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1.  Introduction 
 
 
The muon is an elementary particle and one of the fundamental fermions of the standard 
model. 
 

 
 
 
Leptons and Quarks 
 
 

Leptons (Spin ½) Quarks (Spin ½) 
Flavor Mass 

[MeV/c2] 
Electric 

charge [e] 
Flavor Approx Mass 

[GeV/c2] 
Electric 

charge [e] 
νe   electron  
      neutrino < 2 ∙ 10-6 0     u   up 0.0023 2/3 

e    electron 0.511 -1     d  down 0.0048 -1/3 
 νμ   muon 
      neutrino < 0.2 0 c  charm 1.275 2/3 

 μ    muon 106 -1  s  strange 0.095 -1/3 
 ντ   tau  
      neutrino <18.2 0     t   top 173 2/3 

 τ    tauon 1776.82 -1  b bottom 4.7 -1/3 
 
Fundamental fermions (including antiparticles) of the standard model.  
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1.1 Muon properties 
 
 
Rest mass, mm     105.658 MeV/c2 
      206.768 me 
      0.1124  mp 
 
Charge, e     +1, -1 elementary charges 
 
Spin, I      ½ 
 

Magnetic Moment, mm   4.836 ∙10-3 mΒ, -23 2
B

e

e  0.927  10 Am
2m

m = = ⋅


   

Gyromagnetic ratio, µγ     2π ∙ 135.538817 MHz/T 

      
eg I I    (g =2.002 331 8414)

2mm m m m
m

m = = g


   

Lifetime, τ     2.197 ms 
 

Decay,      
-2

-5

e                      100%

e                 1.4 ± 0.4 10

e e +e        3.4 ± 0.4 10

e

+ +
µ

+ +
µ

+ + + -
µ

- -
µ

µ → + ν + ν ≈

µ → + ν + ν + γ

µ → + ν + ν +

µ → + ν + ν

e

e

e

e

 

 
 
Properties of the positive muon and muonium compared with those of proton and hydrogen 
 

 Muon Proton 

Mass (me) 206.768 1836.15 
Spin ½ ½ 

Gyromagnetic ratio, γ (T-1s-1) 8.516155 810           2.675221 810   

Lifetime (s) 2.19709 10-6 stable 

 

 Muonium Hydrogen 

Reduced electron mass (me) 0.995187 0.999456 
Radius ground state (nm) 0.0531736 0.0529465 

Energy ground state (eV) -13.5403          -13.5984 

Hyperfine frequency (GHz) 4.46330 1.42041 
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1.2 Discovery of the muon 
 
1910 Theodor Wulf performs experiments with electrometers. He detects more 

radiation at the top of the Eiffel tower than on ground.  
 
1911-1912 Viktor Hess makes measurements from balloons. He measures increasing 

charge with increasing altitude. 
 

Millikan uses unmanned balloons to perform experiments at even higher 
altitude. He creates the expression cosmic radiation. 

 
1933  First muon picture (but not correctly identified) in a Wilson cloud chamber by 

Kunze (P. Kunze, Z. Phys. 83, 1 (1933)). 
 

 
 
 
1936   V. Hess receives the Nobel Prize for the discovery of cosmic radiation. 
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Muons are the main component of cosmic radiation at sea level. Identified from Andersen and 
Neddermayer (1936), however first misinterpreted as so-called Yukawa particles. 
 

 
 
Fig. 1-1: Cosmic rays flux. 
 
Muons are generated at about 15 km height. They reach earth level as a consequence of 
relativistic time dilatation. They have a broad spectrum of energies. 
Flux at sea level: ∼ 1 Muon/Min/cm2 
Etypical  ∼ 2 GeV 

Time dilatation: typical
μ μ2

μ

E
γ = 20        Flight path : L = vγτ cγτ

m c
≈ ≅  

 

  + -m + m

  m mν + ν
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1945-47  Conversi et al. measure lifetime of positive and negative muons. Lifetime is too 
long for strongly interacting particles. It turns out that the Yukawa particle is 
actually the pion.  

 
 
 
1957  Garwin et al. and Friedman et al. measure parity violation of m-decay. 

Prototype of a muon spin rotation experiment. 
 
 

1.3 Pion properties and decay 
 
 

 
π+  π- π0 

Lifetime (s) 26.04 10-9 26.04 10-9 0.89 10-16 
Spin 0 0 0 
Mass (MeV/c2) 139.5679 139.5679 134.97 
 
Decay 

 
+ +

µπ → µ + ν  

 
−−

µπ → µ + ν  

 
0π → γ + γ  

 
 
 
                                                                                     + +

µπ → µ + ν  

 
 
 
 
                                                                     
 

26 ns 
                                       
 
 
 
Mass         139.6 MeV/c2     105.66 MeV/c2  <0.19 MeV/c2 
Spin             0         ½   ½ 
Charge          1     1   0 
Lepton number       0    -1   1 
 
 
Decay kinematics: 
 
 
          [1-1] 
 
 
 

p 29.79  MeV/c

T  4.12 MeV

 0.28

m

m

m

=

=

β =
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Parity violation in the pion decay 
 
 
 

 
 

 
a) Original decay, b) Mirrored decay (corresponding to parity operation on a)), c) Charge 
conjugated process b). 

 
Process b) does not exist (only left handed νm  exist, i.e. direction of spin opposite to direction 
of momentum, helicity = -1). The parity violation in π-decay allows the production of 
polarized muons (with up to ~ 100% polarization). 
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1.4 Muon decay 
 

 
 

 
2.2 μs 

 
 

Neutrinos have negative helicity. Antineutrinos positive. An ultra-relativistic positron behaves 
like an antineutrino. Thus the positron tends to be emitted along the muon spin direction when 
νe and 𝜈̅𝜈μ go off together (highest positron energy). 
 

 
 

 
Fig. 1-2: Muon decay and energy spectrum of the positron (Michel spectrum). 
 
 
Differential positron emission probability: 
 
 
 
 
 
            
 
 
  

e  + +
mm → + ν + νe

2

2
e

max e2

1W(x)dx 2x (3 2x)dx                                                                                 [1-2]     

m c2E
0 x 1,        x   ,  E 52.83 MeV   ,   Mean Energy: E 36 MeV

2m c
+

+

m

m

m

= -
τ

≤ ≤ = ≅ = =
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Asymmetric decay 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1-3: Angular distribution of the e+ from the muon decay: The asymmetry (anisotropy) of 
the distribution is 100% for the highest e± energy, Emax = 52.83 MeV and zero (i.e. an 
isotropic distribution) for Ee+ = Emax /2; for smaller Ee+ (not shown) the asymmetry is 
negative. The red curve is the angular distribution averaged over the positron energy. 
 
 
 
            
 
           [1-3] 
 
 
 
 
 

[ ]21 (2x 1) 1 E(x)W(x,cos )dxd(cos ) x (3 2x) 1 cos 1 a(x)cos dxd(cos )
(3 2x) 2m m

 -
θ θ = - + θ = + θ θ τ - τ 

θ 
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Fig. 1-4: Solid lines: E(x)/2: energy spectrum (Michel spectrum). Positron/electron energy  
from the normal m± decay: Ee = 52.83∙x MeV. a(x): e± energy dependence of the m± decay 
asymmetry (degree of correlation between e± momentum and m± spin direction). For the m- 
decay a(x) has the opposite sign. Dashed line: weighted m+ decay asymmetry spectrum, the 
product of E(x)/2 and a(x). 
 
Average asymmetry: 
 
            
            
  
           [1-4] 
 
 
 
 
 
Angular distribution: 
 
dW( ) 1(1 A cos ) (1 cos )
d(cos ) 3

θ
∝ + θ = + θ

θ
        [1-5] 

 
 
  

1

0
1

0

a(x)E(x)dx
1A                  
3

E(x)dx

= =
∫

∫
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1.5 Pion production reactions  
 
To produce pions, nucleons are bombarded with other nucleons of sufficient energy so that 
the available energy in the center of mass system exceeds the pion mass of 140 MeV/c2. 
 
Typical reactions: 
 

0

0

p p p n          p p d         

        p p

p n p n

        p p

        n n

+ +

−

+

+ → + + p + → + p

→ + + p

+ → + + p

→ + + p

→ + + p

 

 
These reactions („single pion production“) have a threshold energy in the laboratory system 
of ~280 MeV. The cross section increases rapidly with energy. Optimum energy for pion and 
muon production is between 500 and 1000 MeV. This defines the energy of the accelerator 
needed for the production of muon and pion beams. 
 

 
 
 
 

Fig. 1-5: Cross sections for single pion production (From G. Eaton, S. Kilcoyne, in Muon 
Science: Muons in Physics, Chemistry and Materials, S.L Lee, R Cywinski, S.H Kilcoyne eds., 
1999). 
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The above mentioned reactions produce 3 particles. For incoming protons of 600 MeV, pions 
have a broad spectrum of energies around a maximum of 200 MeV. 
 
With more energetic accelerators one can make use of double pion reactions: 
 

0 0

0

0

0

0 0

0

0

0 0

p p p p

        p p

        n

        n p

        d

p n p n

        p n

        n n

        p p

        d

        d

+ −

+ +

+

+

+ −

+

−

+ −

+ → + + p + p

→ + + p + p

→ + p + p + p

→ + + p + p

→ + p + p

+ → + + p + p

→ + + p + p

→ + + p + p

→ + + p + p

→ + p + p

→ + p + p

 

 
 
 
 

Fig. 1-6: Energy spectra of π+ produced at different angles in proton-carbon collisions. 



 

14 

 
 
  

Fig. 1-7: Examples of cross-sections for double pion production. 



 

15 

Pion/Muon production target at PSI (target E) 
 
 

 
 
 
 
Pion production: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

16
p

26 2

3 23 23 3

2

14
p

I 2200 A 1.37  10 p / sec

20 mbarn 2.10 cm
Target E thickness : 4 cm Graphite d :

LN 2.26g / cm *6.10 /12g 1.13 10  Atoms/cm
A

N d 0.91*10

I * N d 1.22*10 / sec       (on 4  solid angle)

-
π

-

= m ≅ ⋅

σ ≈ =

=

= ρ = = ⋅

σ =

σ = π π
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1.6 Muon beams 
 

• Decay muon beam (µ+ or µ-) 
 

 
 
 
 
 
 

• Surface muon beam (µ+ only) 
(from the pion decay at rest at the surface of the production target) 

  

9
2

Decay length :  
p [MeV / c][m] v 26 10 s c 0.055p [MeV / c]

m [MeV / c ]
-π

π π π
π

λ = γτ = ⋅ ⋅ =

2

Range of "surface muons" in matter :  
mgR L  150   only weakly depending on material    
cm

L:  Range in [cm]
:  Density

= ρ ≅ ≈

ρ
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Pion decay in flight 
 
A decay muon channel delivers muons with different spin direction (with respect to the 
momentum). Two useful extreme cases: 
 
1) The muon is emitted in the direction of pion propagation. The momenta 𝑝𝑝𝜇𝜇0 and 𝑝𝑝𝜋𝜋  of both 
particles are additive. The muon is emitted in the “forward” direction, i.e. the total momentum 
𝑝𝑝𝜇𝜇  is greater that that of the pion from which it originated and has a spin antiparallel to 𝑝𝑝𝜋𝜋 . 
 
 

 
 
2) on the other hand, a muon emitted in the opposite direction of pion propagation will carry a 
resultant momentum 𝑝𝑝𝜇𝜇  smaller than 𝑝𝑝𝜋𝜋 . Such a “backward” muon will have its spin 
pointing in the direction of propagation. 
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Decay kinematics of the pion decay in flight 
 
 

 
  

Fig. 1-8: Decay kinematics of the pion decay, showing the kinematically allowed region. 
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Momentum dependence of beam intensities (πE5 beam line at PSI) 
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1.7 The PSI HIPA accelerator 
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Fig. 1-9: The PSI 72 MeV injector. 
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Fig. 1-10: The PSI Ring accelerator.
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Fig. 1.11: Experimental hall and neutron hall at PSI. 
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Transport of muons to the experiment (beam line) 
 
A beam line is an arrangement of magnetic (and electric) fields that transport and focus 
charged particles. 
Deflection and transport in magnetic and electric fields: 
 
In magnetic fields1: 
 
           [1-6] 
 
In electric fields: 
 
 
 
           [1-7] 
 
 
Background suppression (e.g. positrons) with E x B fields (mass filter or Wien filter). 
Total deflection (e=1): 
 
 
           [1-8] 
 
 
 
 
 
 
 
  
                                                 
1 Kinematics of circular motion (relativistic): 
 
 

( )

( )

2

d dp = mγv      F = p = m γv
dt dt

d d d d dF = p = m γv ~ mγ v    ( γ v << γ v)
dt dt dt dt dt

(longitudinal acceleration much smaller than transverse acceleration)

dv vF = mγ = mγ
dt r

Lorentz force :

F = ev×B
F = evB

v pqB = mγ =
r r

p = eBr

 
 
 

d

d dd d

d

d d

d

 

B       (B p)                   p[GeV / c] 0.299793 e B[T]r[m]
p

∆ϕ ∝ ⊥ =

kin

E 1      non relativistically
p E

∆ϕ ∝ ∝ ←
β



L[m] | E | [MV / m]( 300B[T])
p[MeV / c]

∆ϕ = -
β


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Focusing with magnetic lenses: quadrupole lens 
 
 
 

 
The pole shoes have the shape of  hyperbolas,  which define equipotential lines: (x,y) gxy.

The static magnetic field B(x,y) can be written as gradient of the scalar potential (x,y).  

B(x,y) = - gr

Φ = -

Φ
d

d

y x

ad (x,y)     (from rotB=0 in the region between the pole shoes)
B Bg is the field gradient g=
x y

divB = 0  (x,y) = 0  Multipole solution

Φ
∂ ∂

=
∂ ∂

→ ∆Φ →

d

d

 
 

Multipole n-th order  2(n+1)Pole: 
 

n 1
0

n 0n

0
1 x y 0

B r (sin(n 1) )    ,  B  : Field at pole center, a:    radial distance from pole center
(n 1)a

Special case: Quadrupole n=1 , x r cos  , y r sin
B xy  ,  B gy ,  B gx    (g = B /a) 
a

+
F = − + θ

+

= θ = θ

F = − = =

 
 
  

m+ 
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A quadrupole creates a field, which is proportional to the lateral deviation of the trajectory 
and acts as a spring, x y(for y=0, Lorentz force F  B =gx)∝ :  
It is focusing in one direction (e.g. x) and defocusing in the other (y). For a total focusing 
effect one uses so called quadrupole doublets (or triplets). 
 
               B-Field: 
 

     
 
 
A dipole corresponds to the n=0 term.  
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Fig. 1-12: Muon beam µE4 for the Low Energy Muon setup at PSI consisting of a solenoid, 
magnetic quadrupoles, dipoles, a E x B filter (separator) and various slits. 
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2. Particle physics aspects 
 

2.1 Theory of the muon decay 
 

µ
−−

µ
++

ν+ν+→µ

ν+ν+→µ

e

e

e

e
 

 
The decay reflects the separate conservation of muon and electron lepton number (additive 
rule). 
 

 Lm Le Lτ 

µ
− νµ ,  

+1 0 0 

µ
+ νµ ,  -1 0 0 

e,e ν−  0 +1 0 

e,e ν+  0 -1 0 

τ
− ντ ,  0 0 +1 

τ
+ ντ ,  0 0 -1 

 
Evidence for separate conservation of lepton number: 
 

-13

14

e             Branching Ratio   5.7  10  
                               last PSI result, Phys. Rev. Lett. 110, 2013)
                               (data set with 3.6 10

201801 
 stopped muons

(

+ +m → + g <

- -12

)
e e e     Branching Ratio    1.0 10- - +m → + + <

 

 
 
 
The additive conservation of lepton numbers forbids for instance the process 
 

+−−+ +µ→+µ ee  
 
A multiplicative conservation rule would allow it. 
 
Recent observations of neutrino oscillations (Super-Kamiokande, Japan: disappearance of 
muon neutrino and Sudbury Neutrino Observatory, Canada: conversion of electron neutrino in 
muon and tau neutrino, Nobel Prize 2015) indicate that lepton family conservation is only 
approximate. 
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Some useful relations of relativistic quantum mechanics 
 
 

Four-momentum:  
E c

p
p

       0,1,2,3µ  
= µ = 

 


 

Metrics:            



















== µν
µν

1-      0     0     0
0      1-    0     0
0       0    1-    0
0       0     0     1

gg  

 
Covariant vector  ν

µνµ = pgp   ,  (   pν contravariant vector. Sum is over pair of upper and 
lower indices). 
 

Four-vector product:  
2

μ 2 2 2
μ 02

Ep p = p =m c
c

−     (Energy-momentum relation) 

(in analogy with        
x
ct

x 







=µ


 and 0,1,2,3       
x

ct
x =µ








−

=µ 

     )xtc(xx 222 −=µ
µ ). 

 
Often in particle physics one sets c= =1 (natural units). 
 
The four-vector operator is given by: 
 

0,1,2,3       
i
t

i
x

ip =µ
















∇−
∂
∂

=
∂

∂
→

µ

µ


        [2-1] 

0,1,2,3       
i

t
i

x
ip =µ

















∇
∂
∂

=
∂

∂
→

µµ


 

 
The Dirac equation for a spin ½ particle with mass m without external field corresponds 
formally to the relativistic energy – momentum relation for the operators: 
 

0m
x

i =Ψ−
∂

Ψ∂
γ

m
m       (or 0mi =Ψ−Ψ∂γ m

m  )      [2-2] 
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( )

0

1

2

3

+ + * * * *
0 0 1 2 3

Ψ (x, t)
Ψ (x, t)

Ψ(x, t) =        4 - component spinor,  
Ψ (x, t)
Ψ (x, t)

the corresponding conjugated spinor

Ψ(x, t) = Ψ (x, t)γ        Ψ (x, t) = Ψ ,Ψ ,Ψ ,Ψ       

fulfills equation

 
 
 
 
  
 

d

d

d

d

d

d d d

    [2-3] 2 

 

0m
x

i =Ψ+
∂

Ψ∂
γ

m
m  

 
    ,  0,1,2,3    are 4 x 4 -Matricesµγ µ = γ  

 
 
γ-Matrices and their characteristics 
 
The γ-Matrices can be written in term of  2 x 2 Pauli matrices ),,( zyx σσσ=σ

 : 
 









=σ

0     1
1     0

x   







=σ

0     i
i-     0

y  







=σ

1-     0
0      1

z    [2-4] 

 
 
 









=γ

I-     0
0     I

0   







σ

σ
=γ

 0     -
       0






           [2-5] 

 









=γγγγ≡γ

0      I
I      0

i 32105    where    







=

 1       0
0       1

I    and 







=

 0       0
0       0

0  

 
 

0γ is hermitian   00 )( γ=γ +   and  µγ   are anti-hermitian  00)( γγγ=γ µ
+

µ    
 
Commutation relations: 
 

0

0,1,2,3        Ig2

55

4x4

=gg+gg

=µ=gg+gg

µµ

µνµννµ
      [2-6] 

 
 
 
 

                                                 
2 *

ij ji(K ) = (K )  +  
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Following relations are valid for the traces of products of γ-matrices : 
 

νσµσµσνρρσµνσρνµ

µννµ

δδ−δδ+δδ=γγγγ

δ=γγ

)(Sp

4)(Sp
     [2-7] 

 
 
Solutions of Dirac equation 
 
 
For a particle at rest ( 0p = )  
 



















==Ψ −

3

2

1

o

iEt

u
u
u
u

u               ue              [2-8]    

 
If we insert Ψ  in the Dirac equation, we get four solutions: 
2 with positive energies E=+m and 2 with negative energies E= -m. 
Particles with negative energy and spin –s correspond to anti-particles with positive energies 
and spin +s. The corresponding spinors are 
 
 

  

1
0
0
0

u     

0
1
0
0

u            

0
0
1
0

u             

0
0
0
1

u               ue iEt



















=



















=



















=



















==Ψ −↑−↓+↓+↑±±±   

 
For moving particles we obtain the solutions from a Lorentz transformation (here c=1): 
 
 
 

z x y
p p

x y z

z x y

x y z
p p

1 0
0 1

E m E mp p ip   u          u      Particle
2m 2mE m E m

p ip -p
E m E m

p p ip
E m E m
p ip -pE m E m v          v
E m E m2m 2m

1 0
0 1

↑ ↓

↓ ↑

   
   
   

+ +   -= =   + +   
+   

   
+ +   

-  
  + +  

++ +  = = + + 
 
 
  



        Antiparticle   






 
 
 
 



 [2-9] 
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A fermion (e.g. e-, m-) with momentum p , energy 22 mpE +=  and spin up (in particle rest 
frame) is represented by a plane wave: 
 
 

iEtxpi
p eeu

V
1)t,x( −

↑=Ψ




         [2-10] 

 
u  four-vector spinor from [2-9], fulfilling equation:  
 

0u)mp( =−γm
m   

 
(for 0)m(pu          u =−γm

m ) 
 
The wave function for a spin-up anti-fermion (e+, m+)  is then 
 

iEtxpi
p eev

V
1)t,x( +−

↑=Ψ




         [2-11] 

 
 
Field operators for fermions and anti-fermions 
 
To describe the decay we quantize the fields. Classical fields and particle wave functions  
field operators. 
 
