and Ge. One can distinguish different states via
the hyperfine interaction. In Si and Ge we find at low temperatures three states:

1) Normal muonium with a strong hyperfine interaction, 2) so called anomalous muonium
with a weak anisotropic interaction and 3) to about 10% free or diamagnetic muon. (Ref.

B. Patterson, Rev. Mod. Physics 60, 69 (1988) and S.F.J. Cox, Rep. Prog. Phys. 72, 116501
(2009)).

8.1 Muon-spin precession in normal muonium in transverse field

Normal muonium has an isotropic hf-interaction. The Hamilton function of the hyperfine
interaction in muonium is given by Eq. [3-34] (chapter 3), where we have determined the
eigenstates and energy eigenvalues in a magnetic field (Eq. [3-37] to [3-39], Breit-Rabi
diagram).

Experimentally, we measure muon spin precession frequencies that correspond to transition
frequencies between different muonium levels.

Consider the transverse field experiment. At t=0 the muon spin is parallel to the x-direction:
Bexll z L I(0)[| x.

In this case we must calculate the expectation value of o, =21, ([I]=[1]). The Pauli matrix oy
acts only on the muon part of the wave function.

The captured electrons forming muonium are unpolarized, so their spin is with 50%
probability parallel or antiparallel to the muon spin.

This state can be represented by an incoherent superposition of two wave functions:

1 1 1 1 1
|\P1(0)>Z$DMS=E’MI:_§>+’M8=E’MI:+E>}

1 1 1 1 1
W (0) >= ——| [Mg =~ ,M; =—— >+ | Mg =——,M; =+~ >
0 ﬁ@ s M=oz My = My 2}
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The wave functions at any time t are a superposition of eigenstates [i> (given in [3-39]) with
their corresponding phase:

4 .E,
—1—t
(Wia(0)>= ) e’ fize ! [8-1]
i=1

The constants have to be determined from the initial conditions and from the normalization.

Initial conditions:

<oy >=l<o, >=0,<0,>=0 [8-2]

The (observed) polarization in x-direction is then given by following expression:

P(t) =<¥;(t) o [F1() >+ <1 ()| oy | o (1) >
4 _ lwt 1 4 _ i(Ej_Ek)t 1
_ 1* 1 h a . 2% 2 # * .
—; kCie <k|2(0++c_)|J>+;ck cje <k|2(0++0_)|J>
Jok= Jk=

[8-3]

This expression can be evaluated using the explicit expression for the eigenstates (see [3-39]).
P(t) can be also evaluated within the density matrix formalism, which is useful in case of
partial (or zero) polarization (as is the case here for the electrons) (see for instance

E. Karlsson, Solid State Phenomena as seen by Muons, Protons and Excited nuclei, Oxford
Science Publications 1995).

Some important properties of [8-3]:

e P(t) depends only on transition frequencies.
e Selection rules of the matrix elements: the terms in the sum with j=k are zero since 6, ,6_
do not possess diagonal elements.

e From the explicit expression for |1>, [2>, [3> and |[4> (Eq. [3-39]) we note that the
transitions 122 and 3->4 do not contribute to P(t).

The result of the calculation gives for [8-3]:

P(t)= %[cos2 B(cos w3t +cosmyt) + sin” B(cos ®4t +cos 0332t)} [8-4]
. 1/2
X
cosp=—1=|1+
2{ (1+x2)”2}
[8-5]
. . 1/2
sinfB=—|1
2{ (1+x%)"2
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(ge|up[+2,15)B _ B

where x = 5
An By

[8-6]

(for vacuum muonium By=0.158 T).

Special cases

A) The transition frequencies my4 and m;4 are generally too large, to be resolved with
conventional spectrometers with time resolution of about 0.5 ns (rms).

Therefore:
< COS Wyt >=<cosmyy >=0

so that:
P(t) :%[cos2 Bcos ml3t+sin2 Bcos m32t)] [8-7]

This equation can be written in the following form:

1 1 x . .
P(t)= ECOS o,tcosm_t+ ST sin o, tsino_t
1+x [8-8]
w3, T
o, = 2327013
- 2

which gives a beat frequency (see Fig. 8-1).
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Fig. 8-1: TF-uSR spectrum in quartz at room temperature. Note the beating between
frequency vi3 and vs;.
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The corresponding frequency spectrum is:

150 | i i 1
Quartz
1001 .
50 - -
b e _
Op, ™ | a |
50 100 150 [MHz]

Fig. 8-2: TF frequency spectrum in quartz (10 mT) at room temperature. Visible are the

1" precession frequency and that of the isotropic muonium (frequency pair v;3 and vs;
centered around 140 MHz ).

From the frequency splitting we can determine the hyperfine constant A.
With the help of Eq. [3-37] we find an expression for A or the hyperfine frequency vy,
which depends only on experimental quantities:

hvix + hvs, +2hv. )2
hvye —nA=t (i3 +hvso w ~hAv
2 hAv [8-9]

Av = V32 — Vi3

B) If the applied field is very small (x<<1) one can further simplify [8-7] (see also Fig. 8-6a):

~ = T 1
37 = O3 = Oy = Yy B ZE(Ye —v.)B

e
I
e

[8-7] becomes

P(t) =%cos Oppy t [8-10]
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This means that in very small TF fields (< 0.5 mT), muonium shows only half of the
polarization amplitude (corresponding to the precession of the Mg= =+ 1 components in the
triplet state). In this case the muon spin polarization precesses with a Larmor frequency
oy, =103 o, (with opposite sense of rotation of the precession of a “free” muon). This

allows distinguishing the charged (u") from the uncharged state (Mu).
B) No applied field, isotropic hyperfine interaction.
In this case there is only one hyperfine frequency, which in free muonium (corresponding to

vacuum muonium) is very high (o¢/2n = 4.46 GHz). Generally it is observable only in
systems with very good time resolution.
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Fig. 8-3: A zero-field uSR spectrum of quartz at room temperature. The Mu hyperfine
frequency is close to the vacuum value (4.463 GHz). The FWHM time resolution of this
experiment is 110 ps. From E. Holzschuh et al., Helvetica Physica Acta 54, 552 (1981).
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Example of muonium spectroscopy of synthetic quartz crystal in 8 T with a high resolution
spectrometer. The High Field uSR instrument HAL-9500 at PSI, which uses Avalanche Photo
Diodes (APD’s) instead of the conventional photomultipliers to transform and amplify the
scintillator signal, has a very good time resolution (variance 6=58 or 80 ps, depending on the
readout system). This allows spectroscopy of muonium in high fields.
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Fig. 8-4: Breit-Rabi diagram and transitions in a synthetic quartz crystal measured with
the HAL-9500 high resolution spectrometer at PSI in a 8 T field (R. Scheuermann,
private communication).
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In inert non conducting substances muonium can exist in a state which is very similar to the
atomic state. In this case it is localized in interstitial lattice positions. In alkali fluorides the
hyperfine coupling is slightly higher than in vacuum muonium. This corresponds to a slightly
compressed wave function with higher spin density at the muon site. Generally the hyperfine
coupling is smaller. In some semiconductors it is even much smaller than in the free state. For
instance in the elementary semiconductors of the group IV the electron spin density at the
muon site is only 50% of the value in the free atom.

i T 1 T ] 1 {
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Fig. 8-5: Hyperfine constant for interstitial muonium in semiconductors and dielectrics. The
graph shows the correlation between spin density at muon site and band-gap of host material
(S.F.J. Cox J. Phys. C: Solid State Phys. 20, 3187 (1987)).