From [2-10] and [2-11] we build Dirac field operators (momentum basis)  
 

ip x ip x

p,s

1 m(x, t) b(p,s)u(p,s)e d (p,s)v(p,s)e
EV

b    and   d      are annihiliation operators for fermions and antifermions

b   and   d    corresponding creation operators

m m
m m− ++

+ +

 Ψ = +  ∑d

  [2-12]  

 
u(p,s) and v(p,s) are spinors as given in Eq. [2-9]. 
p   Momentum four-vector 
s    Spin 
 
Ψ  is expressed in a similar way.  
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Lagrange density of the weak interaction 
 
We need a Lagrange density, which describes the weak interaction. 
 
In general, use principle of smallest action: 
 

∫ φ∂φ= µ ) ,( L xdS 4  

 
Lagrange density L:  
-Polynomial in  and (x)µϕ ∂ ϕ   
-Lorentz invariance  L is a scalar field 
-Locality  L only function of x (fourfold time-space vector) 
 
From S extremal, Euler equation follows: 
 

0LL0S =
φ∂

∂
∂−

φ∂
∂

→=δ
µ

µ          [2-13] 

For instance in classical field theory the Lagrange density for electromagnetic fields and 
currents is: 
 

fields int eractionL(A , A) L Lµµ ∂ = +  
 
with  
 

int eractionL j Aµ
µ= −  

 
 








ρ
=µ

j

c
j     4-current     













 φ
=µ

A
cA


 4-vector potential 

 
Field quantization leads to the Lagrange density of quantum electrodynamics: 
 

µ
µ−= AjLQED          [2-14] 

 
Where here 
 

ψγΨ= µµ ej   (electro-magnetic current density associated to field ψ ).  
 
In analogy, apply Fermi ansatz to describe β-decay ( eepn n++→ − ) to m--decay        

( µ
−− ν+ν+→µ ee ): 

 

e

F
W e

Polar  Vector  VPolar  Vector   V  

GL ( ) ( )
2 µ

a
µ a ν ν= − Ψ γ ψ Ψ γ ψ

((

((

      [2-15] 

[2-15] is invariant under Lorentz transformation (and also parity transformation). 
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The Fermi ansatz describes well the transition probability in the β-decay (to first order). 
In principle L could contain other terms e.g.: 
 
 

e5 e 5

Axial Vector  AAxial Vector    A

( ) ( )
µ

a
µ a ν νΨ γ γ ψ Ψ γ γ ψ

((((

((((

 

 
This term conserves also parity. We know that parity is not conserved by weak interaction. 
Solution: L must contain not only products of the form V∙V or A.A but also mixed terms V∙A 
 V-A interaction (Feynman, Gell-Mann) 
 

F
W

-

GL ( j j j j ) other terms  for τ decay
2

                                 

                                  -decay

λ+ + λ
λ λ

+

= + + -

↑ ↑

m m

    [2-16] 

 

µλνλν
+

λ

νλνλµλ

ψγ−γΨ+ψγ−γΨ=

ψγ−γΨ+ψγ−γΨ=

µ

µ

)1()1(j

)1()1(j

5e5

5e5

e

e

 

 
For the m--decay it is: 
 

e

F
W 5 e 5

GL (1 ) (1 )
2 µ

λ
µ λ ν ν = Ψ γ − γ ψ Ψ γ − γ ψ       [2-17] 

 
Which can also be written as follow 
 

e

F
W e 5 5

- -

GL (1 ) (1 )
2

                                   

            creation e            annihilation 

            annihilation e      creation 

µ

l
lµnn  

+ +

 = Ψ γ - γ ψ Ψ γ - γ ψ 

↑ ↑

µ

µ

     [2-18] 

 
 

Equation [2-16] describes the coupling of weak currents +
λλ j,j at a time-space point (contact 

coupling) and can be represented by following graph: 
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The contact interaction leads to singularities in the calculation of second order corrections. 
More precisely the weak interaction can be described by the exchange of a heavy boson (W+, 
W- , Z). The corresponding graph is then: 
 

 
 
 

2
F

2
W

Coupling

Gg
28m

=
  g: „weak coupling constant“  

 
 
However, also here there are problems with singularities: the „naive“ intermediate-boson  
theory cannot be normalized. 
 
 
 

m- 

e- 

 

 
 

m- 

e- 

 
 

 

W- 

g 

g 
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Note about parity operation 
 
How do polar Va and axial vectors Aa  transform under parity operation P ?: 
 
 

t       txx →−→
       








−

≡→







≡

x
t

x~
x
t

x


 

Transformation for spinors: 
 

0

0

0

uu
uu

)x(u)x~(u

γ→
γ→

γ=
 

 

1 2 1 0 0 2
V      for 0

V u u u u
V   for 1,2,3
α

ααα 
α

α = 
= γ → γ γ γ =  −α  = 

 

behaves as a polar vector 
 

1 5 2 1 0 5 0 2
A      for 0

A u u u u
A   for 1,2,3

α
ααα 

α

−α  = 
= γ γ → γ γ γ γ =  α = 

 

 
behaves as an axial vector 
 

WL j j V V A A    parity invariant

                      V A A V   parity violating

l+ a+ a+
l a a

a+ a+
a a

∝ ∝ +

+ +
 

 
For example the Lagrange density ([2-17] and [2-18]) is not invariant under parity violation.  
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Calculation of the muon decay rate ( µ
−− ν+ν+→µ ee )  

 
The differential decay probability dΓ (decay probability per time) follows from the the Fermi 
„golden rule'' (first order perturbation theory). 
 
„Golden rule“ non relativistic: 
 

2
i f f f i

2W f V i (E E )

                                           
                   Dynamics phase space

→
p

= < > ρ δ −

↑ ↑


 

 
In analogy, relativistically:  
 

)pqqk(
w2)2(

qd
w2)2(

qd
E2)2(

kd
E2

M
)2(d 21

4

2
3

2

1
3

1

e
3

2
4 −++d

ppp
p=Γ

µ

dd

d

  [2-19] 

 
k  = Electron four-momentum ( )k,Ee



 
q1 = Electron antineutrino four-momentum ( eν  )   ( )q,w 11

  
q2 = Muon neutrino four-momentum ( µν  )   ( )q,w 22

  
p = Muon four-momentum ( )p,E 

µ  
 
M : Matrix element calculated from Lw (Eq. [2-18]). 

For the explicit calculation we need the field operators, commutation relation of  γ matrices, 
trace calculations etc. 
Neutrinos are not measured in the muon decay measurement. Therefore, we can integrate over 
dq1 and dq2 . 
Moreover, we sum over all possible neutrinos spin directions. Also if the electron polarization 
is not observed and its mass is neglected, one finds for the differential decay probability dΓ 
 

[ ]
2 5

F 2
3

d W(x,cos )dxd(cos )

G m
      (3 2x) (2x 1)cos  x dxd(cos )

192
m

G = θ θ =

= −−−   θ θ
π

    [2-20] 

 
(see [1-3]).  
 

Here  
µ

=
µ
E2

x e  and θ  angle between muon spin and direction of electron emission. 

For the m+- decay the angular dependent part has a positive sign.  
 
 

[ ]
2 5

F 2
3

d W(x,cos )dxd(cos )
G m

      (3 2x) (2x 1)cos  x dxd(cos )
192

m

G = θ θ =

= − + − θ θ
π

    [2-21] 
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Equation [2-21] gives the differential emission probability as a function of energy of the 
emitted positrons and of the emission angle with respect to the muon spin direction. 
If we have a muon ensemble, which is less than 100% polarized ( 1P ≤ ), the distribution 
becomes: 
 

2 5
F 2

3

G m (2x 1)d (3 2x) 1 P cos x dxd(cos )
(3 2x)192

(2x 1)a(x) P   ,  asymmetry parameter
(3 2x)

m  −
G = − + θ θ −p  

−
=

−

    [2-22] 

 
This equation is the basis for the use of polarized muons in the Muon Spin 
Rotation/Relaxation method (mSR). 
 
Total muon decay rate 
 

µ

µ

−
τ

=
π

=θθ=Γ ∫∫ 1
192

µΓ
)cos,x(dxW)(cosd 3

52
F

1

1

1

0

 

 
µτ  : muon lifetime 

 
With corrections (electro-weak interaction) 
 
 












−π

π
α

−+











−

π
=

τ µ

µ

µ
)

4
25(

2µ5
µ3

1
µ
µ8

1
192

µG1 2
2

W

2
e

2

2
e

3

52
F     [2-23] 

 
Energy spectrum of the decay positron (or electron) 
 
After integration of [2-22] over θcos  we obtain: 
 

1 2 5
F 2

3
1

G m
W(x)dx d cos  W(x,cos ) 2(3 2x)x dx

192
m

−

= θ θ = −
π∫     [2-24] 

 
(Michel spectrum, see Eq. [1-2]). 
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2.2 Measurement of the muon lifetime (m+) 
 
Various experiments have been performed in the last 30 years (see Review of Particle 
Physics, K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and  
http://pdg.lbl.gov/ ) 
Experiments are based on the observation of the decay of an ensemble of N0 muons, which 
are prepared at time t = 0.  

µτ
−

=

τ

0eN)τ(N          [2-25] 
       
The number of positrons Ne(t), which are emitted at time t is given by the number of muons 
decaying in the interval dt at time t: 
 

µτ
−

µµ τ
=

τ
=−=

τ

0e eN1)τ(N1
dτ
dN)τ(N        [2-26] 

 
In the experiment one measures the decrease of positron rate as a function of time. To do this 
it is necessary to measure the lifetime of each individual muon. Various effects can modify 
Eq. [2-26]: 
 

• Time dependent background B(t): 
 

)t(B)t(N1)t(Ne +
t

=
µ

        [2-27] 

 
• Time dependent polarization )t(P



 of the muon (see Eq. [2-22]) 
 

[ ] 2
e

N(t) dN (t) N(t)d B(t) (3 2x) (1 2x)P(t) cos (t) x dx B(t)
2µ

  Ω = Γ + = − + − θ + t π  
 [2-28] 

 
We have a time dependence of θ, if the muon spin polarization )t(P



 shows Larmor 
precession, which is the case in the presence of a magnetic field (e.g. earth magnetic field). 
Depolarization processes (see Chapt. 5. Principles of Muon Spin 
Rotation/Relaxation/Resonance) lead also to a time dependence of )t(P



. In the lifetime 

experiment one tries therefore to use unpolarized muons and to shield the earth magnetic field 
and other stray fields as much as possible. Moreover, it helps to have the largest possible solid 

angle for the positron detection (since ∫
−

=θθ
1

1

0cos)(cosd ).  Finally muons should be stopped 

in a material, which either depolarizes them very quickly or not at all.  
 
  

http://pdg.lbl.gov/
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The mean value of µτ  obtained from various different measurements (2014) is: 

µτ  = 2.1969811(22) ms     
µ

µ

τ

τ∆
=1 ppm 

(From K.A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014)). 
 
A recent experiment at PSI (Phys. Rev. D 87, 052003 (2013) is the most precise and 
measured µτ with an accuracy of  1 ppm. 
 

µτ  = 2. 196 9803(21)(07)  ms  

 
From this value the Fermi constant (an important parameter of the Standard model) can be 
derived; uncertainty in GF is completely determined by the uncertainty in µτ .  
 
 

( )3
F

c
G


=1.1663787(6) ∙ 10-5  GeV-2(0.5 ppm). 

 
 

 
 
Fig. 2-1: Apparatus to measure the muon life time at PSI. 
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2.3 Measurement of the muon magnetic anomaly: g – 2 
 
The muon magnetic moment with g=2 follows from the Dirac equation   

ss
m2
eg 






m
m

m g==m    µγ  :   gyromagnetic  ratio   [2-29] 

        e:      charge (with sign) 
 

B
e

m
m

2
1

m2
eg m≅=m

mm
m

                (
e

B m2
e

=m , Bohr magneton)   [2-30] 

 
Quantum electrodynamics effects, as well as corrections based on weak and strong interaction 
lead to a g-factor, which is a larger than 2. The deviation g-2 is therefore very interesting as a 
test of the standard model of elementary particles.  
 
g -2 has been measured for the electron as well as for the muon. 
The deviation from 2 is expressed as: 
 
g = 2 (1 +a)  
 

2
2ga −

=  (g-factor anomaly)       [2-31] 

 
The measurement principle is based on the difference between cyclotron frequency cω and 
Larmor frequency Lω in a magnetic field B. 
Non relativistically: 
 
 

B
m
e

c
m

−=ω                      [2-32] 

 

B
2
1

m
egBL
m

m −=g−=ω     |3        [2-33] 

 
 
 
 
 
The difference of the two frequencies gives:  

                                                 
3From the moment 

dt
LdBM
d

d

d

d

=×µ= ,  with L




µγ=µ  , L


angular momentum, we get )B(
dt
d d

d

d

×µγ=
µ

µ  

which has solutions of the form (
B
Bn






= ): 

)tsin()n)0(()tcos()n)0((nn)n)0(()tsin(c)tcos(ba)t( LLLL ω×µ+ω×µ×+⋅µ=ω+ω+=µ





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B
m
eaB

m2
e)2g(cL

mm
=−=ω−ω=ω∆       [2-34] 

This formula is also valid relativistically4. 
 
A g – 2  experiment has been recently performed at Brookhaven National Laboratory (BNL). 
Previously, three experiments have been completed at CERN.  
 
 
 
Magnetic moment of point-like and structured particles 
 

s
m2

egs


=m  

 
Point-like particle (Electron, Muon):  ge=2.0023193,  gm=2.0023318 
Structured particle (Proton, Neutron):  gp=2 ·2.79,  gn=2 · (-1.91) 
 
The g-factor anomaly is due to virtual particles and fields surrounding the particle. 
 

 
 
 
 
 
a is therefore sensitive to „new physics“. 
 
aExp - aTheory= aNEW 

 
aTheorie is determined by QED, weak interaction and hadronic interaction (Standard model) 
 
 

                                                 
4  Relativistically B

m
e

c γ
−=ω

m
, )B

m
e)1(B

m2
eg(L g

g−+−=ω
mm
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The muon is more sensitive to new physics than the electron since coupling to a virtual 

particle  X  2

X

m( )
m

∝    l=e, m. i.e. muon anomaly is 40000 more sensitive than e- anomaly. 

 
QED- contributions to a 
 

 
 
 
 
The QED contribution to the anomaly a is well known and understood. It is the main term and 
amounts to 99.9930% of the anomaly. 
 
a(QED)= 116 584 718.95(0.08)× 10−11 (error 0.00068 ppm)         (~1.16 · 10-3) 
 

Standard Model contributions to g-factor anomaly: 
QED + hadronic + weak 

W W Z+ -

e e etcm m+ - + -

e e

e e etc

m m

m m
ν ν ν ν

+ - + -

o quarks etcπ π π+ -

Interaction 
 

QED 
 

strong 
 

weak 
 
 

Field 
 

photons 
 

gluons 

Particles 

m / e m / e 

external magnet field 

× 

virtual photon 
Feynman graph   
Lowest order contribution (Schwinger 1947) 
 

800
1

c
e

2
1a

2
≈

π
=



 

 

c
e2



≡α    Fine structure constant 

(S.I:  
c4

e

0

2

πe
≡α ) 

 



 

44 

Some representative graphs: there are hundreds more! 
 

 
 
 
Weak interaction contribution to a 
 
Also well known and understood. Contribution: 1.3 ppm  
 
a(electroweak)= 153.6(1.0) × 10−11 (error contribution 0.02 ppm) 
 

 
Some representative graphs: there are hundreds more! 
 
 

 
 
  

e 

e 

+ 

- 

e - 
e + 

e - 
e - 

e + 

e + 

m 

Z o 

m 

× 

m m 

W W 

ν  

× 
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Hadronic contributions to a 
 
Cannot yet be calculated by QCD (Quantum Chromodynamics). 
 
Main term: 
 

 
 
 
Theory needs: 
 

 
 
 
From experiments we can determine: 
 
 

 
 
At the moment, the cross section σ(e+e− → hadrons) gives the “leading order” [LO] 
contribution 
 
 
aHad [LO] = 6 923(42)(3) × 10−11 
 
In addition other terms give:  
 
aHad [NLO] = -7(26) × 10−11 
 
(but exact value of  hadronic contribution still in discussion). 
  

m m 

virtual hadrons 

γ 

 

real hadrons 

e+ 

e- 

γ 

hadrons 
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g-2 experiment at Brookhaven National Laboratory 
 
The main component is a storage ring.  
 
• Muons from forward decay of pions with almost 100 % polarization circulate on a stable 

trajectory in the storage ring.  
 

 
Fig. 2.2: Storage ring / Kicker (Brookhaven, BNL) 
 
Radius : 7112 mm 
Aperture : 90 mm 
Field :   1.45 T 
pm              3.094 GeV/c 
 
• The positrons from muon decay are measured by several detectors placed around the ring  
 
• In the storage ring the muon spin precesses with respect to the momentum with frequency 

2g −∝  
 
• The parity violating muon decay gives the muon spin direction and allows to measure the 

precession 
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B
m
eaB

m2
e)2g(cL

mm
=−=ω−ω=ω∆  

 
• The frequency difference is proportional to g-2, independently of γ and of the focusing 

fields (at the magic momentum pm). 
 

 
 
 
To obtain a vertical focussing of the circulating muons a weak field gradient in horizontal 
direction is necessary. This fact has a negative influence on the achievable precision. To 
determine a from ω∆  it is necessary to know very precisely the field B averaged over the 
trajectory. Therefore, it is necessary to know the trajectory and the field map very well, which 
is achievable only to some extent. To avoid this source of error one uses a trick. An 
homogeneous magnetic field is generated along the trajectory and the vertical focusing is 
ensured by an electric quadrupole field E



. 
 
 
 
 
 
  

m 
Spin 
 
 Momentum 
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Relativistically ( c99.0v ≅µ  ) Eq. [2-34] is to be replaced by 
 









×β

−γ
−−=ω∆

µ
E)

1
1a(aB

µ
e

2




      [2-35] 

 

with 
vβ=
c





 and 
21

1

β−
=γ  

 
The muon energy (or velocity) is chosen so that: 

2
2

a
11+=γ  

i.e. γ = 29.30,  Em = 3.094 GeV, 
this way Eq. [2-35] reduces again to [2-34]. Since B



 is homogeneous (~1 ppm) it is not 
necessary in this case to know the m-trajectory very precisely. 
 
• Measurement of the spin direction 
 
In the center of mass system: 
 

)cos)E(a1)(E(n
ddE

dN

e

e θ+=
Ω

 

 

 
 
We measure: 
 

t

eN (t) Ne (1 A cos( t))+

−
γt= + ∆ω       [2-36] 

 
 
 
 
 
 
 
 

Spin 

θ 

pe 
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from  [2-34] we have : 
 

eB
m 

a mω∆
=          [2-37] 

 
ω∆  is determined by fitting the spectra. The other quantities must be either known or 

determined with the necessary precision. 
 
The B-field is obtained via proton NMR. 
 
Zeeman splitting of the proton energy levels in B: 
 

ppB2E ω=µ=∆          [2-38] 
:pω  NMR Resonance frequency (to determine B very precisely). 

pµ : magnetic moment of the proton. 
 

mm : is expressed in terms of 
pµ

µµ , since this ratio is very well known. 

 
 
  

Fig. 2.3: Measured spectrum (see Eq. [2-36]). Note the increased lifetime due to 
relativistic time dilatation. The measuring interval extends over 14 lifetimes. 
 



 

50 

with  

µ
µ µ

+=
2
e)1a(µ   in [2-37] and with [2-38], Eq. [2-37] becomes 

p

p p

a
µ

∆ω
ω

=
µ ∆ω

−
µ ω

         [2-39] 

 

pµ

µµ  is obtained from other measurements (see Chapt. 3. Muonium and muonium 

spectroscopy):  
 

pµ

µµ = 3.183 345 107(84) (error 0.03 ppm) (newest value, PDG 2014) 

 
The experiment at BNL gives following results for a mean value from m+ and m- 
measurement, (assuming CPT conservation):  
 
aexp = 116 592 091(54)(33) 10-11 (error 0.5 ppm)    [2-40] 
                        (stat.)(system. error) 
 
(G.W. Bennett et al. in Phys. Rev. Lett.  92, 161802(2004) and 
G.W. Bennett et al., Phys. Rev. D73, 072003 (2006)). 
    