8.2 Anomalous muonium

In several semiconductors an additional muonium state has been found with a hyperfine
constant which is axially symmetric around the [111] crystal axis. This state is called
»anomalous muonium®or ,,anisotropic muonium* and indicated with Mu .

In general we can write the Hamilton function of the hyperfine interaction as follows:

H=—ji.-B-f,-B+IAS [8-11]

(Compare with [3-34] Chapt. 3. Muonium and muonium spectroscopy).

For anomalous muonium the assumption of an axial symmetric hyperfine tensor is justified.
[8-11] can be written as:

H=—i,-B-fi, -B+A, (IS, +1,S,)+A|LS, [8-12]

242



In the special case B||Z||[111]—axis (<I11>symmetry axis)

A
Hyo =—ng-B, —pp B, +7i(1+s_ +1,S)+ALS,

The eigenvalues of this Hamilton operator can be calculated as in the isotropic case. We

obtain:
E _ALthrl( | |_ M)B
1~ 4 7 ge¢ |UB gp,MB
A2 1
_ 2 n
By=—)— —E(gelusl—guuB)B
A h? 2
4
Ah? 2
E4:_L_M\/1+X2
4 2
with

_ (e|mp|+ gunp)B
A h?

X1

[8-13]

[8-14]

[8-15]
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a) isotropic hyperfine coupling b) hyperfine coupling with
axial symmetry

Energy

Magnetic Field Magnetic Field

Fig. 8-6: Energy levels of muonium in low magnetic fields. a) Isotropic muonium.
b) Anosotropic muonium with axial symmetry.

The hyperfine interaction of Mu' is generally smaller than that of Mu

A, (Mu’ . L : o .
A (Mu) = (.05 in Si. Furthermore it is anisotropic A =~ (.2 in Si. The precession
A(Mu) Ay

frequencies depend not only on the B-field strength but also on its direction (see Fig. 8-7, and
Fig. 8-8 bottom).
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Fig. 8-7: The field-dependent 1" and Mu* precession frequencies in Si. The field was
directed along the [111] axis. The solid line shows the expected dependence of the
diamagnetic 1" signal, and the finely and coarsely dashed curves are fits to the axially
symmetric spin Hamiltonian [8-13] for angles between the field and Mu* symmetry axis of
0 and 70.5°, respectively. From B. Patterson et al., Phys. Rev. Lett. 40, 1347 (1978).
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Fig. 8-8: Transverse-field uSR frequency spectra taken at 10 mT in quartz at room
temperature and [111] Si at 77 K showing the precession components from diamagnetic p1"
(v=1.36 MHz) and isotropic Mu (the pair vi, and v»3; centered on 140 MHz). Note the
larger Mu splitting in Si, indicating a weaker hyperfine interaction and the presence in Si
but not in quartz of Mu* precession lines (v, and vis, 0270.50, at 41 and 46 MHz). From
J. Brewer et al., Phys. Rev. Lett., 31 143 (1973).
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Fig. 8-9:A uSR frequency spectrum taken with a high-time-resolution apparatus in high-
resistivity GaAs at 10K with a 1.15 T field applied along the [110] axis. Note the two Mu lines
vi2 and vsg4, the Mu* lines Vij*(e) (0 1s the angle between the [111] Mu* symmetry axis and the

applied field), and the diamagnetic muon line v, . From R. Kiefl et al.Phys. Rev. B 32, 530
(1985).

Note that in our notation of Eq. [3-37] V12 ,v23 and vi4 in Fig 8-8 and 8-9 are designed as v3
V32 und V4.
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TABLE VIII. Fractions of incoming muons forming the various muon states in undoped diamond and
zincblende semiconductors at low temperatures.

Sﬂ-mple f,u+ (%) JrMu* (%) .rMu {%) fmissing {%)
Diamond 8.1 (3.0) 22.7 (8) 68.9 (1.0) 0.3 (3.3)
Si 7.5 (4) 36.8 (1.8) 61.0 (7.6) —5.3 (7.8)
Ge* 10 (2) 8 (4) 72 (10) 10 (11)
B—SicP 65 (12) 30 (5) 5(19)
a—Sn® ~ 100
GaP? 11 (1) 18 (3) 72 (10) —1 (11
GaAs? 9 (1) 35 (5) 63 (6) —7(8)
GaSh*® 56 (1) 44 (1)
InP® 75 (3) 25 (3)
InAs® 106 (2) —6 (2)
InSb* 72 (2) 28 (2)
ZnS 20 (1) 19 (3) 61 (3)
ZnSe 36 (1) 11 (2) 53 (2)
Cds 92 (3) 8 (3)
CdTe 69 (2) 36 (2)
CucClf 16 (4) 66 (3)!

9.9 (g1 8 (5)
CuBr' 23 (4) 66 (5)

5.8 (8)! 5 (6)
Culf 18 (8) 72 (3) 10 (9)

TABLE IX. Low-temperature hyperfine parameters for anisotropic Mu® (4, 4,) and isotropic Mu ( A4) in diamond and zincblende
semiconductors, the maximum temperatures of their observation, and observed transitions among the muon states. The hyperfine pa-
rameters for the III-V and II-VI compounds refer to 10 K, and the other values are extrapolations to 0 K. The hyperfine frequency of

i (K)

Sample 4, (MHz)* A, (MHz)}* A (MHz) The (K) Transitions

C + 167.983 (57 —392.586 (55)" 3711 (21)° > 1000° 405° Mu—sMu*®

Si 16.819 (110 92.59 (5)¢ 2006.3 (2.0)¢ 165 3007 Mu* —sp tE

Mu—putE

Ge 27269 (130 131.037 (34)¢ 2359.5 (2)¢ g5t 120" (Mu,Mu*)—pu*!

B—SiC =22 pt—Mu?

GaP 219.0 (2) 79.48 (7)% 2914 (5) 100 240

GaAs 217.8 (2) 87.74 (6)* 2883.6 (3)* 100 300 Mu* —pu*

ZnS 3547.8 (3) >10

ZnSe 3456.7 (3) >13

CuCl 1334.23 ()1 60" Mu' —Mu'",
1212.3 (1)1 > 300! Mu'l gt

CuBr 1403.66 (6)" 1534 Mu!—Mu!!!
1250.9 (2)""! > 300" :

Cul 1670.9 (2)' 102!

From B. Patterson, Rev. Mod. Physics 60, 69 (1988)
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Muonium states in elemental and III-V compound semiconductors have been found and
studied to a great extent. Charged states Mu~ and Mu™ and two forms of the neutral state Mu"
have been identified and the interplay of site and charge states is understood. Mu® can either
be isotropic, when in a symmetric interstitial site such as the tetrahedral site in diamond or
zincblende structures (Mu’r), or anisotropic when situated at the bond-center site (Mu “g¢). In
these semiconductors, isolated H and Mu are known to form deep-level centers.

Muonium Centers in SilGe

({D: forming T-sites)

Fig. 8-10: Two different muonium states in Si and Ge.
,Bond Centered muonium” Mugc (Mu ) and “tetrahedral muonium* Mur .

8.3 Weakly bound muonium (shallow muonium)

More recently, studies of Mu in II-VI semiconductors revealed the existence of a third form of
neutral anisotropic Mu’ in CdS, CdSe, CdTe and ZnO. This state has binding energies
characteristic of shallow-level donor centers and is believed to be at the interstitial site anti-
bonding to S (Se, Te, or O). Its hyperfine interaction is very weak, amounting to
approximately 10 of the free-atom value. Figure 8-9 shows the uSR signal in CdS, taken
over a period of eight muon lifetimes. The Fourier transform of the signal shows five distinct
frequencies, indicating an extremely shallow muonium state and providing the first
information on this hydrogen-like impurity in the compound (J. M. Gil et al., Phys. Rev. Lett.
83, 5294 (1999)). In addition to the Larmor precession signal at 1.38 MHz, the Fourier
spectrum shows two pairs of lines symmetric around the central line. The outer pair (Av=
335.7 kHz) and the inner pair (Av= 214.5 kHz) together with their intensity ratios can be
assigned to two orientations of the muonium defect center. The shallow muonium state is
described by a hyperfine tensor which can be oriented along definite crystallographically
equivalent directions (specific bond directions) which have different orientation with respect
to the applied magnetic field.
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Fig. 8-11: uSR spectrum and its Fourier transform for undoped CdS at 2.1 K (From J.M. Gil
et al, Phys. Rev. Lett. 83, 5294 (1999)). The magnetic field of B =10 mT was parallel to the
hexagonal <0001> axis which was also normal to the plane of the disc-like sample. In this
geometry, one Cd-S bond direction (suggested to be the symmetry axis of the hyperfine
tensor) is at 0° and three are at 70.6° to the field direction.

In the high field limit (A <<y.B/2 = 140 MHz for B =10 mT) and axial symmetry a simple
relation between measured frequencies and hyperfine tensor holds:

Av=A(0)=|A cos’0+A | sin’ 0 [8-16]

where Av is the separation of two lines symmetrical around the central line, A(0) is the
hyperfine interaction for a given angle 0 (angle between magnetic field and symmetry axis),
and Ajand A  are the hyperfine interaction couplings parallel and perpendicular to the
symmetry axis, given by the Cd-S bond direction.

The analysis of the spectrum of Fig. 8-11 yields A =335(7) kHz and A | =199(6) kHz.
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Fig. 8-12: Paramagnetic (Mu) fraction (open squares) and diamagnetic fraction (closed
circles) as a function of temperature for CdS at B=10 mT and an angle of 54.7°.

The asymmetry as a function of temperature shows that the diamagnetic line grows at the
expense of the paramagnetic lines (Fig. 8-12). This is taken as evidence that the muonium
center becomes ionized, i.e., that the electron is no longer bound to the muon. The binding
energy of the electron obtained from the activation energy is Eq=18 meV indicating that

muonium forms a shallow level with a widely distributed electron wave function as already
suggested by the low hyperfine interaction.

° Condecta b
cd

250

3

“ A
P, O

Fig. 8-13: Shallow muonium state in CdS (green circle) and energy level.
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9. Thin film and heterostructure studies with low energy muons

Experiments making use of surface muons can’t provide depth selective information or study
extremely thin samples. With the initial implantation energy of 4.1 MeV, the stopping range
of muons in a solid varies from 0.1 mm to 1 mm with a wide distribution of about 20% of the
mean value and thus only measurements of the bulk properties can be performed. To extend
the scope of the uSR technique to materials, which are of interest in the newly developing
technologies of nanomaterials, multilayered thin films, high temperature superconductors etc.,
spin-polarized muon beams with tunable energies from several eV to several keV and narrow
energy distribution are required. These particles can be implanted at well-defined depths
ranging from just fractions of a nanometer to a few hundred nanometers (see Fig. 9-1).

1000
YBaQCu 3O7 /
100

10

Range [um]

0.1

0.01

10° 10’ 10° 10° 10"
Muon Energy [keV]

Fig. 9-1: Mean (straight curve) and rms (dash—dotted curve) projected range of positive
muons implanted in YBa;Cu30O7_5 as a function of kinetic energy. An absolute energy
uncertainty of 400 eV for low energy muons and a relative uncertainty of 6% for the energetic
ones has been assumed. The dotted curve at low energies displays the intrinsic resolution for a
monoenergetic beam. Whereas the so-called surface muons (~ 4 MeV) are used to investigate
bulk properties of matter, low energy muons (LEM) extend the applications of pSR
techniques to the study of thin films, multilayers and depth dependent investigation on
nanometer scale.
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9.1 Generation of slow u" by moderation in thin layers of cryosolids

The most successful method of generating muons with energies of only ~ 15 eV is the muon
moderation technique in condensed van der Waals gases, developed at the Paul Scherrer
Institute (PSI) in Switzerland, where it is now routinely used for nanoscale investigations.