The theoretical value is at the moment (2014, Particle Data Group)  
ath = 116 591 803(1)(42)(26) 10-11    (error 0.5 ppm)     [2-41] 
 
aexp- ath = 288(63)(49) 10-11     
 
This means a 3.6σ deviation between theory and experiment (errors must be combined in 
quadrature). Does this point to „new physics“ beyond the Standard Model? To solve this 
puzzle new experiments are in preparation in USA and Japan with a statistical precision a 
factor of 5 better.  
 
Another interesting effect, which contributes to the precision of the measurement is the 
relativistic muon life time dilatation. 
 

s5.64
1

1)GeV09.3(
2

µ=γτ=
β−

τ=τ µµ  

 
This prediction agrees to 99.9% with the measurement. 
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From D. Hertzog, Physics World, March 2004. 
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Fig. 2.4: Compilation of recent results for the theoretical value aμ , subtracted by the central 
value of the experimental average. The shaded vertical band indicates the experimental error. 
(From K.A. Olive et al. (Particle Data Group), Chin. Phys. C 38, 090001 (2014)). Note that 
the quoted errors in the figure do not include the uncertainty on the subtracted experimental 
value. To obtain for each theory calculation a result equivalent to Eq. [2-41], the errors from 
theory and experiment must be added in quadrature. 
 
  



 

53 

3. Muonium and muonium spectroscopy  
 

3.1 Properties of muonium 
 
Muonium, Mu −+µ≡ e , is a true hydrogen isotope. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Mu H e

e
Mu H e

e
2

0
Mu 0 Mu 2

Mu

Mass:                        m 0.1131 m  207.77 m
m m

Reduced Mass:         m   0.9956 m ( ) m   
m m

4πBohr Radius (n=1):   a   1.0044 a               a 0.05315 nm
m e

                 

m

m

= =

= = ≅
+

e
= = =



2

0 0 2
e

2
n Mu

4
Mu

Mu y Mu 2 2
0

                 (a =4 )                 
m e

                                  generally (n-th level): r n a

m eIonisation energy:    R  0.9956 R               R   13.54 eV
(4π ) 2

     

πe

=

= = =
e





4 2 2
e e

y 2 2
0

Mu
2

Mu H Mu 0 e B B 3
Mu

m e α m c                            R =  =  
2(4πε ) 2

R                                 for the n-th level:     
n

2 1Hyperfine coupling:  A 3.1423 A               A   g g
3  a

        

m
m= = m m m

π



μ
μ p

                                                                               h  4463.3 MHz       
"Nuclear "- gyromagnetic      

 γ
factor :                       γ = 3.18335γ                   = 13.

2π

= ⋅

T T T
Mu H Mu e

5534 kHz / G = 135.534 MHz / T

Muonium gyromagnetic factor
1in triplett state (F 1, M 1) :        1.0033        ( - )   
2

(in weak fields)                                                      

m= = ± γ = γ γ = γ γ =

      2 1.3944 MHz/G
                                                                                     102.88 m

= π⋅
= γ

AMu in cgs units: multiply with 
0

4π 8π
μ 3

→  instead of 2/3 

Ry  : Rydberg energy. Ionization energy of a H-Atom with infinitely heavy nucleus. 
R∞ : Rydberg constant, Ry= hc R∞ 
Ry =  13.605 693 009(84) eV  
R∞ = 10 973 731.568 508(65) m-1    
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Muonium is particularly interesting for spectroscopic investigations because: 
 

• Simple, pure leptonic system. 
• Only sensitive to weak, electromagnetic interaction, and gravitation. 
•  m+ : point like particle (from scattering experiments  dimension < 10-18 m=10-3 fm  

 ~ 1/1000 proton radius). 
  
Muonium can be used to test fundamental laws and symmetries and for precision 
measurements of fundamental parameters. 
 
Examples are measurements of: 
 

• Hyperfine structure   
p

  ,
µ

µ
α µ , or  

em
mm  

• Muonium 1s-2s measurements  new determination of fine structure constant a 
• Lamb shift (2S1/2-2P1/2 ) in Mu not yet precise enough for comparison with theory 
 

Hydrogen 
Electron  g-2 factor or (g-2)/2=ae and H

hfsν∆   are among the best known quantities in physics. 
 
E.g. ae known to 0.23 ppb  a with 0.32 ppb error. 
 

H
hfsν∆ even known to 0.6 ppt (10-12), but theoretical description is only possible at ppm level 

because of internal structure of the proton  (radius, polarisibility). Similarly for 2S1/2-2P1/2 
Lamb shift. 
 
 

 
 
 
 
 
 
 

 
Fig. 3-1: Some low lying energy levels of hydrogen atom (or muonium), not to scale. 
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Energy level of muonium, n=1 und n=2                                     J = L +S

F = J + I



 

 

 

 
 
 
 
 
Life time s 2.2 µ=τµ , both ground state and excited state decay with this time constant  
from uncertainty relation: 

nat nat
2ΔEτ = 2 ,    ΔE=hΔν Δν = 145 kHz

2 τ
→ ≅

π
   (natural limit of precision) 

 
 
 
 
 
 
  

Fine structure O(a2) 
J-degeneracy lifted 
 
 Lamb shift 
 

 

Hyper fine structure  O(a4) 
~1.8 10-5 eV 

n2S+1LJ 
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3.2 Theory of the energy levels of a muonium atom 
 
 
The total energy of an electron in a one-electron atom can be expressed in the following way:  
 
 
Etot(n; j; l; F) = ED(n; j) +ERM(n; j; l) +EQED(n; j; l)+EHFS(n; j; l; F; I) +Estrong+ Eweak + Eexotic  
 

[3-1] 
 
ED:  Dirac energy for an electron in a point like infinite heavy nucleus with charge 

Z , which creates a potential V = – Zq / r . The Dirac theory of the gross and fine-
structure for one-electron atom takes electron spin and fine structure into account. 
i.e. it contains effects such as spin-orbit coupling + relativistic effects and Darwin 
term, which originates from averaging the potential energy over the size of the 
electron wave. 
 

 
ED(n; j) =mec2 (f(n; j) –1)       [3-2] 
  

2/12

n
Z1)j,n(f

−




















ε−
α

+=        [3-3] 

 
22 )Z()

2
1j(

2
1j α−+−+=ε       [3-4] 

 
ERM : Effects due to finite nuclear mass (relativistic and non-relativistic). 
 
EQED  QED-Effects (Lamb shift): radioactive corrections to the electron propagator , 
 (Electron self energy, anomalous magnetic moment), vacuum polarization. 
 

 
 
Estrong   Strong interaction  QED-effects of the vacuum polarization 
Eweak    Weak interaction (via Z-Boson exchange) 
EHFS     Interaction between magnetic moment of the muon and electron  
Eexotic   Possible (non-Standard Model) exotic interaction between electron and „nucleus“ 

  

 
Fig. 3-2: Lowest order QED contributions to the Lamb shift. (a) Electron self energy.                
(b) Vacuum correction to the potential. The heavy lines represent the electron in an 
external static nuclear field.  
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3.3 Hamilton function of the hyperfine interaction 
 
 
The Hamilton function of an electron in the field of a muon is given by5: 
 

2
I I e B I

e

e

1 SH = P eA (R) + eU (R) g μ ( )rot(A (R))
2m

                                                               μ B

 −−  

−



   



((((((





    [3-5] 

 
R


 and P


 are position and momentum of the electron, S


 its spin (in units of  ), e its charge. 
I


 is the nuclear spin (muon). Let’s consider the terms, which originate from the vector 
potential A



. 
 

μ0
I 3

μ ×RμA (R) =
4π R





 

         [3-6] 

 
Where 



µµ  is the magnetic moment of the muon. 

The hyperfine Hamiltonian Hhf is obtained, if we retain in [3-5] only the terms linear in IA


 
 
 

hf I I e B I
e

e SH P A A P g rot(A (R))
2m

 = − ⋅ + ⋅ − m 



   



     [3-7] 

 
and put [3-6] in [3-7]. 
 
 
Coupling of the  magnetic moment of the muon with the orbital momentum of the electron 
 
Let’s consider the first term in [3-7]. With 
 
L = R ×P
 

          [3-8] 
 
and the fact that 



µµ  with R


and P


 commutes6, we get: 

L 0 0
hf B L3 3

e

L
LeH 2 2 B

4 2m 4R R

mm
m

m ⋅m ⋅m m
= − = − m = −m ⋅

π π













     [3-9] 

This corresponds to the coupling between the magnetic moment 


µµ  and the magnetic field 
(note e is negative) 
 

                                                 
5 In this chapter we use [S]=[  ] 
6 Use: P A P [ R] [R P] Lµµµ  ⋅ ∝ ⋅ µ × = µ ⋅ × = µ ⋅

    

 

 and similarly for A P⋅
 
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0
L 3

e

μ e LB =
4π m R





         [3-10] 

 
This field corresponds to the current generated by the orbiting electron. 

(Biot-Savart law: 0
L 3

μ R×dR ev B = I ,     with I= )
4π 2 RR

−
−

π∫
d d

d

 

 
 
 
Coupling with electron spin: 
 
Magnetic field created by the muon: 
 
To avoid problems with singularities we consider first a muon with a finite radius ρ0 and take 
R> ρ0 
 
With  [3-6] and  dip

IB = rotA
dd

 
 

μ μdip 0
3 5

μ (μ R)R)μB (R) = + 3
4π R R

 ⋅
− 

  

d d

d d

d d

       [3-11] 
 
with 



µµ || z  , we get: 
 

0
x μ 5

0
y μ 5

2 2
0

z μ 5

μ xzB = 3μ
4π R
μ yzB = 3μ
4π R
μ 3z - RB = μ
4π R

        

 
[3-11] is also valid for R not much larger than ρ0 , since a spin ½ particle creates a dipolar 
field. 
 
The  magnetic dipole term: 
 

If we insert [3-11] in e B I
Sg ( )rot(A (R))−µ


 



, we get for the magnetic dipole term (coupling 

between electron spin and magnetic field, which is generated by the dipole moment of the 
muon outside its “radius”). 
 

μdip dipe B
μ ehf 3 2

(S R)(μ R)g μ 1H S μ 3 =  μ B
4π R R

 ⋅ ⋅µ
= ⋅ −−  ⋅ 

  

d d d

d

d d

d d



0
    [3-12] 
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The contact term: 
 
It takes into account the contribution of the „internal field “ Bi (i.e. of the interaction  
between magnetic moment of the muon and electronic spin density at the muon site)  

0R ρ≤ : The field inside the nucleus (Bi) can be obtained by the explicit integration of the 
magnetic flux Φ over half a sphere surrounding the dipole, taking into account that the 
integral is zero. 
 

Bi =
µ

π
µ

ρ
µ

0

0
34

2           [3-13] 

 
Contact term in [3-5]: 
 

 ieIBe B))R(A(rot)S(g











⋅µ−=µ−  

 
The corresponding operator c

hfH  is obtained by calculating the matrix elements between the 
basis wave functions. We get (note μB is negative here): 
 

c 0 e B
hf 0 e

g S8 2H (R) (R)
4 3 3µµ
µµ π

= −µ  δ = −µµµ    δ
π

δ

δδ

δδδ 



     [3-14] 

 
Note that the term is finite and does not depend on the choice of ρ0. 
 
With dipL c

hf hf hfhfH H H H= + +  
 

and  B
Ig µ

µµ µ = µ






         [3-15] 

 
With the three contributions, the Hamilton operator of the hyperfine interaction  (ge = 2) 
becomes: 
 
 



μ
B μB0

hf 3 5 3

Contact terme-Angular moment Dipol (e-spin)
(e-Spindensity
at the muon site)

2μ μ gμ I L (I R)(S R) I S 8πH = + 3 + I Sδ(R)
4π 3R R R

 
 
 

⋅ ⋅ ⋅ ⋅ - - ⋅ 
 
 
  

dd d d d d d
h

dd d



((

((((((

2  [3-16] 

 
 
 
Dipolar and contact fields are also present in the solid. For instance, localized magnetic 
moments or nuclear moments produce dipolar fields and the spin density of conduction 
electrons (or delocalized electrons) generates a contact field at the muon site.  
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Calculation of the hyperfine structure of the 1s-level 
 
For the 1s level the first two terms of  [3-16] are zero, since 

>< L


 and 1s dipolar term  1s 0< >=  because of the spherical symmetry of the 1s-state. 
Only the contact term contributes. 
 
Matrix element of the contact term: 
 

with e e B
Sgµ = µ






  

 
 

L S I 0 e L S I
2n 1, l 0,m 0,m ,m (R) n 1, l 0,m 0,m ,m
3 m< = = = − m m m δ = = = >

δ

δδ    [3-17] 

 
= A S I S I<m ,m I S m ,m >⋅



         [3-18] 

 
 

  2
1s

0 e BB 2

(0)

2 1A g g  n 1, l 0  (R) n 1, l 0      
3

                                    

µ
µ

ϕ

= µµµ   < = = δ = = >
δ

((((((((((

    [3-19] 

with  Mu

r 
a

1s3
Mu

1r n 1, l 0 e (r)
a

−

< = = >= = ϕ
π

     [3-20] 

 

3
Mu

2
s1 a

1)0(0l,1n)R(0l,1n
π

=ϕ>===δ==<
δ

     [3-21] 

 

0 e BB 3 2
Mu

2 1 1A g g
3 a

µ
µ= µµµ 

π 

                      [A]=[ 2
energy


]   [3-22] 

      

With  
2

0
Mu 2

Mu

4a
m e
πe

=
  (Bohr radius), e e

Mu
ee

m m mm mm m 1
m

m

m

m

= =
+ +

    (takes into account the 

finite “nuclear” mass),  
2

0

e
4 c

α =
πe 

   (fine structure constant in SI units) and 0 0 2
1=
c

εµ   
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For spectroscopy [3-22] can also be written in terms of precisely known quantities:  
 
 

2 4 3e e
e e 2

m m2 1A g g m c (1 )
3 m m

−
m

m m
= α +



      [3-23] 

 
 
 
Summarizing the contact operator for the 1s state can be simplified to 
 
 

c
hfH AI S= ⋅



          [3-24] 
 
With A>0 and [ ] [ ] [ ]I S= = 

 
 
 
Eigenvalues and eigenstates of the contact term of the 1s-level 
 
 
The degeneracy of the 1s-level is  4-fold. Instead of the basis 
 

S I
1 1S , I ,m ,m
2 2

= = >   (product basis)     [3-25] 

 
we take the basis  
 

FF,m >    (coupled basis)     [3-26] 
 
F is the total moment eigenvalue of the operator F S I= +



:    [3-27] 
 
I S⋅


 is diagonal in the basis [3-26]. With  L=0 (1s level)  
 

2 2 2AAI S (F I S )
2

⋅ = −−


   [3-28] 
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[ ]
2

F FAI S F,m A F(F 1) I(I 1) S(S 1) F, m
2

⋅ > = + − + − + >


    [3-29] 

 

                            

2

2

A                 F 1 
4
3A             F 0

4

= =

= − =





 

 
 
 
 
 

          1s 
 

 
 
 
 
 

 

F=1 
 

     1s1/2                                                                             A2

4
1
  

 
 
 

                                   A2

4
3
−  

 
F=0 
 
 
 

 
 
Eq. [3-23] is not accurate enough for high precision spectroscopy of muonium or of hydrogen 
and positronium. One has to consider additional correction terms arising from QED, weak 
interaction, and eventually exotic interactions.  
 
 
 
 
 
 
 

 
 
 
Fine structure shift 
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However, the hyperfine-Hamilton function has still the form: 
 

SIAHc
hf



⋅=    [3-30] 
  
 
 
If we write the splitting in terms of frequency we get: 
 

2
hfs hfs hfsE (F 1) E (F 0) h A= − = = ∆ν =         [3.31] 

 

( )
3

yMu 2 e
hfs rad rec rad rec weak exotic

B

2 2
e

y

R m16 (Z ) 1 1
3 h m

m cwhere                      R  and Z=1
2

−
m

−
m

 m
∆n = a + + e + e + e + ∆n + ∆n 

m   

a
=

[3-32] 

 
 
 
 
Theoretical value: 
 
 
           [3-33] 
 
            
 
Better known for muonium than for H. For H one has to consider additional terms due to the 
proton structure: 
 
+ enuclear radius+  enuclear polarization.  
 
The theoretical uncertainty is 560 ppb (whereas the experimental uncertainty is presently 
0.6 ppt). 
 
 
 
 
 
 
 
 
 
 
 
 
  

th
hfs  4 463 302 891 (272)   Hz  (63 ppb)

                                           
∆ν ==
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3.4 Spectroscopy of the hyperfine splitting in muonium 
 
Method: Microwave spectroscopy of the ground state in an external magnetic field. 
 
We consider the Zeeman effect on the 1s level. 
 
Hamilton function:  
 

  
                                                         [3-34] 
                  
  

and using the Larmor frequencies of muon and electron: 
 

z e zH I S AI Sµ= ω + ω + ⋅


        [3-35] 
 
where: 
 

e
e e

e

g e
B 0

2 m

eg B 0
2 m

       ,    

            ,    

m
m m

m
ω = − ω <

ω = ω >

        [3-36] 

 
To determine the energy eigenvalues, we must diagonalize the matrix of the Hamilton 
function H [3-35]. 
 
We obtain as energy eigenvalues: 
 

2 2

1 e e B B

2 2

2 e e B B

2 2 2 2 2
2 2 2

3 e

2 2 2 2 2
2 2 2

4 e

A A 1E ( ) (g g )B
4 2 4 2

A A 1E ( ) (g g )B
4 2 4 2

A A A AE ( ) ( ) 1 x
4 2 4 4 2

A A A AE ( ) ( ) 1 x
4 2 4 4 2

µ
µµ

µ
µµ

µ

µ

= + ω + ω = + µ−µ 

= − ω + ω = −µ−µ  

= − + + ω − ω = − + +

= −−  + ω − ω = −−  +

  

  

    

    

   [3-37] 

  

eH B B AI S

ˆwith B || z and = I      ([I]= ] )
µ

µµ

= −µ ⋅ −µ  ⋅ + ⋅

µ γ

dd d d

d d

d d

d


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Breit-Rabi diagram 
 

 
Fig. 3-3: Energy-level diagram for muonium in the 12S1/2 ground state in a magnetic field. At 
zero magnetic field the energy difference between the F=1 and F=0 states is the hyperfine 
splitting h∆νhfs. 
 
 
The field is generally expressed in terms of the dimensionless parameter  
 

e B e BB B
2

hfs 0

(g g )B (g g )B Bx
h BA

µµ
µµ µ + µµ  + µ

= = ≡
∆ν



     [3-38] 

 
B0 is the field where the Zeeman splitting of the electron and the muon is equal to the 
hyperfine splitting. For muonium B0=0.158 T. 
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In analogy we obtain the eigenstates: 
 

S I F

S I F

S I S I

S I S I

1 11 M ,M  = F 1,M 1
2 2

1 12 M ,M  = F 1,M 1
2 2

1 1 1 13 sin M ,M cos M ,M
2 2 2 2
1 1 1 14 cos M ,M sin M ,M
2 2 2 2

>= = = > = = >

>= = − = − > = = − >

>= β = − = > + β = + = − >

>= β = − = > − β = + = − >

   [3-39] 

where 
 

2/1

2/12

2/1

2/12

)1(
1

2
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)1(
1

2
1cos










+
−=










+
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x
x
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x

β
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We express the energy differences as frequencies: 
 
 
E E h
E E h

1 3 13

2 4 24

− =

− =

ν

ν
         [3-40] 

 
Then we get for the sum or difference of the transition energies: 
 
 

Mu 2
13 24 hfs

Mu 2 1/2
13 24 hfsB

h h h A

h h 2 g B h (1 x ) xµ
µ

ν + ν = ∆ν =

 ′ν − ν = µ + ∆ν + − 



     [3-41] 

M
hfs

BBe

h

Bgg
x

ν

µµ µ
µ

∆

′+′
=

)(
  

To take into account the relativistic binding corrections in muonium we use in [3-41]  ′ge  and 
′gµ  instead of the values for free particles ge and gµ . 