If energetic surface " are injected into the back of a thin foil (~ 100 pm) covered with a very
thin layer (< 1 um) of a condensed van der Waals gas (such as the Ar, Ne or N; cryosolids),
very slow p" are emitted from its downstream side (D.R. Harshman et al., Phys. Rev. B 36,
8850 (1987), E. Morenzoni et al., J. Appl. Phys. 81, 3340 (1997)). The energy distribution of
these particles shows a maximum near 15 eV, with a tail extending to higher energies (see
Fig. 9-2). The mechanism is hot emission: the observed very slow n" are particles, which have
not completely thermalized in the thin overlayer; therefore they are termed epithermal (i.e.
above thermal) p'.
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Fig. 9-2: Energy spectrum of the emitted muons after moderation of surface muons in some
rare gas solids and solid Nitrogen. The useful energy interval of epithermal muons is shown.
From E. Morenzoni, Physics and applications of low energy muons, in Muon Science, edited
by S. Lee, S. Kilcoyne, R. Cywinski , IOP Publishing, pp. 343-404, (1999).
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The moderation steps can be summarized as follows. Initially, the surface p" rapidly loses
energy in the thin foil substrate by Coulomb collisions with electrons and by ionizing and
exciting the target atoms (electron-hole pair and exciton creation). When a " has lost most of
its energy, at energies below ~ 10 keV, charge exchanging cycles, involving muonium
formation in one collision (where the positive muon captures an electron) and muonium
break-up in one of the following collisions, also acquire importance as energy dissipating
mechanisms (see Chapt. 4. Positive and negative muons in matter). In wide band-gap perfect
insulators such as solid Kr, Ar, N,, and Ne (band-gap energy between 11 and 22 eV) these
electronic processes have high threshold energies.

Therefore once the pi" has reached a kinetic energy of the order of these levels, the
corresponding efficient electronic energy loss mechanisms are strongly suppressed or even
become energetically impossible. As a consequence, the energy loss rate becomes
considerably lower, since the relatively inefficient elastic scattering and phonon excitation
processes remain as the only energy loss mechanisms (see Fig. 4-1).

This results in a large escape depth for epithermal u" (about 100 nm for Ar and 50 nm for Kr),
giving rise to a particularly efficient moderation to epithermal energies in these materials.
Epithermal p" emission conserves the initial polarization (practically 100%), since
depolarization via electron and Coulomb scattering is negligible and the overall time for
slowing down to ~10 eV is very short (~ 10 ps). This is an essential feature for the use of
these particles as magnetic microprobes on the nanometer scale. Moderation efficiencies
range between 1.5 -10™* for solid Ne and ~ 5-107 for N> and Ar.

Asymmetry

[m]

Fig. 9-3: Asymmetry of very slow muons emitted from a solid Argon layer and precessing in
a 5 mT transverse magnetic field. The amplitude corresponds to a
practically 100% polarization. From E. Morenzoni et al., Phys. Rev. Lett. 72, 2793 (1994).
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Fig. 9-4: Moderation efficiency ¢, , defined as the number of epithermal " divided by the
number of incoming surface 1", for various moderating materials as a function of the
thickness of the solid van der Waals layer condensed onto a patterned Ag substrate, which
was held at a temperature of 6 K. From E. Morenzoni et al., J. Phys.: Condens. Matter 16,
S4583 (2004) and T. Prokscha et al., Applied Surface Science 172, 235 (2001).
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. + . . . .
9.2 Generation of slow u' by laser resonant ionisation of muonium

An alternative method uses resonant 2-photon ionisation of muonium atoms, which are
thermally diffusing out of a hot W foil where surface muons are stopped. Muonium is ionized
by the pulsed operation (25 Hz or 50 Hz) of a specially developed laser system (K. Nagamine
et al. Phys. Rev. Lett. 74, 4811 (1995)).

This method is well-suited for pulsed experiments and can potentially produce muons with
energies as low as 0.2 eV (2000 K). This method has been tested at the ISIS (UK) pulsed
muon source producing about 10-20 slow muons per seconds and is being implemented at the
new USR facility at J-PARC, Japan, where higher intensities are expected (Y. Miyake et al.,
JPS Conf. Proc. 010101 (2014)).
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Fig. 9-5: Principle of thermal muonium (Mu) generation from tungsten foil and 2-photon
resonant ionization of muonium resulting in the production of low energy positive muons.
From P. Bakule and E. Morenzoni, Contemporary Physics 25, 203 (2004).
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9.3 The Low-Energy Muon (LEM) instrument at PSI

- UHV system, 10-1° mbar Electrostatic mirror

- some parts LN, cooled surface” m* beam, ~4 MeV
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Fig. 9-6: Low energy polarized muon beam generated via moderation and pSR spectrometer
for experiments on thin films, multilayers and near surface regions at the Paul Scherrer
Institute. Typical intensities and beam characteristics are given.

Epithermal muons emitted from a moderator represent the source of the low energy beam of
polarized p* with tunable energy in the desired range. The practical realization of this scheme,
developed and in use at PSI, is shown in figure 9-5. This beam is an example of a tertiary
beam (the primary being the proton beam generating pions and the secondary the surface
muon beam originating from the decay of the pions).

The detailed operation is as follows. “Surface” muons are incident at a continuous rate of
presently ~2 10%/s onto the cryogenic moderator held at a positive potential between 12 and
20 kV. Epithermal muons emerging from the moderator are accelerated in this potential,
transported and focused by electrostatic lenses and a mirror to the sample, where they arrive
at a rate of ~ 4500/s. The electrostatic mirror is used to separate the low energy muons from
any fast muons exiting the moderator. The low energy muons are detected when they pass
through a ~ 10 nm thick carbon foil (corresponding to only about 50 atomic layers) placed at
an intermediate focus of the beam transport system (“trigger detector” in Fig. 9-6 and 9-7).
The p" traversing the foil eject a few electrons, which are directed by a grid system to a
micro-channel plate detector where they are detected. This scheme keeps the amount of
material interacting with the muons and the consequent effects on the trajectory minimal,
while allowing for an efficient (>80%) and fast detection. On passing through the foil, the
muons lose about 1 keV and acquire an rms energy spread of ~ 0.4 keV. This detector
provides the information about the implantation time of the muon in the sample and starts a
time differential measurement (remember: PSI delivers so called continuous beams and only
one muon at a time has to be present in the sample, see Chapt. 5. Principles of Muon Spin
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Rotation/Relaxation/Resonance). The trigger signal is also used to measure the time-of-flight
(TOF) of each low energy muon after it was detected at a scintillator on entering the
apparatus. By selecting on TOF, one discards muons coming from the moderator with
energies outside the epithermal region, but with low enough energy to be reflected by the
mirror. The final kinetic energy of the muons implanted into the sample may be varied over
the range 0 to 30 keV by applying an accelerating or decelerating potential of up to 12 kV to
the sample, which is mounted in good thermal but electrically insulating contact with a
cryostat for low temperature experiments or on other types of sample holder. The 90°
deflection at the electrostatic mirror has also the practical effect of transforming the initially
longitudinally polarized muon beam into a transversely polarized beam (when the muons
arrive at the sample, they are horizontally polarized, transverse to their direction of motion).
A small spin rotator can rotate the spin by 90° to have the spin parallel to the momentum (Z.
Salman et al., Physics Procedia, 30, 55, (2012)). The decay positrons from the muons
implanted in the sample are detected by a set of scintillator detectors placed left, right, above
and below the beam axis.

=pMuon Momentum
APD Positron

<= Muon Spin Spectrometer

E-Field

Sample Cryo

Microchannel Plate

Fig. 9-7: Details of the main components of the LEM setup.
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Fig. 9-8: LEM instrument in the pE4 area at PSI. Top: last section of the high intensity
surface muon beam feeding the LEM apparatus. Bottom: LEM Apparatus. The surface muons
are coming from the right. The moderator cryostat with the 90° deflection as well as the uSR
spectrometer and sample chamber in the lower part of the picture are visible (T. Prokscha et
al., Nuclear Instruments and Methods in Physics Research A 595, 317 (2008)).
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9.4 Stopping profiles of Low-Energy Muons in thin films

In bulk uSR experiments the exact stopping position is not known and is also irrelevant, as
long as the sample is homogenous; in the experiment it is sufficient to ensure that the particles
stop inside the sample. In contrast, for unrestricted use of muons on the nm scale, it is
important to understand their implantation behavior in detail.

When the muon enters a solid sample the initial kinetic energy, which is much larger than the
thermal energy of diffusion, is dissipated within a few ps. It continuously loses energy
predominantly by electronic collisions and changes direction mainly by Coulomb scattering
with the target nuclei. Due to the random nature of the collisions a stopping profile n(z, E) is
obtained as a result of the thermalization process of a muon ensemble of energy E (z depth
from the sample surface). First moment and rms of

this distribution are shown in Fig. 9-1 for " stopping in the high temperature superconductor
YBa,Cu307-5. The first quantity represents the projection to the beam direction of the total
distance travelled (projected range, R,) and the second the corresponding straggle (AR;). The
curves shown in Fig. 9-1 have been obtained from the moments of implantation profiles
calculated by using Monte Carlo codes originally developed for protons and heavy ions and
taking into account the typical finite energy resolution of the impinging beam. In the
simulation the muon is treated as a proton-like projectile of mass my =~ 1/9 my =0.113 amu. At
low energies

the profile width is typically 5—10 nm. Even for perfectly monoenergetic particles there is an
inherent limit to the depth resolution due to the statistical broadening of the u" implantation
profile. This intrinsic broadening is the dominant effect for i of energy larger than ~ 2 keV.

To determine experimentally their stopping site one can rely on the property that polarized
muons thermalized in metals behave as a free ', whereas the large majority of muons
thermalized in insulators bind an electron and form muonium (Fig. 9-9). Because of the
different magnetic moments, the two states (free muon and muonium in the triplet state, mg=
* 1) and therefore the rest position can be easily distinguished by their different muon spin
precession frequency in a low static magnetic field B transverse to the initial spin direction
(Larmor precession frequency o, =v,B=0.8516 Mrad/mT-B [rnT] and

@, =87.617 Mrad/ mT-B [mT], see Chapt. 8. Muonium in semiconductors). In a sample

composed of a thin (thickness d) metallic layer deposited on an insulator, the amplitude of the
corresponding frequency is then directly proportional to the fraction of muons stopped in the
corresponding layer. In the experiment one determines partial integrals of the range
distribution:

d
N(d,7) = [n(z,E)dz [9-1]

By comparing these fractions with the predictions obtained by Monte Carlo programs, which
calculate step-by-step the trajectory of the particle implanted and simulate their slowing
down, scattering and thermalization, we are able to test our understanding of these processes.
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Fig. 9-9: Principle of the muon depth profile studies in metal-insulator films. The fraction of
muons stopping in the metal or in the insulator layer can be distinguished by their different
Larmor frequency. The results can be compared with Monte Carlo simulations of the muon
stopping profile n(x,E).

Figure 9-10 shows as an example the muon fraction measured in a bilayer consisting of Cu
deposited on quartz SiO,.

After an increase at low energies, the fraction of muons stopping in the metal saturates, when
essentially all the particles thermalize in the metallic layer. Increasing further the energy the
fraction decreases, when the muons penetrate the metallic layer and reach the insulating layer,
where they predominantly form muonium. The decrease of the free muon fraction is
accompanied by a corresponding increase of the muonium fraction (not shown). The increase
with energy at a few keV is a consequence of reflection and simultaneous neutralization of
muons scattered at the metallic surface or re-emerging from the bulk. This effect is especially
pronounced in samples containing heavy elements. The comparison with simulated integrals
of implantation profiles and reflection probabilities shows that we are able to suitably predict
the behavior of keV muons.
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Fig. 9-10: Energy dependence of the diamagnetic asymmetry in Cu deposited on a quartz
glass: closed symbols thin (d = 68 nm), open symbols thick (d = 500 nm) sample. The solid
lines are the prediction of a simulation based on the TRIM.SP Monte Carlo program (W.
Eckstein, Computer Simulation of Ion—Solid Interactions,

Springer, Berlin, Heidelberg, New York, 1991). The dotted line in the intermediate energy
region shows upper and lower limits due to the layer thickness uncertainty. The dashed curves
are the prediction of the SRIM2000 code (J.F. Ziegler et al., in The Stopping and Range of
Ions in Solids, Vol. 1, Pergamon, New York, 1985). From E. Morenzoni et al., Nucl. Instrum.
Meth. B 192, 254 (2002).

The full differential implantation profile n(z, E) can be directly imaged in a single
implantation and imaging experiment. In analogy with the magnetic resonance imaging
technique this quantity can be obtained from the spectrum of the Larmor precession
frequencies in an inhomogeneous transverse magnetic field

B(z) of known gradient applied to the sample. The local magnetic field at each stopping site
causes a corresponding precession of the muon spin. The temporal evolution of the
polarization, P(t), measured at a well-defined energy E is related to the field profile B(z) and
the stopping distribution n(z,E):

P(t) = Tp(B) cos(y,Bt+¢)dB [9-2]

p(B) is obtained by Fourier transform.

The field distribution sensed by the muons distributed over a profile n(z, E) is connected to
this quantity by the relationship

n(z,EB)dz = p(B,E)dB [9-3]

which states that the probability that a muon will experience a field in the interval [B, B +dB]
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is given by the probability that it will stop at a depth in the range [z, z + dz].

From [9-3] we have
n(z,E) = p(B,E) =
dz

Which shows that the differential stopping distribution can be determined if a sufficiently
large and known magnetic field gradient is applied over the range profile

Due to the reduced values of R, and AR, sizably larger field gradients are necessary. For this
we make use of the magnetic field exponentially penetrating the surface of an extreme type-II
superconductor in the Meissner state B(z) = Bex: exp(—z/A) ( see Sect. 9.5). With typical
values of Bey= 10 mT and 4 =100 nm, field gradients Bex/A = 10°T m™ ' can be generated

within the range distribution of LE-p"."®
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Fig. 9-11: Implantation profile of 3.4 keV muons in a thin film of YBa,Cu30.5 obtained by
the direct imaging technique (circles). The profile is compared with predictions of Monte
Carlo calculations using the code TRIM.SP with different assumptions about the scattering
potential. From E. Morenzoni et al., J. Phys.: Condens. Matter 16, S4583 (2004).