  

′ = − +

′ = − + +

g g m
m

g g m
m

e

e e
e

m m
m

m

α α

α α α
π

[ ]

[ ]

1
3 2

1
3 2 4

2 2

2 2 3
       [3-42]  

 
B can be expressed as a function of µp and of the NMR frequency. 
 
h Bp pν µ= 2           [3-43] 
 
From the sum of the transition frequencies Mu

hfs∆ν  is determined and from the difference (Eq. 

[3-41])  by using Bg
2

µ
µ

µ
µ

µ =  we obtain also the 

ratio of the muon and proton magnetic moments 
µ

µ
µ

p

 . 
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Principle of the experiment (W. Lin et al., Phys. Rev. Lett. 82, 711 (1999)) 
 
Stop polarized positive muons in Kr in a magnetic field B



 antiparallel to I


 (initial muon spin 
direction) 
In Kr muonium is formed in the states (each with 50% probability since the electrons are 
unpolarized)  

      | ,M MS I= − = − >
1
2

1
2

         (level 2)      

     and | ,M MS I= + = − >
1
2

1
2

   (level 3) 

With microwaves one induces the transitions in level 4 (→ hν24) 
and in level 1 (→ hν13) . 
The transition frequencies are determined from the positrons rates with and without 
microwave field (one can vary either the microwave frequency or the magnetic field) 
 
 

 
 
 
 
 
 
 
 
 
  

MI 

Fig. 3-4: A schematic view of the experimental apparatus 
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Positron signal (as a function of the magnetic field or of the microwave frequency) 
 

  
 
Result: 
 
 
 
Results 
 

exp
hfs∆ν  = 4 463 302 765(53) Hz      (12 ppb)      [3-44] 
th
hfs∆ν  = 4 463 302 891 (272)   Hz  (63 ppb)  

 
mm /mp = 3.183 345 13(39)   (122 ppb)      [3-45] 
 
(Ref. Liu et al., Phys. Rev. Lett. 82, 711 (1999)) 

From [3-45] via 
e

p B

e p

m g
m 2

m m

m

m m
=

m m
: 

 
mm/me = 206.768 277(24)  (120 ppb)  can be determined   [3-46] 
 
Alternatively one can use mm/me or a as parameter in Eq. [3-32] and determine them from the 
experimental result for exp

hfs∆ν  .   
For instance with mm/me  from [3-46] one gets: 
 
 a-1 = 137.0359963(80)  ( 58 ppb) 
 

Fig. 3-5: Left: resonance curves obtained by sweeping the magnetic field and from different 
windows after muonium production. Right: microwave frequency sweep curves. The solid 
curves are fits to the theoretical line shape. 



 

70 

Fine structure constant: summary of results 
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3.5 Measurement of the 1s-2s transition in muonium 
 
(Doppler free 2-photons spectroscopy) 
 
• 1 photon transition not allowed (because of 1±=∆l ) 
• Gross structure interval 

     
2

15 2e
1s2s y e

m3 cR (1 ) 2.45 10 Hz                        hcR R m c
4 m 2∞ ∞

m

α
ν = − = ⋅ ≡ =     [3-47] 

     ∞R  (Rydberg constant) is known to 8. 10-12  

• Natural width due to lifetime of the muon: νµ = 145 kHz  11

1s2s
6 10µ −ν

≈ ⋅
ν

 

• A measurement of ν1s2s at the 10-9 level allows an  

accuracy of  
e

m
m

m    determined by -9 -7

e

m
10 10

m
m ≈   
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Principle of the 1s-2s muonium experiment. a) The transition between the 1s- and 2s- levels is 
induced by the absorption of two counterpropagating photons (λ= 244.2 nm). The metastable 
2s-state is ionized by a third photon. b) The transition via two photon absorption is to first 
order Doppler free. 
 

Measurement principle (Doppler free spectroscopy) 
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Apparatus for the 1s-2s experiment at the Rutherford Appleton Laboratory (pulsed  muon 
source, UK). 
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Production of thermal muonium in vacuum. Efficiency for different materials. The beam 
momentum is optimized for maximum efficiency. 
 
 
Target material Target density 

[mg/cm3] 
Target Thickness 
[mg/cm2] 

Optimum muonium 
Fraction 
m+e-/mstop [%] 

 
SiO2 powder 

 
32 

 
4.6 

 
17(1) 

SiO2 powder 32 2.8 15.9(3.6) 
SiO2 powder 32 9.0 8.27(31) 
SiO2 aerogel 5 7.5 2.32(13) 
SiO2 aerogel 18 9 1.57(20) 
W Foil (2130K) 19.3 96.5 4(2) 
C60/C70 Fullerenes  

≈1400 
 
≈210 

 
1.85(23) 

Cotton 10 3.6 2.25(16) 
Cotton coated with 
SiO2 powder 

 
17 

 
5.8 

 
11.43(31) 

Microchannel Plate ≈2000 ≈100 2.44(31) 
 
 
Results 
 

Exp
1s2s 2 455 528 941.0 (9.8) MHz     ∆ν =     (4 ppb) 

 
From the comparison with the theoretical value Theor

1s2s 2 455 528 934.5 (3.6) MHz     ∆ν =  
 

 
e

m
206.76838(16)

m
m =                        (0.77 ppm) 

 
or alternatively: from the comparison with the theory and the fact that the dominant term in 

[3-47]  is proportional to  Ry ∝ a2 ∝ 
4

2 2 2 e
e 2

e true

q qq q ( ) ( )
q

µ
µ ⋅ ∝

α
 ∝ 2)(

eq
qµ  

 

 ppb) (2.0                10)0.2(0.11)
q
q

( 9

e

−µ ⋅−−=  

 
This is a test of charge equality between two particle generations. 
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Muon mass results, summary 
 
 
 
Extracted from experiments: 
 

e

m

m

+m    (mSR Br) = 206.768 35 (11)  (0.53 ppm) 

 

e

m

m

+m    (m- Atoms) = 206.768 30 (64)  (3.1 ppm) 

 

e

m

m

+m    (M 1s-2s) = 206.768 38 (16)  (0.77 ppm) 

 

e

m

m

+m    (mm)  = 206.768 270 (24)  (0.12 ppm) 

 
 
Using the muonium hyperfine structure measurement and the theory: 
 
 

e

m

m

+m    (Mhfs)  = 206.768 267 0 (55) (0.027 ppm) 

 
 
Value in Particle Data Book (2014): 
 

e

m

m

+m    = 206.768 284 3(52)   (0.025 ppm) 
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Summary of precision experiments 
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4. Positive and negative muons in matter 
 

4.1 Energy loss of charged particles in matter 
 

 
 
 
Interaction between a charged particle and matter leads to energy loss and scattering.  
             
Energy loss: 
 
           [4-1] 
 
 
The energy loss is proportional to the density. Therefore, often the density is included in the 
length, x=l.ρ       [x]=[g/cm2] 
 
The most important contribution is the so-called electronic energy loss arising from inelastic 
collisions with electrons (ionization, excitation,..). 
 
  

...
dx
dE

dx
dE

dx
dE

nuclearelectronic
++=

Fig. 4-1: Stopping power (= < −dE/dx>) for positive muons in copper as a function of 
βγ=p/mµc over nine orders of magnitude in momentum (12 orders of magnitude in kinetic 
energy). Solid curves indicate the total stopping power. Vertical bands indicate boundaries 
between different approximations. The short dotted lines labeled µ- illustrate the “Barkas 
effect”, the dependence of stopping power on projectile charge at very low energies. 
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Generic Bethe-Bloch formula for electronic energy loss: 
 

2 2 2 2
2 2e max               

2
electronic

2m c TdE Z 1 1 MeV cmK z ln( )              
dx A 2 I 2 g

   β g d ⋅
− = −β −   

β      
     [4-2]  

 
Z : Target atomic number 
A:  Target atomic mass [g/mol]   
M: Target mass 
z  : Charge of incoming particle 
I :  Mean excitation energy  
Tmax: Maximum energy transfer to a free electron in one collision 
 

2 2 2
2e

max max e
2e e

2m cT                  Non relativistically:    T 2m vm m1 2 ( )
M M

β γ
= =

+ γ +
   [4-3] 

 
For v >> ve    (v: Projectile velocity, ve:  velocity of the electron to be ionized) 
and z << Z,  the energy loss can be calculated classically (non-relativistic Bethe-Bloch 
formula). 
 

               
2

electronic

dE 1
dx v

− ∝            [4-4]

  
 
Energy loss occurs via inelastic collisions with the shell electrons of the material. 
 
Assume M>>me and electrons at rest before collisions: 
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Momentum transfer: 

Coulp F dt
+∞

−∞
∆ = ∫  

Longitudinal component of force averages out. Only the transverse component contributes to 
the integral: 

Coul Coul Coul 2 2

b bF F F
r b x

⊥ = =
+



,     b impact parameter 

with 

 
2 2

2 2 2 2

ze b dx 2zep
v vbb x b x

+∞

−∞
∆ = =

+ +∫  

2 2 4

2 2
e e

p 2z eE(b)
2m m v b
∆

∆ = =  

where v and z are velocity and charge of the projectile. 
 
Determine minimum and maximum impact parameter from maximum and minimum energy 
transfer. 
 
Maximum energy transfer:  

max e
2 2 4

2max
max e min 2 2

e e min

p 2m v

p 2z eE 2m v E(b )
2m m v b

∆ =

∆
∆ = = = ∆ =

   

 
2

min 2
e

zeb
m v

=  

Minimum energy transfer: from minE I∆ =   (mean excitation energy of the atom)  

 
2

max
e

ze 2b
v m I

=  

 
Energy loss in a collision with one atom (Z electrons, atomic number A, density ρ): 
 

max max

min min

b b 2 4

2 2
eb b

2z edE Z E(b)2 bdb Z 2 bdb
m v b

= ∆ π = π∫ ∫  

On a length d  there are AN d
A

ρ   atoms per cm2. With dx d= ρ we have finally (and 

introducing a minus sign to take into account that energy is lost in the collisions): 
22 4

e               A
2

electronic e

2m vdE N4 z e Z ln
dx A Im v

π
= −  

which is the classical derivation of Bohr of the Bethe-Bloch formula (Eq. [4-2]). 



 

81 

For v<<ve a quantum mechanical calculation is necessary (for instance energy loss in an 
electron gas). At low velocities the energy loss is linearly proportional to the velocity. 
 
 

v
dx
dE

∝           [4-5] 

 

 
 
Fig. 4-2: Stopping power in Carbon.  
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4.2 Range of muons 
 
 
Total range 
  
 

∫=
0

E

tot

in

dE
dx

dE
1R          [4-6] 

  
 
 
Important for practical purposes is the projected range along the incoming trajectory. 
Projected range and range straggling of surface muons: 
 

5.3apR =        p in MeV/c 
 

22 )
p
p5.3()1.0(

R
R ∆

+=
∆         [4-7]  

 
 
 
For surface muons (p~ 30 MeV/c)  R is typically 130 mg/cm2, ∆p/p ≅ 0.03 and  
∆R ≅ 15 % of R.  Typical values of R lie therefore between 0.1 and 1 mm.  
Surface muons stop in the bulk of a sample. For higher ranges (e.g. for pressure cell 
experiments) muons from pion-decay in-flight are used (see Chapt. 1.  Introduction). For thin 
films we use the so called low energy muons obtained by moderation of surface muons (see 
Chapt. 9. Thin film and heterostructure studies with low energy muons).  
 
 
Slowing down or thermalization time t 
 

in in in

0 0 0
11

v E E

1 -1

dE dE d dE dE   t dt 10  s  in  solidsdE dEd vdt v v v
d dx

                                                                       (density)

                                       

-

-

= ⇒ = = = = ≈
ρ

∝ ρ

∫ ∫ ∫ ∫





2
x mg                      =        [x]=[ ]

cm
↑

ρ


  [4-8] 
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Fig. 4-3: Range in Carbon.  
 

2

2

22
p

p
p p p

p p
p

Range scaling :
dER dE
dx

dE 1 m
dx Ev

E ER dE
m m

EE E m 1Energy for which R R               
m m E m 3

m 1Range at the same energy E  R R          R R
m 9

m m m
m

m

m
m m

∝

∝ ∝

→ ∝ ∝

= → = ⇒ = ≈

→ = ⇒ ≈

∫

∫   [4-9] 
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Multiple scattering 
 
A charged particle traversing a material experiences many small scattering events. 
Therefore, the angular distribution resulting from Coulomb scattering can be approximated by 
a Gauss distribution. 

 
 
The spatial and projected angular distributions are given by: 
 

Ω














θ

θ
−

πθ
d

2
exπ

2
1

2
0

2
sπace

2
0

        [4-10] 

Ω














θ

θ
−

πθ
d

2
exπ

2
1

2
0

2
πlane

0
        [4-11] 

 

With rms
space

rms
plane0 2

1
θ=θ=θ         [4-12] 

0
0 0

0 2
kin

13.6MeV x xz (1 0.038ln( ))
cp X X

Non relativistically :
1 1

Emv

θ = +
β

θ ∝ ∝

      [4-13] 

 

0X
x  is the thickness of the material expressed in so called „radiation lengths“. 

 
Radiation length: Mean distance where the energy of an energetic electron is reduced to 1/e of 
the initial energy by bremsstrahlung.  

X0  is a material property,    0 2
716.4A gX   [ ]

Z(Z 1) ln(287 / Z) cm
=

+
   [4-14] 
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4.3 Thermalization of muons in gases 
 
 
      

  
(graphics J. Brewer, UBC) 
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Electronic collision processes contributing to the energy loss (gas model) 
 
Process:       Energy loss or gain: 
 
Ionization: 
 

eAA ++µ→+µ +++                        ∆E ≅ Ion. energy of A   [4-15] 

eAMuAMu ++→+ +       ∆E ≅ Ion. energy of A 
 
Electron capture (Mu formation): 
 

++ +→+µ AMuA      ∆E ≅ Ion. energy of A - Ion. energy of Mu 

 
Electron loss (Break-up) 
 

eAAMu ++µ→+ +               ∆E ≅ Ion. energy of Mu=13.6 eV  [4-16] 
 
Processes involving Mu- (negatively charged muonium) can be neglected. 
 
 

 
Fig. 4-4: Ionization cross sections in different gases. 
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Fig. 4-5: Muonium formation (C: electron capture, solid line) and breakup (L: electron loss, 
dotted line) as a function of muons energy. 
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Charge equilibrium: 
 

LC

C
Muf

σ+σ
σ

=  [4-17] 

 

LC

Lf
σ+σ

σ
=µ  
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Energy transfer in elastic collisions („nuclear stopping power“) 
 
Stopping cross section (energy loss per atom/cm2): 
 

2
n n

A A

dE 1 dE A dE AS  =                     [S ] [eV.cm ]
d N d N dx N

= = =
ρ 

   [4-18] 

3N: Atomic density [Atoms/cm ] , A: Atomic weight in g, NA: Avogadro number. 

Ω
Ω
σ

= ∫ d
d
dT)E(Sn          [4-19] 

T kinetic energy transfer, E initial energy. From kinematics: 
 

tgt tgt2
2 2

tgt tgt

4m m 2m m
T Esin E(1 cos )

2(m m ) (m m )
m m

m m

θ
= = − θ

+ +
    [4-20] 

 
tgt

n 2
tgt

2m m dS E (1 cos )d
d(m m )

m

m

s
= − θ Ω

Ω+ ∫       [4-21] 

 

n el el
tgt

2m
S E (1 cos ) E

m
m≅ s−  < θ > ≅ ∆ ⋅s       [4-22] 

 
A calculation with a screened Coulomb potential gives: 
 

]
atom

cmeV[    )(S
)Z1)(mm(

mZ10462.8
)E(S

2

n23.0
tgttgt

tgt
-15

n
⋅

e
++

⋅
=

m

m
m     [4-23] 

 
 
Where e is a reduced energy and Sn(ε) the reduced energy loss: 
 

)Z1(Z

]keV[E53.32

)Z1)(mm(Z

Em53.32
23.0

tgttgt
23.0

tgttgttgt

tgt

+
≅

++
=e m

m

m      [4-24] 

 

)19593.001321.0(
)1383.11ln(5.0)(S

5.021226.0n
ε+ε+ε

ε+
=ε      [4-25] 
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Fig. 4-6: Elastic energy loss (nuclear stopping power) of muons in Ar. 
 
 
 
The elastic (or “nuclear”) stopping power is important only at very low energies. It can be 
neglected for the stopping processes of surface muons. However, it is important in the 
mechanisms leading to the generation of low energy muons (see Chapt. 9. Thin film and 
heterostructure studies with low energy muons). 
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4.4 Muonium formation in gases (prompt or epithermal muonium 
formation) 
 
 

 
 

Muf f 1µ + =  
 
The thermalized muonium fraction fMu increases with decreasing ionization energy. 
 

Gas Ionization potential 
[eV] 

fMu 

He 24.5 0 
Ne 21.6 0.060.05 
Ar 15.8 0.740.04 
Kr 14.0 1.00.05 
Xe 12.1 1.00.04 
N2 15.6 0.840.04 
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(from D.G. Fleming, et al., Phys. Rev. A 26, 2527 (1982)). 
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4.5 Thermalization of muons in solids 
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(graphics J. Brewer, UBC) 
More similar to slowing down processes in gases.
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The Coulomb attraction between a thermalized positive muon and an electron from the track 
may lead to “delayed” muonium formation, i.e. muonium formation after thermalization of 
the muon.  The formation probability depends on the electron transport properties in the 
corresponding medium. 
 
Consider the thermalization track in insulators and semiconductors: 
 
 

 
 
Fig. 4-7: Model for processes occurring at the end of the muon track in a frozen Van der 
Waals gas. (from D. Eshchenko et al., Phys. Rev. B 66, 035105 (2002)).  
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Rem (mean distance between electron and muon) and τ (muonium formation time) can be 
determined from the field dependence of the muonium formation probability (proportional to 
the muonium initial asymmetry AMu(0)). In α-N2 at 20K one obtains <Rem> ≈ 50 nm. From 
this experiment the electron mobility be can de derived microscopically ( e ev b E=



 ) and the 
state of the electron investigated (V. Storchak et al., Phys. Rev. B 59, 10559 (1999)). 
 
Example: 
β-N2 (hcp), τ=30 ns, Rem  = 25 nm, be~ 10-3 cm2/V/s  (T> 35.6 K) 
 Electron localized 
a-N2 (fcc), τ<<1 ns, Rem  = 50 nm, be> ≈ 102cm2/V/s (T<35.6 K) 
 very large electron mobility, e.g. electron is delocalized 
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4.6 Positive muon in metals 
 
A positive muon represents a positively charged impurity at a generally interstitial position of 
the lattice. To first approximation the muon behaves like a proton  (but with different zero 
point energy, quantum mechanical effects... ). The charge and spin of the muon change local 
the electron and electron spin density. 
 
Electron- and spin distribution around a m+ (p) in a metal: 

 

 
Fig. 4-8: Charge- and spin-density distribution around a positive muon in a spin-polarized 
electron gas with rs=2 and polarization ξ0 =0.17. The solid and dashed curves correspond 
respectively to normalized charge density n(r)/n0 and normalized spin density  

0 0

n (r) n (r)
n n

↑ ↓

↑ ↓

−

−
. From P. Jena et al., Phys. Rev B 17, 301 (1978). 

 
 
n0:  free electron density. Definition of rs : Radius of a sphere (in units of Bohr radius), which 

contains one electron: 0 0
3

s 0

1n          , a : Bohr Radius4 (r a )
3

=
π

 

 
The charge impurity represented by the muon increases the electron density at the muon site 
(see figure 4-8) from n0 to n(r) and modifies the spin polarization of a spin polarized gas  

from 0 0
0

0

n n
n

↑ ↓−
ξ =  to n (r) n (r)(r)

n(r)

↑ ↓−
ξ = . 
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Fig. 4-9: Charge- and spin-density enhancements at a μ+ site for bulk densities 1< rs<5. The 
solid and dashed curves correspond respectively to normalized charge density n(0)/n0 and 

normalized spin density 
0 0

n (0) n (0)
n n

↑ ↓

↑ ↓

−

−
. From P. Jena et al., Phys. Rev B 17, 301 (1978). 

 
Note that the spin density at the origin is enhanced over the ambient polarization to a much 
lesser degree than the charge density. 
 