The various tests show that muon implantation profiles in thin films and heterostructures can
be reliably simulated with a modified version of the Monte Carlo program TRIM.SP.

'8 Please note that in the next section we will assume the knowledge of the implantation profile to
microscopically prove that the field is penetrating exponentially and to make an absolute measurement of the
London penetration depth and its temperature dependence. Here, by contrast, we assume an exponentially
decaying magnetic profile with known A, to measure the depth profile. The argument is non-circular since for
the present analysis we determine the value of A,, by an independent measurement in the vortex state (C.
Niedermayer et al., Phys. Rev. Lett. 93, 3932 (1999)).
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Fig. 9-11: Monte Carlo calculation of stopping profiles of low energy muons in YBCO, as a

function of the implantation energy.

263



9.5 Magnetic field penetration at the surface of superconductors

The depth sensitivity in nm range of LE-u" implanted in the surface region and the local
character of the muon probe allow to directly measure single values of magnetic fields as a
function of depth, thus to image magnetic field profiles beneath the surface of materials on a
nanometer length. At the moment, no other technique is able to provide this information.

To illustrate the near surface sensitivity of LE-uSR we consider here the Meissner effect and a
measurement of B(z). This yields a direct determination of otherwise not easily accessible
quantities such as magnetic penetration depth and coherence length.

In a superconductor in the Meissner state an applied field is excluded from the bulk and will
penetrate only in a near surface region. In the so-called London limit (A>>§, “clean”
superconductor [ >>&), for a plane superconducting surface, the functional form of the
decaying magnetic field B(z) is predicted to be exponential, with the decay length determined
by a single parameter, the London penetration depth A..

This follows from the description of the electrodynamic response of an extreme Type I1
superconductor, which can be described by the two London equations:

d_ 1 _E
dt HoAL
- 1 - - 1 -
rotj =— B (=- A)
Moki Moxi

From the second London equation and the Maxwell equation relating field and current (see
Chapt. 7. uSR studies of superconductivity) it follows for B,y parallel to the surface:

z

B(z)=B M [9-4]

apple

The magnetic penetration depth A; is a fundamental length of a superconductor, since its
value reflects the number density ns and effective mass m of the superconducting carriers

through the London expression A, = /m .
Moe ns

As expressed by the name, it is a measure of how deep a magnetic field penetrates at the
surface of a superconductor in the Meissner state when a field is applied parallel to its surface.
It is a measure of the response of the superconductor to a low frequent electromagnetic field.
Besides perfect conductivity, the diamagnetic response to an applied magnetic field is a
fundamental property of a superconductor. The superconductor tries to exclude or expel the
magnetic flux from its core by shielding the interior with supercurrents flowing in the surface
layer. Since an infinite surface current is unphysical the external field is able to penetrate a
short distance into the superconductor.

It is interesting to note that Eq. [9-4] was predicted already in 1935 (F. London and H.
London Proc. R. Soc. A 149, 71 (1935)), but never experimentally tested before at
microscopic level. LE-uSR provided the first experimental proof of it. Differently from a
measurement in the vortex state, the measurement in the Meissner state provides an absolute

264



and model independent determination of A. A determination from the vortex state (Chapt.7.
uSR studies of superconductivity) is a very reliable and efficient method but it has to rely on a
theory describing vortex state (Ginzburg-Landau, London, ...) relating measured field
distribution p(B) (or its moments) with A, a regular vortex lattice of known symmetry and
eventually take into account effects of field dependence, non-local and non-linear effects, and
the influence of disorder.

If the second fundamental length scale in a superconductor, the coherence length &, is non-
negligible, the electrodynamical response of the superconductor has to be averaged over it
(A.B. Pippard Proc. R. Soc. A 216, 547 (1953) and J. Bardeen, L.N. Cooper and J.R.
Schrieffer Phys. Rev. 108, 117521 (1957)).

Pippard first considered this non-local electrodynamical response

R x A(F)
J()——— > R[R . lo b
4 7\'L (T)i R [9_5]
R=f.¥ , 1=1,1
& & !
The equivalent BCS expression is:
- = 5 - =y ! 9'6
() - Zj{ B,y (F-T)- S 5(E - )3, }AB< )dF -]
0 T
paramagn. diamagn.
K (f-T)
If A>>€ the response becomes local and
I =~ —5A) [9-7]

0"*L

From which [9-4] follows.
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Fig. 9-12 shows the first measurement of a field profile with LE-muons in a YBa;Cu307_5 film
providing a direct confirmation of the London formula.
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Fig. 9-12: Values of field versus depth for various values of sample temperature 20 K, 50 K,
70 K, and 80 K. The solid lines represent fits of Eq. (5) to the data with A, as the free
parameter. From T.J. Jackson et al., Phys. Rev. Lett. 84, 4958 (2000).

The theoretical lines are plots of

cosh(E)
B(z)= B ———4—

d
h(—
cos (kL)

[9-8]

which is the form taken by Eq. [9-4] for a film of thickness 2d, with flux penetrating from
both surfaces. The value of z in Eq. [9-8] has been corrected by a small quantity zo,
corresponding to a “dead layer.” This may partly be due to a thin layer that is non-
superconducting, but arises mainly from the surface roughness of the film, which increases
the effective penetration depth in the surface layers.
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Fig. 9-13 shows an example of non-local response in a Pb film. From the fit one finds a
coherence length £=59(3) nm and an effective London penetration depth A.(0)=90(5) nm.
The effective London penetration depth takes into account corrections due to the scattering of

electrons. In the clean limit (i.e. for [ — o)
et = AL

Pb-

B OO NOWo

B (mT)

——BCS

- — B'"t exp(-zhi)
8 <B>vs <z

2+ | E =

=
o 7.3keV )V

+ 9.8keV 3

4 123 keV -

+ 148 keV

«  18.0keV

o 22.4keV 2.85K
v 27.0keV

28.0 keV

o 50 100 150
a) z (nm)

Fig. 9-14: Magnetic penetration profiles for Pb at various temperatures. The solid lines are
BCS fits to the data, whereas the dashed line represents B(z)=Bex: exp(—z/A) where the A from
the BCS fit is used. From A. Suter at al. Phys. Rev. B 72, 024506 (2005).
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9.6 In-plane anisotropy of the magnetic penetration depth in ultra clean
YBa,Cu30¢.9,

The dependence of A on T, By, orientation, composition, gives information about
microscopic properties of superconductor (order parameter, gap symmetry, anisotropys,..).
Recently, a direct measurement of the magnetic field profile in an oriented mosaic of high-
purity crystals of YBa,CuzOg0; (T.=94.1 K, AT, <0.1 K) has been performed, to determine
the anisotropy of the magnetic penetration depth. The crystals are detwinned, so that by
applying the external field parallel to the a-axis (b-axis), A, (A,) 1s measured (see Fig. 9-15).

Fig. 9-15: Geometry of the experiment to measure the in-plane anisotropy of the magnetic
penetration depth.

In YBa,Cu;3Og¢« the x additional Oxygen goes to the b-axis (so called CuO chains). This
additional Oxygen provides holes to the CuO; planes leading to superconductivity for x >

0.35.
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Fig. 9-16: Structure of YBCO, showing the CuO, planes and the CuO chains (orange: Cu,
green: O).
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Fig. 9-17: (a) The muon precession signal in the normal state of YBa,Cu3Og 97 at

110 K in an external field of 9.46 mT applied parallel to the a-direction. The mean
implantation energy is E=14.1 keV that corresponds to a mean implantation depth of 62.8nm.
The small damping rate is attributed to Cu nuclear dipole moments.

(b) Same conditions as (a) except in the superconducting state at T=8 K. The curve is a fit to
a London model profile. The inset shows the calculated stopping distribution. (c) Same
conditions as (b) except the energy of implantation is increased to 22 keV. From R. F. Kiefl et
al., Phys. Rev. B 81, 180502(R) (2010).
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Fig. 9-18: The average magnetic field versus mean stopping depth in an applied field of 9.46
mT such that the shielding currents are flowing in the a and b direction, respectively. The
curves are the average fields generated from a global fit of all the spectra at T = 8 K taken at
all energies and for both orientations. From B. M. Wojek, PhD Thesis, University of Zurich,
2011.

Figure 9.18 shows the average local field <B> as a function of beam energy (bottom scale)
and the corresponding mean implantation depth (top scale) at T = 8 K.

The filled circles and open squares are from data taken with the shielding currents flowing
along the a and b axes, respectively, or equivalently the magnetic field along the b (magnetic
penetration depth A,) and a axes (magnetic penetration depth A;), respectively. The profiles
clearly reflect the anisotropy of the penetration depth. From the measurements at different
temperatures we extrapolate the in-plane anisotropy A,/A, =1.19 = 0.01 at 7= 0. This shows
that the chain contribute to the superfluid density. Fig. 9-19 (top) shows the temperature
dependence of the superfluid density along a and b direction. The data can be well fitted with
a pure d\2,2 order parameter. The bottom part of Fig. 9-19 shows the data normalized to
1/Aa.5(0)°, where for the normalization the absolute values of the magnetic penetration depths
obtained from the LE-uSR experiment have been used. No particular difference between the
two crystal orientations is observed, at variance with previous surface impedance
measurements. In this respect it is important to remark that the slopes of the normalized
curves crucially depend on the knowledge of the absolute value of A, 5(0).
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Fig. 9-19: Top: Temperature dependence of the superfluid density along a and b axis. Bottom:
Normalized superfluid density. From B. M. Wojek, PhD Thesis, University of Zurich, 2011.
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The very similar shape of the normalized superfluid densities indicate that the presence of the
CuO chains along the b axis simply adds superfluid density without changing the symmetry
of the order parameter. The measured A, and A; are in surprisingly good agreement with
average value of the in-plane magnetic penetration depth A, = (Xa-k;,)l/ ? obtained from bulk
USR studies of the vortex state of an earlier generation of crystals. In that case A, 1s obtained
from an extrapolation of an effective field-dependent penetration depth to zero field. This
suggests that the effective field-dependent penetration depth in the vortex state, at least in the
present case, extrapolates to the actual London penetration depth in the Meissner state to
within an accuracy of a few percent. The agreement is remarkable considering that there are
several phenomenological parameters involved in the fit of the vortex-state data.

9.7 Giant proximity effect in cuprate heterostructures

By directly mapping the magnetic field profile in cuprate heterostructures, it is possible to
probe the diamagnetic Meissner response of non-superconducting cuprate barrier layers, when
they are brought in close contact with superconducting layers.

Generally the adjacency of materials with different electronic properties gives rise to
reciprocal influence. For instance, if a thin normal metal layer is brought in close contact with
a superconducting layer, in the interface region Cooper pair can enter the normal layer. The
layer may become superconducting and the same time superconductivity is weakened in the
superconducting layer (proximity effect).
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Fig. 9-20: Normal-superconducting bilayer (NS), showing qualitatively the order parameter
and the proximity effect.
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In cuprates the proximity effect is non-conventional due to the anomalous ‘normal’ (metallic)
state above the critical temperature 7, of high-temperature-superconducting cuprates which
features a pseudogap in the density of states and unexpected charge and spin responses. Also
unusual diamagnetic signals have been observed, among other an enhanced Nernst effect and
unusual supercurrent transport over thick barriers at temperatures well above the 7' of the
barrier.

The results of B(z) are shown for heterostructures consisting of three layers, each 46 nm
thick; optimally doped (OP) La; g4Sro16CuO4 (7. = 32 K) was used for the top and the bottom
‘electrodes’, whereas underdoped (UD) La; 94S1906CuOy4 (7¢' < 5 K) served as the ‘barrier’.
The barrier with a low T, offers a broad temperature interval to search for putative long-range
proximity effects. Similar results have been obtained with 32 nm thick barriers.

The films were grown on (001)-oriented LaSrAlO,4 substrates in a molecular beam epitaxy
system designed for atomic-layer engineering of complex oxide materials. The typical surface
roughness determined by AFM was 0.5 nm, much less than one unit-cell height (1.3 nm). The
UD layer was grown as a single layer (SL) or as a barrier in the trilayer structure (TL). The
single phase films were used for control measurements. The comparison of the magnetic
behavior in the two cases, which strongly depends on the doping level, confirms the
equivalence of the layer and its position in the La, - ,SryCuO4 phase diagram.

To map the diamagnetic response of the heterostructure as a function of position along the
crystal ¢ axis (z coordinate), the samples are cooled in ZF from above 7. to ~4.3 K, a
magnetic field of 9.5 mT parallel applied to the ab planes (x direction) and uSR spectra
collected as a function of the muon implantation energy. The depth profile of the mean field
(By) at different temperatures is shown in Fig. 9-21.