Comparison of local electron densities:  

- Electron gas (undisturbed) with rs=2 (typical):     0 s
3

0

1n (r 2) 4 (2a )
3

= =
π

 

- Electron gas with muon impurity (see Fig. [4-8]): 0
3

0

16n(0) 16n 4 (2a )
3

= =
π

   

- Free muonium (density at muon site):   
3

0

1 1 = n(0)4 2a
3

π
 

In a metal the electron density at the muon site is comparable to the value in muonium. In 
spite of this, if we stop muons in a metal we do not observe muonium formation: the 
screening of the Coulomb potential hinders its formation and the scattering of the electron 
with the conduction electrons makes such a state very short lived. A short lived „bound state” 
with two electrons (Mu-) and very small binding energy is however in principle possible. 
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Screening in a metallic medium 
 
Macroscopically there is no electric field inside a metal. This means that a single positive 
charge must be screened within a few Angstroems.  
The semi-classical Thomas-Fermi approximation describes the static screening response 
(ω=0) at long wavelengths ( k<< kF ), which corresponds to a slowly varying potential as a 
function of position r relative to the impurity charge. 
 
In this approximation the dielectric constant can be approximated as: 

2
s,TF

2
k

(0, k) 1
k

ε = +


  (see e.g. Kittel, Solid state physics)    [4-26] 

and the screened Coulomb potential becomes: 
 

s,TFk r2

scr
0

e eV (r)
4 r

−

= −
πe









        [4-27] 

In this potential the long-range nature of the bare Coulomb potential is exponentially 
suppressed with a screening length scale of lscr = 1/ks,TF. 
 
For a 3D free electron gas 
 

1/6c
scr 3

0

nl 0.5( )
a

−≈           [4-28] 

 
For a typical metal (e.g. Cu) we get lscr ≈ 0.054 nm. This indicates that the Coulomb potential 
range is cut off within a lattice parameter.  In a semiconductor, the screening length can be 
considerably longer because the carrier concentration is much smaller; for a typical value of 
nc = 1014 cm-3, 1/ks,TF ≈ 1.7 nm. 
 
A refinement to the original Thomas-Fermi calculations was done by Lindhard  (J. Lindhard, 
Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd., 28 (1954))  predicting a lesser degree of 
screening and an oscillating structure at larger distances from the impurity.  
Since the Thomas-Fermi approximation is a long-range approximation it cannot adequately 
describe the response of the electron gas to a short-range perturbation caused by a point-like 
charge. In order to get a more accurate description, Lindhard replaced the T-F dielectric 
function with: 
 

2
s,TF

2
F

k k(0, k) 1 F( )
2kk

ε = +


        [4-29] 

 
where 
 

21 x 1 x 1F(x) log
4x 1 x 2
− +

= +
−

         [4-30] 

 
and obtained the following expression for the screened impurity potential 
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s,TFL F
scr 2 2 3

F

kcos(2k r)xV                                 x
(2 x ) r 2k

∝ ≡
+





         [4-31] 

 
The main feature of this potential is the oscillatory 1/r3 behaviour also known as Friedel or 
RKKY oscillations (see Chapt. 6. Some applications in magnetism). 

 
 

 
 

 

 
 
 
Fig. 4-10: Range of carrier concentrations in various groups of material with 
their characterization with respect to experimentally observed muonium (from 
J. Chakhalian, PhD Thesis, UBC 2002).   
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4.7 Negative muons in matter: muonic atoms m-Z 
 
A thermalized m- is captured by the Coulomb potential of the atoms and forms an excited 
muonic atom. The negative muon behaves as a heavy electron (capture in an atomic shell, 
followed by cascade de-excitation via Auger and  X-ray emission). After the cascade the 
muon can be captured in the nucleus. 
The thermalized m- will be captured in an excited state with similar energy and size as the 1s-
level of the corresponding hydrogen-like atom. Initial state of the muonic atom: 
 

 
 
 
 
 
 
 

 
The formation of muonic atoms leads to depolarization as a consequence of spin-orbit 
coupling, cascade and hyperfine interaction with the nucleus I ≠ 0. 
(This is one of the reasons why negative muons are less useful than positive muons for muon 
spin rotation and relaxation experiments). 
 
Estimate of depolarization: 
 
Classically the initial polarization Pin is reduced by a factor 3 because of the spin orbit (LS) 
coupling (here Sµ



: m- spin, L


:  angular momentum of the atomic shell of capture): 
 
 
 
 

1
2

21
in in1

1

(cos ) d(cos )
1P P       ,(cos )  (L S )(L S ) 
3

d(cos )

−
µµ

−

θ θ

= θ ∝ ⋅ ⋅

θ

∫

∫

d dd d

 

 
 
 
The analog quantum mechanical expression is: 
 

in
1 2 1P P (1 ), for  J = L ±
3 2L 1 2

       = ±
+

 

 
 
 

e 2 20 0 e
n n

e
1 n

e

a a mBohr radius: r n ,                  r n
Z Z m

m
from  r r         n 14

m

m

m

mm

= =

= → = ≅
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2A (0)∝ ϕ  

Atomic capture of µ- 
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Comparison of binding energies in electronic and muonic atoms: 
 
Bohr model: 
 

 
 
       [4-32] 
 
  

2
e
n 2

2

n 2
e

ZE 13.6           [eV]
n

mZE 13.6    [eV]
mn

mm

=

=  

Fig. 4-11: Energy levels of hydrogen-like muonic neon. 
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Myonische X-raysMyonische X-raysMuonic x-rays 

Fig. 4-12: 
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Life time of negative muons in muonic atoms.  The capture process  

µ
− ν+→+µ νp   

shortens the natural lifetime of −µ . 
 
Muon capture probability in the nucleus as a function of atomic number Z: 

 
 
Up to Z ≈ 10 the total rate is comparable with the decay rate. 
The decay rate (1/lifetime in matter) is proportional to the probability to find a negative muon 
in the volume of the nucleus, where it is then captured: 

1
3

1s 2 3 1s 2 3
Nucleus

Nucl. vol.

Nucleus
r1s 0 ea

03

1s 2
3

1s 2 3 3 4
Nucleus

| (r)| d r | (0)| R

R 1.75 Z [fm]
a m1(r) e ,    a ( )    a 0.053 nm
Z ma

1| (0)|
a

| (0)| R Z Z          capture probability  Z                     

−

m

f ≈ f

≅

f = = =
p

f =
p

f ∝ ⇒ ∝

∫

        

 

 
 

Fig. 4-13: Negative lifetime and free decay branch as a function of atomic number. 
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Fig. 4-14: Basic properties of the muonic hydrogen atom and of the muonic hydrogen 
molecular ion.  
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4.8 Muon Catalyzed Fusion (mCF) 
 
Muon catalyzed fusion: Idea: induce nuclear fusion via formation of muonic molecules and 
muon capture. Can we gain energy by this process? 
 
Fusion rate is determined by: 

• Collisions between muonic atoms and atoms 
• Elastic collisions  
• m- - Transfer 
• Resonant processes (depend on hyperfine state of the molecule) 
 
 

Energy cycle: 
 

 
Other possible reactions: 
p+d  3He + γ       (5.5 MeV) 
p+t  4He + γ       (19.8 MeV) 
 

ωs Sticking 
probability

(3.5 MeV)    (14.1 MeV)

ωs Sticking 
probability
ωs Sticking 
probability

(3.5 MeV)    (14.1 MeV)
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Energy production via μCF ? 
 
The fusion yield is limited by the sticking process. 
 
Fusion yield per muon: 
 

n
0

c

0

c

s

c
n

0

c 0 n

1Y
( W)

1    muon decay rate

 cycling rate

W  

for W 0      Y 430

1for    Y 175   17.6 MeV  175  3 GeV per muon
W

m

=
l

+
l

l =
t

l

ω

l
→ → ≈

l

l >> l → ≈ ⇒ ⋅ ≅



 

 
Energy production? 
 
Assume a flux of 1016 m-/sec 
 
Power:  1016/s ⋅ 3 ⋅ 109 eV = 3 ⋅ 1025 eV/s   ⋅   1.6 ⋅ 10-19 J/eV     5 MW    
 
(To compare: the Leibstadt nuclear power plant delivers 1275 MW). 
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5. Principles of Muon Spin Rotation/Relaxation/Resonance 
 
The expression mSR is the acronym for Muon Spin Rotation/Relaxation/Resonance and 
underlines the analogy with NMR (Nuclear Magnetic Resonance). There are, however, 
important differences (see key features of mSR, next page). For instance with mSR it is 
possible to perform measurements without applying a magnetic field (so called zero field 
μSR, ZF) a big advantage with respect to NMR because this allows to investigate magnetic 
systems without perturbation. NQR (Nuclear Quadrupole Resonance) is also a zero field 
technique, but for magnetic investigations less direct than zero field mSR.  
 
The method is based on the observation of the time evolution of the polarization P(t) of an 
ensemble of muons implanted in a sample.  This quantity contains the physical information 
about the interaction of the muon magnetic moment with its local environment.  P(t) is 
obtained from the intensity of decay positrons as a function of time after implantation. 
 
The muon acts as a local very sensitive magnetic probe. Value ( L μ locω =γ B ), direction, 
distribution and dynamics of internal (microscopic) magnetic fields can be measured. Such 
fields may be produced by electronic moments, nuclear moments or local currents as those in 
superconductors. With mSR it is also possible to determine magnetic, non-magnetic, and 
superconducting fractions. Muonium acts as a Hydrogen isotope, e.g., in chemical reactions 
or as impurity in semiconductors and insulators and gives information about its electronic 
environment. 
 
In a mSR experiment one measures the positron rate with scintillators, which are placed 
around the sample.  
 
The positron is emitted preferentially in the spin direction of the muon at the moment of the 
decay. 
 
 

edN (t)
ˆ(1 AP cos ) (1 AP(t) n)

d
+

∝ + θ = + ⋅
Ω

d

        [5-1] 

 
A: Asymmetry parameter (the theoretical decay asymmetry averaged over the positron energy 
is 1/3, see Chapt. 1.  Introduction). n̂  is the direction of observation, defined by the position 
of the detectors. 
 
 
After detecting the positrons from several 106 stopped muons, one obtains histograms as in 
Fig. 5-1, which in the ideal case have following dependence (t=0 is the implantation time, Nbg 
is a time independent background): 
 

t 

0 0 bge ˆN (t) N e (1 A P(t)n) Nµ
+

−
t= + +



      [5-2] 
 
The recorded events in the positron histograms reflect the time evolution of the polarization of 
the muon ensemble. A0 is the experimentally observable maximum asymmetry, generally 
smaller than 1/3. 
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5.1 Key features of mSR 
 
 

Muons are purely magnetic probes (I = ½, no quadrupolar effects7) 
 
Local information, mainly interstitial probe  complementary to NMR 
 
Large magnetic moment: μμ = 3.18 mp = 8.89 mn    sensitive probe 
 
Particularly suitable for: 
Very weak effects, small moment magnetism ~ 10-3 mB /Atom 
Random magnetism (e.g. spin glasses) 
Short range order (where neutron scattering is not sensitive) 
 
Independent determination of magnetic moment and of magnetic volume fraction 
 
Determination of magnetic/non-magnetic/superconducting fractions 
  
Full polarization in zero field, independent of temperature  unique measurements without 

disturbance of the system (typical polarization in NMR N
z

B

I(I 1)I B
3k T

γ +
< >=

  is very small. 

NMR needs high magnetic fields and low temperatures) 
 
Single particle detection  extremely high sensitivity 
 
No restrictions in choice of materials to be studied 
 
Fluctuation time window:  10

-5
 < t <10

-11
 s  

 
Bound state: m+e-  muonium, used as H-Isotope for spectroscopy, impurity studies, radical 
chemistry, reaction kinetics 
 
 
Other features: 
 
Number of implanted muons << number of atoms  negligible sample damage 
No perturbation of the system (unlike spin probes in EPR) 
No special isotope is needed (as in NMR, Mössbauer) 
 
 
 
 

                                                 
7 2 2

I IQ I,M I 3z r I,M I=< = − = >  since 2 2
2,03z r Y− ∝  (irreducible tensor operator), by Wigner-

Eckart theorem: 2 2 2 2
zQ I, I 3z r I, I C I, I 3I I I, I C I(2I 1)=< − >= < − >= ⋅ − , i.e. Q=0 for I=0 or I=1/2 

(see C. Slichter, Principles of Magnetic Resonance, Chapter 9). 
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5.2 Experimental details 
 

 
 
Fig 5-1: Principle of a mSR-measurement in transverse field (TF) (Time differential mSR). 
 
 
a) 
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b) 
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c)  
 

 
 
 
 
 
Fig 5-2: a) Schematic of a mSR apparatus, top view. b) Detailed view of detectors and c) 
sample region of the General Purpose Spectrometer (GPS) at PSI. 
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One distinguishes between continuous muon beams (PSI and TRIUMF, Canada) and pulsed 
beams (ISIS/RAL, UK and J-PARC, Japan). 
At PSI the accelerator time structure (50 MHz  microstructure) and the pion lifetime (26 ns) 
leads to a practically continuous surface muon beam: 
 
 
 

 
 
Fig. 5-3: Build-up of the muon rate at PSI. 
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In a mSR experiment with continuous beam one has to take care that only one muon at a time 
is present in the sample before decaying, otherwise the time correlation between muon and its 
decay positron is lost (see Fig. 5-1). This is done electronically (rejection of second muon 
event by analysis of the timing diagram) and by limiting the incoming muon rate. 
 
 

 
Fig 5-4: Timing diagram of a mSR experiment at a continuous muon beam facility such as 
PSI.  
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Fig. 5-5: Accepted rate as a function of incoming rate for a time window of 10 ms.            
exp(-2∆tRm) is the probability that there is no second event in an interval ∆t if the rate is Rm. 
 
 
At a pulsed machine all the muons are contained in a pulse (50-100 ns wide) with low 
repetition rate (25-50 Hz). The implantation time is given by this pulse. All the decay 
positrons of a pulse are measured at once. This allows a higher rate. However, one has to take 
care either to have only one positron in a detector within the observation time, or if there are 
more than one to get the time stamp for each one. This requires a high segmentation of the 
positron spectrometer. 
A big disadvantage of a pulsed machine is that the time resolution is given by the pulse width 
(50-100 ns), whereas at a continuous beam line the time resolution is determined by the muon 
counter which is typically better than 1 ns. 
A pulsed beam has in principle a lower background than a continuous beam and allows a 
better exploitation of a pulsed environment. At PSI, the so-called muon on request 
electrostatic kicker device (MORE) allows only one muon at the time in the apparatus. This 
reduces the background, while keeping the excellent time resolution of the continuous beam. 
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In the MORE mode the muon detector (M-counter) in the spectrometer (GPS or LTF) is used 
to trigger the kicker. The kicker is switched to the spectrometer running in "MORE mode" 
(say, GPS) for a maximum of 5µs at a fixed repetition rate (max. 40 kHz). The signal of the 
first muon hitting the trigger detector (M-counter) after a minimum delay of 200ns is used to 
switch the kicker back to the spectrometer running in "parasitic mode" (Low Temperature 
Facility, LTF in this case). The delay is necessary to avoid damage to the power switches. 
 
 

 
 
 
 

 
 
 

Fig. 5-6: Top: Layout of the GPS/LTF beam areas at PSI with spin rotator and MORE. 
Bottom:  Example of µSR in silver in an external magnetic field of 10mT, taken with the GPS 
instrument (General Purpose Spectrometer) at PSI in MORE mode. For comparison a 
conventional spectrum taken at the same event rate is shown. The background in MORE 
mode is at least a factor of 100 lower than in conventional mode, thus easily allowing the 
study of muon-spin precession and relaxation up to 20 µs. Insert: Reduced asymmetry plot for 
the first 2µs in MORE mode. 
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  Conventional MORE Pulsed µSR 
Trigger none GPS 50 Hz 
B0/N0 [10-5] 660 8.7 ca. 1 
Time resol. [ns] <1 <1 80 
Event. rate [106/h] 12 20 20-100 

Table: Comparison of results obtained with GPS in conventional and in MORE mode (using 
the GPS muon-counter as trigger). Values for pulsed µSR (at ISIS Rutherford Appleton 
Laboratory, UK) are also shown. 

 
 
After background subtraction the number of events in a detector placed in direction n 
(normally defined by the direction of the incoming muon beam or of the initial polarization): 
 

t 

0 0e ˆN (t) N e (1 A P(t)n)µ
+

−
t= +



        [5-3] 
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e.g.  for forward (F: forward with respect to muon spin I



) and backward (B) detectors we 
have: 
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F 0 0 F
t t  

B 0 0 B 0 0 F

ˆN (t) N e (1 A P(t) n )

ˆ ˆN (t) N e (1 A P(t) n ) N e (1 A P(t) n )

µ

µµ

−
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
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   [5-4] 

 
 
The asymmetry A(t) is obtained from: 
 

)t(N)t(N
)t(N)t(N)t(PA)t(A

BF

BF
0 +

−
==        [5-5] 

 
A0 is a parameter to be determined experimentally. It depends on factors such as detector 
solid angle, efficiency, absorption and scattering of positrons in the materials on the way from 
sample to detector. Generally, A0 < 1/3 (intrinsic decay asymmetry). Typical values lie 
between 0.25 and 0.3.  
The function A(t) contains the information about the physics. In a real spectrometer one has to 
consider that the solid angles and efficiencies of the detectors may be different. This is taken 
care of by introducing in [5-5] one or two additional (fit) parameters (so called α, most 
important, and β parameters) (see exercise).  
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One distinguishes between transverse field- (TF) (


Bext⊥ P(0)


 longitudinal  field-  
(LF, 



Bext || P(0)


 ) or zero field measurements (ZF, 


Bext =0).  
 
 
 

 
 
 

 
Fig. 5-7: a) Longitudinal (LF) and zero field geometry (ZF). b) and c) Transverse field 
geometry (TF). 
 
 
Often the direction of 



Bext is taken as z-axis. With ˆP(0)  n


 then the measured polarization 
directions are indicated as: 
 
In LF und ZF:  Pz(t) 
In TF   Px(t) 
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TF- spectrum and polarization function: 
 
 

 
 
ZF and LF spectra and polarization function: 
 

 
 
Fig. 5-8: Examples of mSR spectra and polarization functions. 
 
  



 

120 

5.2 Polarization and relaxation functions for static fields 
 
 
Spin precession in a static field.  
Static means: the local field experienced by the muon is constant over times t  5-20 τm. 
 

 
 
 

 
 
 

 
Fig. 5-9: Muon spin precession in a constant field ( B or Bµ



). The initial polarization is along 
the z-axis, which is also the observation direction ( n). 
 

2
I(t) I(0)P(t)

I(0)

< ⋅ >
=





         [5-6] 

 

θ 
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2 22
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x L L

B BBP(t) P (t) P (t) cos sin cos( t) cos( Bt)
B B

1P (t) sin 2 sin (1 cos( t)) sin cos sin( t)
2
1P (t) sin 2 cos (1 cos( t)) sin sin sin( t)
2

µ
+

= ≡ = θ + θ ω = + γ

= θ ϕ − ω − θ ϕ ω

= θ ϕ − ω + θ ϕ ω



   [5-7] 

 
 

2 2 2
x y zB B B B= + +  

 
 
By making use of Eq. [5-7], with a single crystal sample one can determine the direction of 
the internal fields from the angular dependence of the amplitudes of the oscillating 
components. 
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An example is a measurement of the tetragonal heavy fermion compound CeRhIn5 (A. 
Schenck et al., Phys. Rev. B 66,  144404 (2002)). 
 

 
 

 
 

 
 
Fig. 5-10: Crystal structure of CeRhIn5. Amplitude of the precession signal as a function of 
the rotation angle of the crystal. From the measurement a local field pointing at 26o with 
respect to the c-axis is determined. The local field in this case is produced by an 
incommensurate helical structure of the Ce moments and also induced moments at the Rh 
sites. 
 
If the field distribution probed by the muon ensemble p(B)



 is known we can calculate the 
corresponding polarization function: 
 

3
B

z 3

P (t)p(B)d B
P (t)

p(B)d B
= ∫

∫

d

d

d

 

 
This expression can be used to calculate the muon spin polarization in several special very 
useful cases.  
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A) Zero Field case with B


 constant, random direction isotropically distributed (e.g. in 

domain structures of magnetic materials or in ferromagnetic or antiferromagnetic powder 
samples). 
 
In this case: 
 

3 1p(B)d B (B B )dBd
4 µ= d−  Ω

p

d

 

 

( )2 21 1 2P(t) cos sin cos( B t)  d(cos )d cos( B t)
4 3 3µµµµ   = θ + θ γ θ φ = + γ

π ∫   [5-8] 

 
 

If the fields are isotropic in the xz or yz planes, we obtain z
1 1P (t) cos( B t)
2 2 µµ = + γ  

 
 

 

 
 

Fig 5-11: Polarization and corresponding magnetic field distribution in the case of equation   
[5-8].  
 
 
  

1
3

 



 

124 

Eq. [5-8] and Fig. 5-11 correspond to the ideal case. In the real case, there is distribution of 
fields around a mean value; i.e. the field distribution is not a delta function but has a finite 
width, better described e.g. by a Gaussian or Lorentz distribution. In the case of a Gaussian 
field distribution of width 2 2 2 2

x y zB B B B< ∆ >=< ∆ >=< ∆ >≡< ∆ >  small compared to the 
average field Bµ, [5-8] becomes for instance: 
 

2 2 21 B t
21 2P(t) e cos( B t)

3 3
µ− γ ∆

µµ = + γ  

 
2 2 2 2 2

i i x y zB (B  B )     ,  i=x,y,z  B B B< ∆ >=< − < > > < ∆ >=< ∆ >=< ∆ >  

 
 
 

 
 

Fig 5-12: Polycrystalline PrBa2Cu3O7-δ , ZF measurement, AF order of the Cu moments. The 
asymmetry shows the 2/3 precessing component (damped) and the 1/3 non-precessing 
component (B.M. Wojek et al, Physica B 404, 720 (2009)). 
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Fig 5-13: ZF mSR spectra in the CaV3O7 antiferromagnet. The local field is a consequence of 
the AF order of the V moments. We observe two precession signals corresponding to two 
different muon sites and in addition the non-precessing 1/3 component. The bottom curve 
shows the corresponding microscopic magnetization curve (R.E. Walstedt, L.R. Walker, 
Phys. Rev. 9 4857 (1974)). 
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Fig 5-14: Zero field measurement. Initial asymmetry A(0) as a function of temperature in two 
polycrystalline samples. a) GdNi5 (ferromagnet) b) UPt2Si2 (antiferromagnet). At Tc and TN 
respectively the asymmetry falls to 1/3 (from P. Dalmas de Réotier, A. Yaouanc, Journal of 
Physics, Cond. Matt. 9, R9113 (1997)). The origin of the jump can be the formation of large 
local fields or of fluctuating moments, so that the precessing 2/3 part of the polarization is 
suppressed.  

 
Fig 5-15: ZF mSR spectra in an organic antiferromagnet, showing the magnetic phase 
transition (S. Blundell et al., Physica B 289, 115 (2000)). The T-dependence of the 
spontaneous precession frequency gives the local magnetization. The peak in the relaxation 
rate λ(T) at TN is typical of a phase transition. In this case only the local magnetization is of 
interest so that  (T)t

L TP(t) A A e cos(2 (T)t )− λ
µ≈ + πν + ϕ .     

 

 

Organic antiferromagnet 
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B) B


 Gauss distributed in  x, y and z direction  
 

iB< > =0   and     i = x,y,z 
2

2 2 2 2 2
i i i i i i 2B (B  B )   B B  B  

µ

σ
< ∆ >=< − < > > = < > − < > = < > =

γ
  [5-9] 

 
A Gauss distribution of fields is obtained in the case of a dense arrangement of randomly 
oriented moments (for example nuclear moments, which on the mSR time scale can be 
considered as static) and is justified by the central limit theorem. 
 
Magnetic field distribution: 
 

2 2
i

2

B
 G 2

ip (B ) e
2

µγ
−µ σ

γ
=

pσ
     i = x,y,z     [5-10] 

 

 
 
The distribution function for the absolute value B B≡



 is 

 
2 2

2

B
 G 3 22p (B)dB ( ) e 4 B dB

2

µγ
−µ σ

γ
= ⋅ p

pσ
      [5-11] 

 

Which is a Maxwell distribution with maximum at  B 2
µ

σ
=

γ
 and 8B

µ

σ
< >≈

π γ
. 

Fig. 5-16 a) Randomly oriented dense moments. b) Resulting distribution of fields 
projected onto an axis. The projection is a Gaussian distribution in each of the field 
components. 
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Fig. 5-17: Distribution of the field value p(B) for Gauss distributed Bx, By and Bz (σ=1 ms-1). 
 
 
The relaxation function is obtained in this case from: 
 
 

G KT G G G
x y z x y zBP (t) p (B )p (B )p (B )P (t)dB dB dB− = ∫ d     [5-12] 

 
Where BP (t)  is given by [5-7]. 
 
 
The integration in [5-12] can be explicitly performed, by using for instance spherical 
coordinates. We obtain the well-known Kubo-Toyabe relaxation function (Fig. 5-19) 
(R. Kubo and T. Toyabe in Magnetic Resonance and Relaxation, edited by R. Blinc .  
North-Holland, Amsterdam, 1967): 
 

2 2σ t
G-KT 2 2 21 2P (t) = + (1- σ t )e

3 3
 -

       [5-13] 

                        
 

Damped oscillation (with damping σ, relaxation rate) around maximum 
of B


  

               On  average one third of the muons does not precess or relax. 
 
The 1/3 and 2/3 components can be qualitatively understood by considering that the local 
field is random in all directions: about 1/3 is parallel or antiparallel to the muon spin and 
about 2/3 is perpendicular.  
 
 
 
 
 
 
 
 
 
 



 

129 

In the paramagnetic state, a Kubo-Toyabe function is very often observed reflecting the field 
distribution of the small fields created by the nuclear moments. 
 
 
 

 
 
Fig. 5-18: Observation of a Gauss Kubo-Toyabe relaxation in semiconducting InN, Y.G. 
Celebi et al., Physica B 340-342, 385 (2003). 
 
 
C) If the local fields instead of Gauss are Lorentz distributed:  
 

3
L 2

2 2 2 2 2
ap (B)dB ( ) 4 B dB

(a B )
µ

µ

γ
= ⋅ p

p + γ
 

 
 
One obtains the so called static Lorentz Kubo-Toyabe function (ZF): 
 

L KT at1 2P (t) (1 at)e
3 3

−− = + −         [5-14] 
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It holds: 
 

L L
x y z 2 2 2

x

ap (B ) p (B)dB dB ( )
(a B )

µ

µ

γ
= =

p + γ∫ ∫  

( a

µγ
 = HWHM) 

 
and in analogy for By and Bz.  
 
 
But differently from the Gaussian case: 
 

L L L L
x y z x y zp (B)dBd p (B )p (B )p (B )dB dB dBΩ ≠  

 
 
 
Sometimes a general relaxation function, which in the limiting case gives the Gauss and 
Lorentz Kubo-Toyabe function, is used: 
 

t Gen KT 1 2P (t) (1 t )e                            1 2
3 3

αα λ
−−αα   α= + − λ ≤ α ≤  

 

Fig. 5-19: a) Randomly oriented dilute moments. Muons at site A feel weak fields, while 
those at B feel stronger fields. b) Resulting distribution of fields projected onto an axis. The 
projection is a Lorentzian distribution. 
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Fig. 5-20: Static ZF polarization functions, corresponding to Gaussian and Lorentzian field 
distributions. 
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D) Longitudinal field case 
  
LF Gauss KT: as example B) but in addition an external field 



Bext || z  is applied. In this case 
the (total) field distribution modifies to: 
 

2 2
ext z

2

(B B )
 G 2

zp (B ) e
2

µγ −
−µ σ

γ
=

pσ
       [5-15] 

 
The Bx and By distributions remain unchanged and the Bz distribution is offset. If we integrate 
[5-12] with the new distribution we get the so called Gauss-Kubo-Toyabe relaxation in 
longitudinal field (R.S. Hayano et al., Phys. Rev. B20, 850 (1979)). 
 
 

2 2 2 2tt t2 4  G KT 2 2
ext ext ext2 3

ext ext 0

2 2P (t,B ) 1 1 e cos( B t) e sin( B t )dt
( B ) ( B )

ss
−− −

µµ
µµ

 ss   ′ ′= −−  γ + γ
 γ γ 

∫
           [5-16] 
 
If Bext is large with respect to the local fields the spin will be aligned along the z-direction (so 
called decoupling of static fields). LF measurements are used to distinguish between static 
and dynamic contributions to the relaxation. 
 

 
 
Fig. 5-21: Field dependence of the polarization function for isotropic Gauss distributed fields. 
Time scale in units of 1/σ (here indicated as ∆G

-1). Bext in units of σ/γm.The zero field curve 
corresponds to the Kubo-Toyabe function. 
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Fig 5-22: Example of Gauss Kubo-Toyabe relaxation and longitudinal field-decoupling: 
Muon spin relaxation in the paramagnetic phase of MnSi (R.S. Hayano et al., Phys. Rev B 20, 
850 (1979)). The local field is produced in this case mainly by the Mn nuclear moments. The 
electronic Mn moments fluctuate very fast and do not contribute to the muon spin relaxation. 
 
 
 
 
 
 
 
 
 
 
 
 

( )min min
3t =     P(t ) = 0.03583

σ
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The behavior of the LF relaxation can be understood qualitatively by considering that the 1/3 
component of Eq. [5-8] corresponding to the muons with spin parallel or antiparallel to the 
local field is increased in Bext, whereas the 2/3 component is reduced while still showing 
indication of a precession around the external field.   
 

     
 
E) LF with Lorentz distributed local fields, 



Bext || z . 
 

 
 
 
Fig. 5-23: Gz(t): Muon spin polarization in random distributed Lorentz fields as function  of 
the external field ( L / µω γ ) (Y. Uemura et al., Phys. Rev. B 31, 546 (1985)). 
 
 



 

135 

L KT at 2 at
ext 1 ext 0 ext

ext ext
t

2 at
0 ext

ext 0

a aP (t,B ) 1 j ( B t)e ( ) j ( B t)e 1
( B ) B

a                             1 ( ) a j ( B t )e dt
B

−−− 
µµ

µµ

′−
µ

µ

 = − γ − γ − γ γ

 
′ ′− + γ 

γ  
∫

 [5-17] 

 
j0 and j1 are spherical Bessel functions. 
 
 
 
F) Transverse field case. Relaxation in an external field: ext ˆB P(0) and || z⊥

d d

.   
 
If the internal fields are Gauss distributed, we have  
 

2 22 2 2 2
yx ext z

2 2 2

BB (B B )
   G 2 2 2p (B) e e e

2 2 2

µµµ γγ γ −
−−−  µµµ  σ σ σ

γ γ γ
=

pσ pσ pσ



       [5-18] 

 

with extB
µ

σ
>>

γ



,  in [5-7]: For all fields θ ≅  90o,  BP (t) cos( Bt)µ≅ γ  and zB Bµµ γ ≅ γ   

 
 

2 22 2 2 2
yext z x

2 2 2

2 2

G TF G G G
z y x x y zB

B(B B ) B
   3 2 2 2

z z y x

t 
2

ext

P (t) p (B )p (B )p (B )P (t)dB dB dB

                ( ) e cos( B t)dB e e dB dB
2

                e cos( B t)

µµµ

−

γγ − γ
−−−  µ sss 

µ

s
−

µ

=

 γ ≅ γ =
 ps
 

= γ

∫

∫ ∫

d

   [5-19] 

 

The Gauss relaxation does not depend on Bext if extB
µ

σ
>>

γ



. Fig. 5.8a shows an example of 

Gauss relaxation (depolarization due to dephasing, inhomogeneous broadening). 
 
 
G) If the local field is Lorentz- instead of Gauss distributed, we obtain: 
 

L TF at
extP (t) e cos( B t)−−

µ= γ         [5-20] 
 
In both cases the oscillation frequency gives the average local field (in this case Bext) and the 
damping gives the local field width.  
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Depending on the physical conditions, there may be various contributions to the average field, 
which is then not given simply by the external field. An example is the Knight shift K where 
Bext Bext(1+K), another example is the vortex state in a superconductor, where Bext <B>, 
average field generated by the vortices, see Chapt. 7. mSR studies of superconductivity. 
 

In the static TF case, when 2
z zB   B

µ

σ
< > >> = < ∆ >

γ
 , a  Gauss relaxation reflects a Gauss 

distribution of local fields and an exponential relaxation reflects a Lorentz distribution of 
local fields (polarization and field distribution are related via a cosine Fourier transform). 
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5.3 Special cases of polarization functions  
 
 
In some cases the interaction with nuclear dipoles can give rise to coherent muon spin 
precession in ZF even if the nuclear dipoles are randomly oriented. This has been observed in 
materials, where there the muon is close to one or two nuclear spins.  In ferroelectric 
potassium dihydrogen phosphate KH2PO4 (KDP) and antiferroelectric  ammonium 
dihydrogen phosphate  NH4H2PO4 (ADP), the muon forms an oxygen-hydrogen-like bond 
and is  relatively close to a proton which is responsible for the hydrogen bond between two 
adjacent phosphate tetrahedra. 
  

 
 
 

 
 
 
 
Fig. 5-24:  Top: Unit cell of KDP in the paraelectric phase (K: red, P: grey, O: blue, H: 
green). The muon forms an O-μ bond and probes the dipole field of the nearest H nucleus. 
Bottom: Possible muon and proton sites between oxygen atoms of neighboring phosphate 
groups. 
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The time evolution of the polarization of a muon interacting with a single proton's dipolar 
field is obtained by solving the Hamilton operator of the dipolar interaction between two spin 
1/2 particles: 
 

pdip 0
p p3 2

( R)( R)1H B 3
4 R R

µ
µµ

 µ ⋅ µ ⋅µ
= −µ ⋅ = µ ⋅µ−  

p   

d d

d d

d

d d d     [5-21] 

 
Where R Rn=



  defines the μ-p axis direction and µµ
 and pµ

  are the magnetic moments of 
muon and proton. Expressing the magnetic moments with the gyromagnetic ratio and the 
spins (in units of  ), the operator can be written as: 
 

dip
D p p2

1H I I 3(I n)(I n)µµ  = ω ⋅ − ⋅ ⋅ 
d d d d

d d





      [5-22] 

with p0
D 34 R

µγ γµ
ω =

p



,     
3

D 3
nm2 0.00038238 MHz 
R

ω = π⋅  

 
The eigenvalues of [5-22] are 0, -0.5ωD, -0.5ωD, ωD . Three components with definite 
frequencies (0, 0.5ωD, ωD and 1.5 ωD) should be observed at an arbitrary angle θ between the 
muon spin and the muon–proton bond direction (see P-F. Meier,  Hyperfine Interactions, 17-
19, 427 (1984) and K. Nishiyama et al., Hyperfine Interactions, 106, 111 (1997)).  
 

2 2
z ||P (t) (cos ) P (t) (sin ) P (t)⊥= θ + θ        [5-23] 

 
Where ||P (t)  and P (t)⊥ are the time dependent polarization (for initial spin parallel or 
perpendicular to ẑ , taken here as the muon-proton axis direction n )8: 
 

[ ]|| D

D D

1P (t) 1 cos( t)
2

31P (t) cos( t) cos( t)
2 2 2⊥

= + ω

ω ω = +  

       [5-24] 

 
 

                                                 
8 The muon spin precession frequency and depolarization depend on the temperature. This opens the possibility 
to study ferroelectric and antiferroelectric transitions with a magnetic probe (B. Wojek, Diplomarbeit, ETH 
Zürich, 2006 and E. Morenzoni et al., Physica B 388, 274-277 (2007)). 
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Fig. 5-25:  Asymmetry spectrum in KDP at T=80 K, showing the spontaneous oscillations 
observed along different directions. P(0) ⊥



 c-axis, c axis in plane (B. Wojek, Diplomarbeit, 
ETH Zürich, 2006). 
 
 
Another special case is the formation of the so called F-μ-F complex, where the muon is 
located between two F ions (19F has high electronegativity and a small spin ½ nucleus with 
high nuclear moment and ~ 100% abundancy). This leads to coherent oscillations.  
 

 
 
 
Assuming r1= r2 and α=180° one has the analytic solution for a powder averaged polarization  

( F0
D 34 R

µγ γµ
ω =

π



) 

 

z D D D
1 1 3 3 1 3 3P (t) 3 cos( 3 t) (1 )cos( t) (1 )cos( t)
6 2 23 3

 − +
= + ω + − ω + + ω 

 
        [5-25] 
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Fig. 5-26: ZF asymmetry spectra for several metal fluoride crystals (<100> axis parallel to 
P(0)). The solid line is a fit to Eq. 5-25 including a multiplicative relaxation function and a 
background contribution (from J. Brewer et al., Phys. Rev B 33, 7813 (1986)). 
 
Details of the μSR spectra are very sensitive to the relative distance r1 and r2 from the two F 
ions and the angle α between r1 and r2. This property has been used to identify various classes 
of sites that occur in molecular magnets (T. Lancaster et al., Phys. Rev. Lett. 99, 267601 
(2007)). 
Comparing the experimental data with the refined structure obtained by Density Functional 
Theory (DFT) the correct location and shape for the F-μ+-F complex has been predicted in 
YF3 (F. Bernardini et al, Phys. Rev. B 87, 115148 (2013)). 
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Fig. 5-27: Possible muon sites in YF3. The label A identifies the expected site. 
The localization volume surface is shown in dark yellow. 
 
 

 
 

Fig. 5-28: Fit of YF3 data (D. R. Noakes et al., J. Phys. Chem. Solids 54, 785 (1993)) with the 
conventional axial F-μ+-F model (Eq. 5-25) and with the depolarization calculated for the 
DFT predicted site in the fully relaxed structure (from F. Bernardini et al, Phys. Rev. B 87, 
115148 (2013)).  
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5.4 Example of TF-spectroscopy: paramagnetism of the conduction 
electrons (Knight-shift) 
 
The magnetic properties of simple metallic systems are determined essentially by the 
conduction electrons. The magnetic response and susceptibility is determined by the Pauli 
paramagnetism (related to the spin of the conduction electrons) and Landau diamagnetism 
(related to the orbital moment of the conduction electrons).  
The local spin susceptibility can be probed by NMR or mSR via the so-called Knight-shift 
measurement. 
 
Experimentally, one measures in TF the small shift of the muon spin precession in a well-
known external field Bext (accuracy needed 1-10 ppm).  
 
In systems without localized electronic moments the shift is determined by the contact 
interaction between m+ spin and spin of the conduction electrons (in the presence of localized 
moments, e.g. rare earth, additional dipolar and hyperfine terms have to be considered):  
 

><+= c
hfextexp BBB          [5-26] 

 
In our case the Knight-shift K is then:  
 
Bexp= Bext(1+K)          [5-27] 
 

ext

c
hf

B
BK ><

=           [5-28] 

It is proportional to the density of conduction electrons at the muon site (which gives the 
strength of the contact interaction, see contact interaction in muonium) and to the Pauli 
susceptibility (which reflects how much the conduction electrons are polarized by an external 
magnetic field). 
 
Pauli susceptibility 
 
In a free electron gas, the density of states is: 
  

3/2
F

3 nD(E) E
2 E

=           [5-29] 

 
n: Electron density 
EF: Fermi energy 
 
Without external field, spin up and spin down states are equally populated. 
If a field Bext is applied, the band with magnetic moment parallel to Bext will be lowered by 

extBBµ  and the band with antiparallel moment will be raised by the same amount. Since both 
bands are filled up to EF, there is an overweight of electrons with magnetic moment parallel to 
Bext. As a consequence the metal develops a weak spin polarization. 
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Electron density for both states: 
 

B ext
1n D(E B )F(E)dE
2

↑ = + µ∫        [5-30] 

 

B ext
1n D(E B )F(E)dE
2

↓ = −µ ∫        [5-31] 

 

1e

1)E(F
kT

E

+

=
µ−

 ,   F(E)  Fermi-Dirac distribution, m chemical potential9  

 
For small Bext the magnetization becomes: 
 
 

2 2
B B ext B ext

0
0 0

D(0) 0,F( ) 0

dD dFM (n n ) B F(E)dE B D(E)F(E) D(E)dE
dE dE

                                                                                                             

|
∞ ∞

∞
↑ ↓

= ∞ =

 
 = µ−  ≅ µ = µ−
 
 

∫ ∫
((



F(E E )

2
B ext F

       

    B D(E )

≅−d−

≅ µ

[5-32] 

            
2

B
ext

F

n3M B
2 E

µ
≅          [5-33] 

 
 
The Pauli susceptibility is: 
 

2
0 B

P 0
ext ext F

M nM 3
H B 2 E

µ µ
χ = = = µ        [5-34] 

 
 
The magnetization of the conduction electrons can be also expressed in terms of their average 
spin <sz>: 
 
 

ext ext
e B z P z P

0 B e 0

B BM ng s        s  
n g

= µ < >= χ → < > = χ
µµµ 

   [5-35] 

 

                                                 

9 
2

2 4B B
F

F F

k T k TE 1 ( ) O ( )
12 E E

  π
µ = − +  

   
,     at  T=0, µ=EF 
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the average spin polarization <sz> can be written10 in terms of the average hyperfine contact 
field <Bhf

c> 
 

With c
hfAI s Bµ⋅ = −µ ⋅



   and 2
0 e BB

2A g g (0)
3

µ
µ= µµµ   ϕ (equation [3-19]): 

 
2c

hf 0 e B z
2B g s (0)    A   
3

< >= µµ  < > ϕ ∝       [5-36] 

 

and 
ext

c
hf

B
BK ><

=  we obtain11: 

 
2

P
(0)2K

3 n
ϕ

= χ          [5-37] 

Up to a factor 2/3, K is equal to the Pauli susceptibility multiplied with the enhancement 

factor 
2(0)

n
ϕ

, which gives the ratio between the electron density at the muon site  (in mSR 

measurements) or at the nuclear site (in the case of NMR measurements) and the average 
density of electrons.  
 