It demonstrates the main result: At 10 K, 15 K and 17 K—that is, well above T.—the local
field is lower than the applied field at all depths, meaning that the entire heterostructure
excludes the magnetic flux like a conventional superconductor. The profile has the form of an
exponential field decay in the Meissner state with the flux penetrating from both sides and
looks like that for two superconductors with different magnetic penetration depths. The
observed field profile reflects the shielding supercurrent that runs along the ¢ axis as well as
in the ab planes of the barrier; note that {j,;) = ((1/uo) dB,/dz) # 0. This is unexpected when
one recalls that in this geometry the supercurrent must pass through the ‘barrier’ La,..Sr,.CuO.
region that is 46 nm thick.
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Fig. 9-21: Depth profile of the local field in a cuprate heterostructure at different
temperatures. The vertical lines indicate the position of the interfaces of the La; g4Srj 16CuOy4
(46 nm)/La; 94S1(,06CuQO4 (46 nm)/ La; 84Srp 16CuO4 (46 nm) heterostructure. The horizontal
dashed line shows the applied field of 9.5 mT. Points: measured average fields. The entire
heterostructure excludes the magnetic flux like a superconductor: it shows the Meissner effect
with the UD layer active in the screening. This functional form can only be observed if
shielding supercurrents flow across (that is, along the ¢ axis) as well as in the ab planes of the
UD barrier. The lines are obtained from fits using a London model. The fit takes into account
the energy-dependent muon stopping profiles, which are also used to calculate the average
stop depth <z,> (upper scale). From E. Morenzoni et al., Nature Communications 2, 272
(2011).

A comparison of the temperature dependence of the average field in the center of a single-
phase film of UD La; 94St(,06CuQO4 with that in the barrier of the same composition inside a
trilayer heterostructure clearly shows that the SL case no shift is observed, whereas in the TL
structure a shift up to T~ 22 K is observed. What we observe here is a manifestation of a
giant proximity effect. This is particularly remarkable if one considers that the Meissner effect
is a hallmark of superconductivity.
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Fig. 9-22: Temperature dependence. Field measured at the centre of the underdoped (UD)
layer: as a single layer (open symbols) or as a barrier with thickness of 46 nm in the trilayer
(filled symbols). In the latter case the average local field is diamagnetically shifted up to Ter
= 22 K. Above this temperature its value is within the experimental error equal to the applied
field. No shift is observed for a single UD layer
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Fig. 9-23: Temperature dependence of the magnetic penetration depths in the barrier (black
triangles, A" and in the electrode layer (red circles, 1) compared with typical behaviour in
optimally doped crystals (blue line). Error bars give the fit errors. The dashed lines are guides
to the eyes. The divergent behavior of A’ close to 22 K indicates the disappearance of the
induced superconductivity in the barrier at that temperature. The temperature dependence
indicates that the induced superfluid density in the barrier layer is more sensitive to thermal
excitation than in a bulk superconductor.
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The conventional proximity theory in which the depth of penetration of Cooper pairs into a
normal metal N is given by the induced coherence length & cannot account for this
observation. In the usual situation, where the electron—electron interaction V,— 0 and T =0,
one has &y = (fivg/2mkgT) in the clean limit (v.i« Fermi velocity). For T > T., given that in
UD cuprates the transport along ¢ axis is semiconducting, it is more appropriate to use the
dirty-limit expression &y = (hvcl/anBT)l/ 2 where [ is the mean free path and v. the velocity
along the ¢ axis. For T > 8 K, this gives & < 2.5 nm, much smaller than the barrier thickness d
=46 nm.

Several models (existence of local superconducting clusters, quenching of phase fluctuations
by the presence of adjacent layers with long-range phase order) have been proposed that are
able to provide an enhanced length scale of the proximity effect.
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9.8 Probing the spin injection in an organic spin valve

An organic spin valve is an example of heterostructure studied with LE-uSR, which is also a
prototype device. Spin valves consist essentially of two ferromagnetic layers which can be
magnetized parallel or antiparallel to each other and a barrier level. They show
magnetoresistance. The property of giant magnetoresistance in metallic multilayers was
discovered in 1988. Already in 1997 this property found its application in sensors (e.g. in
read-head of hard disks). In 2007 A. Fert and P. Griinberg won the Nobel prize for the
discovery. Using organic materials has great potentially technological relevance because
organic materials can be synthetized at low price and can be easily shaped. Magnetoresistance
with organic semiconducting spacer has been demonstrated (Fig. 9-24).
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of thickness for an organic spin valve (Z.H. Xiong et al., Nature 427, 821 (2004)). AP:
antiparallel orientation of the magnetization of top and bottom layer. P: parallel orientation
(see Fig. 9-25 and 9-27).

Fig. 9-24: Magnetoresistance MR = versus temperature and as a function
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The injection of polarized spins in an organic spin valve has microscopically been observed
by a depth-dependent change of the mean field and the skewness of the LE-uSR line shape
p(By) (see Fig. 9-25 and 9-26).
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Fig. 9-25: a) Principle of the LE-uSR experiment to probe spin injection in an organic spin
valve. (A. Drew et al. Nature Materials 8, 109 (2009), L. Schultz et al. Nature Materials 10,
39 (2011)). Muons are stopped in the barrier layer at a depth determined by their energy.
There they precess in the local field, which is composed of the applied field and the field
produced by the electronic spin polarization. The stopping profile is shown in b).
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Fig. 9-26: Organic semiconductor Alq3: C,7 Hjg N3 O3Al
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experiment. The different coercive field of the top and bottom ferromagnetic layers allow to

switch the spin valve in one of the 4 states (2 with parallel magnetization, two with

antiparallel magnetization).

Principle of the experiment:

-Spins are injected from the top (and bottom) layers into the barrier by applying a small

voltage across the structure. These spins have long spin coherence time >107 s >> T, , glving
rise to a static electronic polarization <s,(x)>.

-In the organic material they produce static field Bgyin(X) oc <s,(x)> that adds (or subtracts) to

Bappi used to select the spin valve state

- By =Bappl + Bgpin(X) 1s detected by muons stopped at various depths.

- The field distribution p(B,,) is obtained from the Fourier transform of the polarization signal.

-The Bgpin component can be determined by switching on/off the injection with current

(voltage) and by changing its sign with respect to B,pp1 , 1.€. by reversing the polarization of

the top electrode.
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Fig. 9-28: Field distribution measured at various values of the applied voltage.
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Fig. 9-29: Field distribution measured with and without polarized current and difference of
the two spectra.
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Fig. 9-30: a) Magnetoresistance and measured points with corresponding spin valve state. b)
Difference of field distributions (Current on —current off) for two states of the spin valve and
c¢) Skewness of the field distribution determined from the differences.
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Fig. 9-31: Spin injection detected by shape analysis of local field distribution p(Bu). The
temperature dependence of the spin diffusion length correlates with the magnetoresistance.
This experiment is the first direct measurement of spin diffusion length in a working spin
valve. From A. Drew et al. Nature Materials 8, 109 (2009).

From the overall analysis of the field distributions in the different states of the spin valve the

spin diffusion length can be determined. It is found that its temperature dependence correlates
with the temperature dependence of the magnetoresistance.
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