                                                 
10 Here is the spin dimensionless 
 
11 In general the hyperfine field at the muon site from the polarized conduction electrons can contain other 
contributions and is given by: 
 

30
hf ,i ij iB (R ) d r D (r R )M (r)

4µµ
µ

= −
π ∫

d d

d d

 

where M(r)




is the conduction electron magnetization and Dij is the tensor expressing the coupling to it: 

ij i j ij ij
1 1 2 1D (x) ( )
3 x 3 x

= ∇ ∇ − δ D−  δ D
δ

 

The first term expresses the dipolar coupling (see Eq. [3-16]). Polarized conduction electrons can also produce 
dipolar fields if the corresponding magnetization (or spin density distribution) is not of spherical or cubic 
symmetry with respect to the muon site. Since the first term transforms as a spherical harmonics of order 2, for a 
spherical symmetric screening cloud only the second term contributes to the hyperfine field. With 

1 4 (x)
x

∆ = − πδ
δ

δ

the second term yields the contact term: 

 
c
hf 0

2B (R ) M(R )
3µµ = µ

  

 with ext ˆB || z


 and 2
z e B zM (R 0) g s | (0) |µ = ≅ µ < > ϕ


we obtain [5-36] and 

[5-37]. A more accurate way to write the Knight shift is the following: 
 

P P
0 0

n (R ) n (R )2 2K (R )
3 3n n

↑ ↓
µµ

µ↑ ↓

−
= χ = χ α

−





, where n (R ) n (R )↑ ↓
µµ −


 is the actual (up and down spin) 

electron density at the muon site and 0 0n n↑ ↓−  is the corresponding average density (see Chapt 4.6 ). The spin 

enhancement factor μα(R )


 has to be provided by theory. 
 



 

145 

2(0)
α

n
ϕ

≡  is the  so called „spin density enhancement factor“. 

 
Since 2(0)ϕ  is proportional to the hyperfine coupling A (Eq. [3-21] and [3-23]), it holds: 
 

PK A∝ χ           [5-38] 
 
Often the units are chosen in such a way that: 

A B

AK
N

χ
=

µ
          [5-39] 

 
χ is the molar susceptibility ([emu/mol=erg/(G mol)] in cgs), NA the Avogadro number and 
A is in Gauss (given as G/mB because of 1/ mB in [5-39]). Measurements of the Knight-shift 
contribute to the understanding of the local electronic structure of hydrogen in metals. 
 
 

 
 
 

Fig. 5-29:  Top: Knight-shift at muon site (Km) as a function of the Knight-shift at the nuclear 
(lattice) site (Khost) plotted for various metals. Bottom: Muon Knight-shift as a function of the 
electron spin susceptibility from M. Camani et al, Phys. Rev. Lett. 42, 679 (1979). 
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Fig. 5-30: Self consistent calculations of the Knight-shift in mono- and bivalent metals.      
(M. Manninen, Phys. Rev. B 27, 53 (1983)). 
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5.5 Example of field distribution: field distribution from the sum of dipolar 
fields produced by nuclear moments 
 
 

 
 
Fig. 5-31: Muon in the field of a nuclear dipole. 
 
 
Magnetic field from a nuclear dipole with spin IN: 
 

2
0 NN NN

dip N 5

3(I r) r I rB (r)
4 r
µ ⋅ ⋅ −

= γ
p

d d

d d

d

d

        [5-40] 

 
Dipole-dipole coupling of the m+ with all nuclear spins (lattice sum over i): 
 

i i
dip dip i dipi i

H B (r ) Hµ= −µ =∑ ∑
d

dd

 
 

2 i
N i N ii i0

dip N3 3

3(I r )(I r )
H I I

4 r r
µµ

µ

 γ γ ⋅ ⋅µ
= ⋅ −  p  

d d

d d

d d



      [5-41] 

 
If Bext is large with respect to the nuclear dipole fields (∼ 10-4 T) and to the muon dipole field 
at the nuclear site (e.g. HZeeman>>Hdip), then the nuclear dipoles also precess around



Bext .  
Only <Iz> ≠ 0, whereas <Ix> = <Iy> = 0 (time averaged).  
Therefore, one has to consider only the z-components of the spins and the effective 
Hamiltonian contains only such terms: 
 

H
r

I I I Bdip
i N

i
z N z

i
i z dip z

i= ⋅ − = −
µ

p

γ γ
θ γµ

µ µ µ
0

2

3
2

4
1 3



[ ( cos )], , , ,    [5-42] 
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A quantum mechanical calculation of the second moment of the field distribution, which is 
Gauss like, gives (for a classical derivation see Eq. [5-45]-[5-47]): 
 
 

2 2 2 2 2 2 2 2 2N N 0
dip N i6

ii

I (I 1) 1B ( ) (1 3cos )
3 4 rµµ

+ µ
s = γ < ∆ >= γ γ − θ

p ∑    [5-43] 

 
σ2 depends on the m+ site and, in single crystals, also on the orientation of the crystal with 
respect to



Bext . Formula [5-43] (Van Vleck formula) can be used to determine the muon site. 
For polycrystalline samples we integrate the angular dependent part of [5-43] over all possible 
directions. This gives: 
 

< − >=( cos )1 3 4
5

2 2θi         [5-44] 

 

 
 
Fig. 5-32: Relaxation rate σ in Cu as a function of the external field for different crystal 
orientations (M. Camani et al., Phys. Rev. Lett., 39, 836 (1977)). The Van Vleck value (right 
lines) is reached at large fields. If the nuclei have also a quadrupolar moment as in Cu (I=3/2), 
then at small fields the precession of the nuclear spins is around a new axis determined by the 
electric field gradient and 



Bext  and not simply around 


Bext  (O. Hartmann, Phys. Rev. Lett., 
39, 832 (1977)). 
 
From this experiment it follows: 
 

• Muon site determination: in fcc Cu m+ is at an octahedral position (see Chapt. 5.7 ) 
• The next Cu neighbors around the muon shift 5% away from their undisturbed 

position (solid curve in Fig. 5-32: calculation with shifted Cu atoms; dotted curve: 
without shift). 

• The electronic field gradient generated by m+ interacts with the Cu quadrupole 
moment. 
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5.5 Classical calculation of nuclear dipolar broadening in transverse and 
zero field 
 
 
Muon in the field of a nuclear moment (see Fig. 5-31). 
 
We calculate classically the field width at the muon position (origin of coordinate system). 
 
Dipolar field at the origin generated by a classical nuclear moment N,iµ

 : 
 

3
i

i,Niii,N
i,N

0
i

r

ˆr̂)r̂ˆ(3
4

B
µ−⋅⋅µ

µ
π

µ
=



            where  
i,N

i,N

i,N

i,N
i,Nˆ

µ

µ
=

µ

µ
=µ





  and 
i

i
i r

rr̂




=  

 
The total field is given by the lattice sum over all dipoles: 
 

3
i

i,Niii,N
i,N

0

i
i

i r

ˆr̂)r̂ˆ(3
4

BB
µ−⋅⋅µ

µ
π

µ
== ∑∑



    
  

 
Consider only z- component (parallel to extB



). 
 
With: 
 

z z
i i N,i i N,i i i i i i iˆ ˆˆ ˆr cos ,     cos ,     r cos cos sin cos sin= θ µ = ϑ µ ⋅ = ϑ θ + ϑ ϕ θ  

 

[ ]iiiiii
2

3
i

i,N0
zi cossincossin3cos)1(3cos 

r4
)B( ϕϑθθ+ϑ−θ

µ

π
µ

=    [5-45] 

 
 
TF case with γN Bext >> γm Bi   
 

i
N

ext BB
γ

γ
>> µ    Larmor precession of i,Nµ

  around Bext averages out the second term of  

[5-45] (so called non secular term). 

   
 

 
Mean square of the secular component along ext ˆB  z



  is given by: 
 












><−><γ=σ≡σ ∑∑µ

2

i
z,i

i

2
z,i

2
z

22
TF B)B()(     [5-46] 

 
Average is over all possible orientations of  i,Nµ

  (i.e. over i i,ϑ ϕ ).  
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The second term in [5-46] is zero since average gives terms of the form 
1

i i
i 1

cos d(cos )
−

ϑ ϑ∑∫ . 

The first term contains only sum of squared term 
1

2
i i

i 1

cos d(cos )
−

ϑ ϑ∑∫  which properly 

averaged gives 
3
1 . 
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Substituting I2 with the quantum mechanical value I(I+1) we get Equation [5-43] 
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where iθ  is the polar angle of the position of the i-th dipole (with Bext || z). This value of the 
width is the so called van Vleck value. 
 

Polycrystalline average (with average of  
5
4)1cos3( 2

i
2 =−θ  ) we have: 
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ZF case  
 
In this case the non-secular term cannot be dropped and the muon spin feels the full 
magnitude of i,Nµ

 . 
 
The mean-square of the full magnitude of  i,Nµ

  is given by: 
 

∑∑∑ ><=
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

 

or 
 

z
2
ZFy

2
ZFx

2
ZF

2
tot )()()( σ+σ+σ=σ  

 
For the z-component we have for instance 
 
 

∑ ><γ=σ µ
i

2
z,i

2
z

2
ZF B)(  , 

where now for Bi,z the non-secular components have to be taken into account (see [5-45]). 
This gives terms of the form: 

2 2 2 2 2 2 2
i i i i i i(3cos 1) cos 9sin cos sin cos θ − ϑ + θ θ ϑ ϕ    

to be averaged over )(cosd iϑ  and idϕ . 
 
One obtains: 
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Similarly, for the x and y components in the crystal case: 
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Polycrystalline average or if the muon site has cubic symmetry (in both cases 
3
1cos2 >=θ< ) 
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Note also that 
 

 2
Poly,VV

2
Poly,TF

2
Poly,ZF 2

5
2
5

σ=σ=σ                             [5-52] 

 
The results obtained here are also valid quantum mechanically (see R. Hayano et al. Phys. 
Rev. B 20, 850 (1979). 
 
The prediction of equation [5-52] is confirmed experimentally in the ZrH2 system, by 
comparing Gz(t) the relaxation at zero field and Gx(t) the relaxation at high transverse field 
(Bext= 5 kG). 
ZrH2  is ideal because there is no electric quadrupole moment, the dipolar field created by the 
protons is large and the muon is diffusing very slowly. From the experiment  
(R. Hayano et al. Phys. Rev. B 20, 850 (1979 ) one obtains: 
 

1.04.22
Poly,TF

2
Poly,ZF ±=

σ

σ
 

which is in good agreement with the prediction of [5-52]. 
 

 

 

 

Fig. 5-33: Observed zero-field relaxation Gz(t) and high-field transverse relaxation 
Gx(t) in ZrH2 at room temperature. 
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5.6 Dynamic spin relaxation 
 
In the previous chapter we considered the muon and the local fields as static during the 
observation time. In this chapter we consider the effect of dynamic and of fluctuations on the 
polarization of the muon ensemble. 
 
 
A) Simple model: Brown motion of the phase 
 
The muon stays at a site where the field fluctuates with correlation (or fluctuation) time 
τ between the random values +B1 or –B1 ( ⊥ P(0)



). Analog is the case where the muon 
jump after a time τ (average dwelling time) from a position to another where the field can take 
the random values +B1 or –B1 .  
The phase of the muon spin precession Φ  makes a  „random walk“ with step:  
 

1BµδΦ = γ τ = στ          [5-53] 
 
After N steps  (time t = Nτ) the variance of the phase is: 
 

2
2 2 2 2 2 2

N N

( ) N( ) N( )  t

              =0

 
 < Φ− < Φ > >=< Φ >= ±δΦ = δΦ = δΦ = σt = σ t
 
 

↑

∑ ∑   [5-54] 

   

 
 
Fig.5-34: Phase of the spin in a constant field, compared with the case where the muon 
experiences a field randomly fluctuating between two values. 
  

d

B1
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The increase of the phase variance leads to a loss of polarization of the muon ensemble. We 
estimate the relaxation time T as the time after which the phase variance reaches the value of 
one radian i.e. 
 

   
ν

σ
=τσ=

2
2

T
1          [5-55] 

 
where ν=1/τ is the fluctuation rate of the local fields, experienced by the muon, or it is the 
hopping rate in case of muon diffusion. 
 
Eq. [5-55] has more general validity. It is obtained also in the case that the fluctuating fields 
are Gauss distributed (Eq. [5-10]) and an external field  ⊥ P(0)



 is applied (dynamic TF 
relaxation).  
 
The polarization function becomes: 
 

         [5-56] 
 
 
Higher fluctuation rate (or hopping rate) leads to an averaging of the field distribution  
reduction of the damping or relaxation (so called “motional narrowing“). 
 
In the TF case fast fluctuations are described by an exponential relaxation: 
 

   T2: relaxation time        [5-57] 
 
B) Better model: Strong Collision Approximation (SCA)  
 
Assumption: The muon jumps between different sites with an average rate ν (muon diffuses, 
filed is static). The same model can be used in the case that the muon is immobile and that the 
local field changes its value with an average rate ν (muon static, field dynamic).The 
probability that the muon after time t is at the same position or experiences the same local 
field is  te− ν .  
After one „jump“ (or „collision“), the local field is randomly chosen from the field 
distribution p B( )



.  There is no correlation between the fields before and after the jump (with 
the exception of possible external fields). 
The field correlation function is given by: 
 
< >= < > −B t B B ei j ij i

t( ) ( ) ( )0 02δ ν

 
  i,j=x,y,z   [5-58] 

 
The muon polarization at time t is the sum of the contributions from muons which have 
experienced no jump, one, two or more jumps: 
 
P t g ti

i
( , ) ( )ν = ∑

 
        [5-59] 

d

B0

P t e e
t

( ) = =
- -   t

σ
ν σ τ

2
2

P t e( ) =
-  t

T2
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No „jump“:  g t e G tt
z0 ( ) ( )= −  ν

 
      [5-60] 

Where te−ν  is the probability that no ,,jump” occurred within the time t and G tz ( ) is the static 
relaxation function corresponding to the field distribution p B( )



 (i.e. in ZF the Kubo-Toyabe 
function, Eq. [5-13], if we have Gauss distributed fields). 
 

1 „jump“:     1 1

t t
t (t t ) t

1 1 z 1 z 1 1 z 1 z 1

0 0

g (t) dt e G (t ) e G (t t ) e dt G (t ) G (t t )−ν −ν − −ν= ν − = ν −∫ ∫   

           [5-61] 
 
2 „jumps“: 
 

          

2tt
2 t

2 2 1 z 1 z 2 1 z 2

0 0

1 2

g (t) e dt dt G (t )G (t t )G (t t )

                                                                  
   g (t )

−ν= ν −−

∝

∫ ∫
((((((

 
             

[5-62] 

and so on. 
 
The higher terms can be calculated recursively: 

∫ ′−′′ν= −

t

0
1ν0ν )tt(g)t(gtd)t(g  

The dynamic relaxation (Eq. [5-59]) can be calculated numerically for any field distribution 
(e.g. Gauss or other, with or without external field). 
 

 
Fig 5-35: Dynamic Gauss Kubo-Toyabe in ZF case: Strong Collision Model for an isotropic 
Gauss distribution of fields (with variance σ), Bext=0. The fluctuation rate ν is given in units 

of σ. The dashed curve is the motional narrowing limit (exponential) for 3ν
=

σ
. 
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Special cases: 
 
a) „Motional narrowing limit“ in ZF (ν >> σ): 
 

2

2
2 t  2  t  t

zP (t) e e e
σ

− − σ t−  λν≅ = =        [5-63] 
 
         
(exponential relaxation, see [5-56]) 
 
In an external field (LF) (with extL Bµγ=ω ): 
 

LFtLF
zP e−λ=           [5-64] 

 
where 
 

2

LF 2 2
L

2
1

σ τ
λ =

+ ω τ
         [5-65] 

 
b) Quasi static case in ZF (ν << σ): 
 

2 22 t t  2 23 2
Z

1 2P (t) e (1 t )e
3 3

σ− ν −
≅ + − σ        [5-66] 

 
The first term (damping of the „1/3 tail“) depends only on ν. This fact can be used to 
investigate slow dynamics (time window  ∼ 10 ms) also in systems where σ is large. However, 
some caution is due.  The Kubo-Toyabe expression does not take into account the coupling of 
the muon moment with the surrounding moments (e.g. nuclear moments). 
A classical or quantum mechanical treatment of this effect may lead to deviation from a pure 
1/3 behavior (see P. Dalmas de Réotier et al., Phys. Lett. A 162, 206 (1992), M. Celio and 
P.F. Meier, Phys. Rev B 27, 1908 (1993)).  
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Fig 5-36: Schematic representation of the time evolution of the average muon spin 
polarization in the SCA model for Gauss fields. The behavior of the dynamic relaxation can 
be obtained from the envelope of the static functions. 
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Hopping (or fluctuation) effect on the relaxation function of Cu (Fig. 5-32). At small rate 
(compared to σ ≈ 0.25 µs-1 , see Fig. 5-32) there is no sizeable effect on the ZF relaxation up 
to large times (t ≈ 6 ms), whereas, in weak LF, changes appear at an earlier stage.   
 
 

 

 
G.M Luke et al., Phys. Rev B 43, 3284 (1991) 

 
  

Fig. 5-37a: 

Fig. 5-37b: 
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In the TF case a relaxation function, which describes static as well as dynamic processes, is 
the so-called Abragam function: 
 

(t)t
x x

t 2 2

P (t) G (t) e

t(t)t (e 1 )

−G

−
t

≡ =

G = ∆ t−  +
t

        [5-67] 

 
Dynamic limit:  
 

0,  t >> t → t   
2 t t

xP (t) e e−∆ t− λ→ ≡   (as in Eq. [5-65] up to a factor 2 ) 
 
Static limit: 
 

τ → ∞    
2 2t 
2

xP (t) e
∆

−
→  

 
 

 

 
 
Fig. 5-38: Transverse relaxation function in high fields according to [5-67] for different 
correlation times τ.  ∆ is the field width. Contrary to ZF measurements, from these curves it is 
difficult to extract information about slow fluctuations (τ∆>>1). From R. Hayano et al. Phys. 
Rev. B 20, 850 (1979). 
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5.7 Example of dynamic relaxation: muon diffusion in Cu, quantum 
diffusion 
 
 
The muon diffuses between nuclear moments. As a consequence the local field is a stochastic 

function of time. From the muon spin relaxation one can obtain the jump rate 1
ν =

τ
 and its 

temperature dependence. 
 
Jump rate and diffusion constant are related by (Random-walk model, Einstein): 
 
 

                      [5-68] 

 
C: Constant, depends on geometry of the diffusion jumps (for instance for jumps between 
octahedral sites in a fcc crystal C=36, a: lattice constant). 
 

 
 
 

D
C

a=
1 12

τ

Fig. 5-39: Muon site in Cu in the 
center of an octahedron. Shown is 
also the tetrahedral site. 
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In the early measurements the temperature dependence of the hop rate was obtained from 
measurements of the TF relaxation rate (graphics J. Brewer, UBC). 
 
 



 

162 

 
 
Fig. 5-40: Temperature dependence (90 K < T < 250 K) of the muon hop rate in Cu (V.G. 
Grebinnik et al., Sov. Phys. JETP 41, 777 (1975)). 
 
For classical diffusion we expect an Arrhenius law: 
 

          [5-69] 

 
ν0 = local vibration frequency (attempt frequency) of the m+ in a potential well 
EA = Potential threshold = Activation energy 
 
The values from Fig. 5-40 indicate a quantum nature of the process.12 
Quantum diffusion of a light particle such as the muon or the proton is based on: 
 

- Tunnel effect (E < EA) 
- Small polaron picture (= m+ + lattice distortion)  Phonon assisted tunneling (Energy 

levels in occupied and non-occupied states in the potential well must be degenerate for 
tunneling to take place. This degeneracy can occur as a consequence of lattice 
vibration, phonons, see Fig. 5-41). 

 
 

                                                 
12 The value for 0ν  is too small to be valid classically, where 0ν  should be of the order of the vibration 
frequency 1013/s. 

1
0τ

ν=
-

e
 E

kT
A
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Fig. 5-41: Local lattice distortion and phonon assisted tunneling. 
 
 
At the lowest temperatures the m+ can move in a band state as a Bloch wave (coherent 
motion). The rate is given by the finite range of the motion, which is limited by lattice defects. 
Important is the dissipation due to the concomitant motion of the electronic screening cloud. 
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More precise determination of the hop rate is obtained in weak LF fields (see Fig. 5-37): 
 
 

  
 
 

 
G.M Luke et al., Phys. Rev B43, 3284 (1991) 

 
 

Fig. 5-42a: 

Fig. 5-42b: 
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J.H. Brewer et al., Phys. Lett. 120A, 199 (1987) 

 
 
 
 

 
 
 
Fig. 5-43: Muon hop rate in Cu from ~ mK to room temperature. Different mechanisms 
determine the motion in the various temperature intervals (for an overview see V.G. Storchak, 
N. V. Prokofev, Review of Modern Physics 70, 929 (1998)).  
 
 

Fig. 5-42c 
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Fig. 5-44: Left: schematic representation of 
coherent and incoherent tunneling. 
Right: theoretical prediction of the temperature 
Dependence of the hop rate. 
 
 
 
 
 
The behavior T−αν ∝  is theoretically predicted (Kondo in Perspectives of Meson Science,  
T. Yamazaki Editor, North Holland, 1992). The theory predicts a smaller exponent a for 
muons in metals than in insulators. This is a consequence of the additional dissipation by 
electronic mechanisms in metals („electron drag“). 
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Fig. 5-45: Time window of different methods for magnetic fluctuation and relaxation 
phenomena, showing the complementarity between µSR and neutron scattering and NMR. 
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6. Some applications in magnetism 
 

6.1 Local magnetic fields in magnetic materials 
 
As a magnetic probe the m+ is well suited to investigate local magnetic fields and fluctuations. 
 
The internal field is generally a combination of dipolar fields and contact hyperfine fields. 
 

 
 

2
0 i i i i i

dip i 5
i

0 i i B
dip 3 3 3

1

3( r ) r rB (r )
4 r

[ ]B  T
4 r d [A ]µ

µ µ ⋅ ⋅ −µ
=

p

µ µµµ 
≈ ≈

p

d dd d

d

d

    Typically some 0.1 T (kG) 

 
Contact interaction: 
 

20 0
hf e B spin e B

2 2B (r ) g (r ) g (r ) s
3 3µµµ 
µµ

= µr  ≅ µ ϕ


  

       
 

 

The contact field is usually 
smaller than the dipolar field. 
However, note that for Mu in the 
1s state it corresponds to a field                 
Bhf (rm)=32.8 T. This large value 
is more similar to the NMR case, 
where the spin probe is at a lattice 
site and the electronic s-wave 
component is large. 
 

Mu 
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The dipolar field is anisotropic.  The field at the muon site is not necessarily parallel to the 
magnetization. 
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The measured field value and direction depend on the muon position in the lattice. Fig. 6-1 
shows the dipolar field in MnSi. 
 

 

 
Fig. 6-1: a) Dipolar field in MnSi arising from Mn magnetic moments of 0.3 μB in the FM 
phase. b) Sketch of the crystallographic structure of MnSi (Mn ions are drawn in purple, Si 
ions in blue. Note that six Mn ions, which do not belong to the primary unit cell, are also 
displayed. The muon position (0.532,0.532,0.532), in units of the lattice constant, is also 
indicated (red) as well as the other three equivalent sites.  There are totally 4 equivalent 
crystallographic positions in the unit cell (corresponding to the so called Wycoff position 4a):

1 1 1 1 1 1(x, x, x),  ( x, x, x),  ( x, x, x),  (x, x, x)
2 2 2 2 2 2

− + + − + −   , giving rise to up to four 

different muon precession frequencies (from A. Amato et al., Phys. Rev. B 89, 184425 
(2014)). 
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In a magnetic material the total local magnetic field locB


 
at the muon site can be generally 

written as: 
 

loc ext dem Lor dip hfB B B B B B= + + + +
d d d d d d

      [6-1] 
 
 

 
Fig. 6-2: Schematic representation of the different contributions for a ferromagnetic material 
in saturation (sample of ellipsoidal shape). This representation is also applicable to polarized 
paramagnets. 
 
 


Bext  : Applied external magnetic field 


Bem  : Demagnetizing field 

dem 0B N M= − m
d d

 N: Demagnetization factor.  It depends on the sample form. In the 
general case it is a tensor and can depend on position. 

For a sphere 1N
3

= . Another important example is an infinite plate (an 

ellipsoid with two of its axes going to infinity) which has N = 1 in a 
direction normal to the plate and N=0 in parallel orientation. 
 

                


M : Macroscopic magnetization of the sample
  



BLor  : Lorentz field; Field of a hypothetical hollow sphere (Lorentz sphere)  
  

 

B MLor S=
1
3 0µ       [6-2] 



MS : Saturation magnetization in a ferromagnet or vector sum of  
the magnetic moments inside the Lorentz sphere divided by its 
volume. 
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

Bip  : Field of the dipoles in the Lorentz sphere  





 



B r r r r
rip

i

i i i i i

i
( ) ( )

=
⋅ ⋅ −∑µ

p
µ µ0

2

54
3     [6-3] 

                                            


µ i   : Dipole moment of the lattice atoms 
 

ri     : Vector radius from muon site to dipole 


Bhf
 

: Hyperfine field or Fermi-contact field  
20 0

hf e B spin e B
2 2B (r ) g (r ) g (r ) s

3 3µµµ 
µµ

= µr  ≅ µ ϕ


  

    
[6-4]

 
)r()r()r(spin µ↓µ↑µ r−r=r

  : Electron spin density at the muon site 
 
 
Most of the mSR-measurements in a ferromagnet are performed without external field.  
Then we have

 

B Bext em= = 0 . 
 

loc Lor dip hfB B B B= + +
d d d d

        [6-5] 
 
At a muon site with cubic symmetry



Bip = 0, so that 
 

loc Lor hfB B B= +
 

         [6-6] 
 
For an antiferromagnet,  dem LorB  and B

d d

 
are zero so that  

 

loc dip hfB B B= +
d d d

 
 
If a saturated FM sample has a spherical shape Lorentz field and demagnetizing field cancel 
each other  Lor demB B= −

d d

.
  

loc dip hfB B B= +
d d d
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Fig. 6-3: Absolute value of the hyperfine field in Fe and Ni as a function of temperature. 
 
Nickel has a cubic face centered structure (fcc). The dipole field at octahedral and tetrahedral 
sites is zero because of the cubic symmetry. 
T=0:  locB



= + 0.148 (1) T 
 



BLor = + 0.221 T 
 



Bhf  = – 0.071 T 


Bhf
 
is not strictly proportional to 



M  (in Ni m0M(0)=0.66 T). Possible reasons: 
- Spin density at the muon site is not simply linearly proportional to 



M 
- Zero point motion of the muon 
- Thermal volume expansion 

 
The sign of locB



 can be obtained from a measurement of locB


 
as a function of 



Bext . 
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Example: Magnetic order in organic compounds  (containing only C,O,N,H) 
 
 

 
 
 
 
 
- mSR gave the first observation of magnetic order in p-NPNN. 
- The compound are based on the nitronyl nitroxid group (N-O) (ex. p-NPNN C13H16N3O4). 
- An unpaired electron is associated with this group. 
- The residual molecules ensure the overlap of the correct orbitals with the neighboring 
molecules so that 3D FM order appears.  
- The transition temperature depends strongly on the crystal structure. 
- Critical behavior of locB (T)



 consistent with 3D- Heisenberg magnet.  
 

loc
C

TB (T) (1 ( ) )
T

α β∝ −    describes the spin-wave region (T<<TC) as well as the critical region  

(T≈TC)  (a =1.7(4), β =0.36(5)). 
 

  

Fig. 6-4: (Left) ZF spectra for p-NPNN with fits. (Right) Temperature dependence of the 

local magnetic field at the muon site Bloc. The solid line is a fit with loc
C

TB (T) 1 ( )
T

β
α 

∝ − 
 

. 

The dashed lines are fits with a molecular-field model with spin S=1/2 (S. Blundell et al., 
Europhys. Lett. 31, 573 (1995)). 



 

175 

6.2 Magnetic volume fraction 
 
With a so called weak transverse field experiment (wTF), it is possible to determine the 
fraction of a magnetic phase and the transition temperature.  
The amplitude of the muon signal precessing at a frequency corresponding to Bext reflects the 
volume fraction of the sample, which is paramagnetic or not ordered magnetically. Muons 
stopping in the magnetically ordered regions will experience a broader field distribution, 
which leads to a rapid decay of the muon-spin asymmetry at early times. Therefore, the 
amplitude of the muon signal precessing at a frequency corresponding to Bext will start to 
decrease at the magnetic transition and reach a level determined by the non-magnetic phase 
(which can also include some background signal). 
The magnetic volume fraction is the given by 
 

0
0TF

Mag TF TF ext
0

A (T)V (1 )                                A (t) A (T)R(t) cos( B )
A µ= − = g + ϕ     [6-7] 

 
A0 is the experimental asymmetry of the spectrometer, R(t) takes into account some field 
broadening.  

 
 

Fig. 6-5: Example of temperature scan in a wTF, used to determine the magnetic transition 
and corresponding volume fraction in CeNi0.768Bi2 . 
 
 
Also from ZF data it is possible to determine the magnetic volume fraction. However, one 
needs to know the depolarization function appropriate for the physical situation (see details 
below). 
 
Example: Magnetism in ferromagnetic semiconductors 
 
An example is shown for Li(Zn,Mn)As, which is as a new generation ferromagnet based on a 
I–II–V semiconductor (Z. Deng et al., Nature Communications 2, 422 (2011)). 
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Magnetization measurements show FM behavior (Fig. 6-6).  
 

 
 
Fig. 6-6: Magnetization M(H,T) results of Li1.1(Zn1 − xMnx)As with x = 0.0–0.15 showing 
(left) the T dependence of M in H = 2 kOe (no difference in Field Cooled and Zero Field 
cooled procedures) and (right) M at T = 2 K in various values of external field H. The grey 
symbols show a hysteresis loop in x = 0.03 system plotted for small field regions (top 
horizontal axis), which demonstrate a very small coercive field of 30–100 Oe. 
From μSR measurements (Fig. 6-7 and 6-8) one can deduce that the FM is homogeneous and 
that the magnetic volume fraction reaches 100% at low temperatures. 
 
 

 
 
Fig. 6-7: μSR time spectra in the wTF of 30 G in Li1.1(Zn0.95Mn0.05)As. The oscillation 
amplitude corresponds to the paramagnetic volume faction. See Fig. 6-8c (Z. Deng et al., 
Nature Communications 2, 422 (2011)). 
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Fig. 6-8: Results of μSR measurements in sintered polycrystalline specimens of 
Li1.1(Zn0.95Mn0.05)As: (a) time spectra in zero field that exhibit onset of extra relaxation below 
T~30 K. The solid lines represent fits to the relaxation function for dilute spin systems in zero 
field for the static case (often used for dilute-alloy spin glasses), which exhibits a fast 
relaxation, plus a non-relaxing paramagnetic component (b) the depolarization rate a of the 
signal that exhibits fast relaxation; (c) the volume fraction of the magnetically ordered region, 
derived from the the wTF measurement (Fig. 6-6) and from the amplitude of the fast relaxing 
signal. 
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Details about the analysis of ZF muon spin relaxation spectra 
 
For the analysis of the zero-field (ZF) μSR time spectra in polycrystalline sample of 
Li1.1(Zn0.95Mn0.05)As one assumes a two component function: 
 
 

L KT ( t)
Mag pm

L KT at

A G (t) A e

1 2G (t) (1 at)e
3 3

β−−  λ

−−

+

= + −
        [6-8] 

 
GL-KT is the relaxation function for a static magnetic field with Lorentzian distribution (see 
Eq. [5-14]). a/γμ represents a field amplitude for the half-width at half-maximum. The 
Lorentzian field distribution is expected for dilute Mn moments randomly substituting Zn 
sites.  
The first and second terms of Eq. [6-8] represent the magnetically ordered and paramagnetic 
volumes, respectively (β is a temperature-independent parameter). The ZF spectra above 30 K 
can be fitted to the second term of Eq. [6-8] without the first term. The ZF spectra below 10 K 
can be fitted to the first term alone. As shown in Fig. 6-8, however, both terms are needed to 
fit spectra in the temperature region between 15 and 25 K, suggesting coexistence of the 
paramagnetic and magnetically ordered volumes. 
 
 

 
 

Fig. 6-9: μSR time spectra in zero-field. ZF μSR time spectra in Li1.1(Zn0.95Mn0.05)As at  
T = 20 K (open circles). The solid line represents the best fit to Eq. [6-8]. The black and green 
broken lines show the first and the second terms, respectively, of this fitting function. 
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6.3 Magnetic ordering in spin chains and ladders 
 
The mSR technique has been used to determine the magnetic properties of the ground state of 
systems consisting of one-dimensional chains and ladders of copper and oxygen atoms with 
the aim of eventually learn about the high-Tc superconductors where Cu–O planes play an 
important role. 
 
The oxides Srn−1Cun+1O2n (n=3, 5,..) are realizations of such ladders. Indeed, one observes that 
the geometries of the ladder structure and of the CuO square lattice layer are related. 
 

 

 
 

The lattice structure is composed of (n+1)/2-leg spin ladders, namely strips of CuO2 square 
lattice which have (n+1)/2 Cu2+ ions across their width (Fig. 6.10, for a three-leg structure). 
Each Cu2+ ion has spin ½ with AF coupling in the “rung” and “leg” direction (strength J). In 
the two directions, differences in the coupling strength are presumably small, because the   
Cu-O-Cu bond lengths are almost equal in both directions. Neighboring ladders are displaced 
by half a lattice constant, making the interladder interactions small and FM (– J’ , J’/J ≈ 0.1-
0.2). The spin of the end of the ladder are frustrated because of the triangular structure with 
two FM and one AF interaction.  
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Fig. 6-10: The three-leg ladder structure (n=5, Sr4Cu6O10) (from Kojima et al 1995). Oxygen 
ions locate at each corner of the drawn squares. The ferromagnetic interladder interaction J’ is 
much smaller than the antiferromagnetic intraladder interaction J. 
 
 
 
A key theoretical prediction is that only ladders with even numbers of legs have a singlet 
ground state separated from the triplet state by a large spin gap. The odd-leg systems are 
expected to reach a magnetically ordered ground state in the presence of interladder 
interactions. Zero-field and longitudinal field mSR measurements have tested these theoretical 
predictions for Sr4Cu6O10 and Sr2Cu4O6 (K. Kojima et al, Phys. Rev. Lett. 74, 812 (1995)). 
 
In Fig.6-11 spectra recorded on the three-leg system are presented. The strong 
depolarization of the zero-field spectra at low temperature shows that the ground state 
is magnetic. Since no wiggles are detected (in contrast to the observations for the organic 
magnets; see section 6.1), the disorder in the compound is important or the number of muon 
localization sites with different local fields are large. Comparing the spectra recorded at 50 K 
and 60 K, one infers that a 3D magnetic phase transition occurs between these temperatures. 
The longitudinal field measurements confirm the interpretation of the zero-field spectra, 
i.e. the ground state of the three-leg system with interladder interactions is a conventional 
static ordered state rather than a spin-liquid system.  
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Fig. 6-11:  mSR-spectra recorded on Sr4Cu6O10 which has a three-leg spin ladder structure. 
The solid lines are fits (From K. Kojima et al.). 
 

 
 
 
 

Fig. 6-12:  Temperature dependence of the Gaussian field distribution width and of the 
paramagnetic volume fraction. 
 
 
 
The data can be analyzed with a functional form of 
 

z para para staticP (t) f (1 f )G (t, )= + − ∆  
 
fpara is the paramagnetic volume fraction in the sample and G is the static Gaussian Kubo-

Toyabe function for T<30K or static Gaussian function 

2 2t 
21 2 e

3 3

∆
−

+  at T 40K. ∆ is 

proportional to the size of the static component of Cu moments. From Fig. 6-12 one 
determines an ordering temperature of about 52 K with a distribution of ± 5K.  
 



 

182 

The absence of muon spin precession in Fig. 6-11 suggests that the magnetic order of the 3-
leg ladder system is random freezing of moments rather than true Néel order. A possible 
source of randomness is the frustration at the edge of the ladder. 
 
 
The magnetic behaviors of the two-leg and three-leg ladder systems differ remarkably as seen 
in Figure 6-13.  
 
 

 
Fig. 6-13: Some spectra recorded on Sr2Cu4O6 (n=3) which has a two-leg spin ladder 
structure. The solid lines are fits (from Kojima et al 1995). Note that the horizontal scales are 
~10 times larger than in Fig. 6-11. 
 
 

The depolarization functions are described with a square-root exponential function,   te− λ∝ , 
appropriate for dilute fluctuating moments. Therefore no static magnetic ordering is detected. 
The depolarization originates from dilute unpaired spins which may be associated with 
defects in the sample. In conclusion, the work of Kojima et al. confirms the theoretical 
predictions (M. Rice et al. Europhys. Lett.  23, 445 (1993)) that a three-leg system becomes 
magnetic at low temperature but a two-leg system does not. 
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6.4 Spin Density Wave 
 
In general, the periodicity of a magnetic structure can be expressed as a rational fraction of the 
periodicity of the underlying crystal lattice (commensurate magnetic structure) or as an 
irrational number (incommensurate magnetic structure). A well-known example for an 
incommensurate magnet is metallic chromium, whose magnetic structure below 123 K is 
described in terms of a longitudinal spin-density wave characterized by an incommensurate 
wave vector and magnetic moments parallel to the [100] axis of the body-centered-cubic 
structure.  
In the commensurate case a discrete number of local fields will be experienced by a muon for 
a given interstitial site (Fig. 6-14a).  
For the incommensurate structure we consider here the simple case of an amplitude (cosine) 
modulated magnetic structure (Fig. 6-14b). 
 
 

 
 
Fig. 6-14: a) Commensurate magnetic structure b) incommensurate magnetic structure. 
 
 
Crystallographically equivalent muon sites will probe different magnetic fields corresponding 
to the different phases of the cosine-modulation. Instead of a single or a finite number of 
discrete values of the local field B, as in the case of commensurate magnetic structures, we 
expect a continuous set of local fields for the incommensurate ones. 
 
We assume the local field to be proportional to the magnetic moments and 
to be directed along the y axis and describe the modulation as a spin-density wave.  
The field can be expressed as: 
 

0B(x) B cos(x)=           [6-9] 
 
The probability to find a field B(x) is given by the (uniform) probability that the muon probes 
a phase x, i.e. 
 

dx 1dx dB p(B)dB dB
dB sin(x(B))

= = ∝   
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The field distribution normalized to one becomes 
 

2 2
0

1 1p(B)
B B

=
p −

         [6-10]  

  

 
 
Fig. 6-15: Field and field distribution of an amplitude modulated spin density wave.  
 
 
 
This distribution is also called Overhauser distribution and is displayed in Fig. 6-15. It is a 

symmetric continuous distribution with an appreciable weight at B = 0 
0

1p(B 0)
B

= =
p

. This 

means that there is a finite probability for a vanishing local magnetic field at the muon site. 
Following our assumption that the field is along the y axis we have for the polarization 
 

x 0 0P (t) p(B)cos( Bt)dB J ( B t)µµ = γ = γ∫   
 
Where J0 is the zeroth-order Bessel function of the first kind. 
When t is large relative to 01 Bµγ we can use the approximation 
 

0 0 0
0

2J ( B t) cos( B t )
B t 4µµ

µ

π
γ ≅ γ −

πγ
       [6-11] 

 
Thus a weakly damped precession with negative phase shift of 45 degrees appears when the 
field at the muon site is modulated according to Eq. [6-9]. Eq. [6-11] is a very good 
approximation to the Bessel function even at quite small times. 
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Fig. 6-16: Polarization function for a cosine modulated magnetic field at the muon site. Time 
is in unit of 01 Bµγ . 
 
 
Note that whereas a single k incommensurate amplitude-modulated magnetic structure leads 
to Bessel-like oscillations, the converse is not always true, i.e. the observation of such 
oscillations does not unambiguously guarantee that the magnetic structure is incommensurate. 
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Example: Spin-density-wave (SDW) phase in (TMTSF)2-X 
 
One of the first observations of a SDW behavior by μSR is in the 
tetramethyltetraselenafulvalene  (TMTSF)2-X family where X denotes a monovalent anion (X 
= PF6, NO3, and C1O4). These conducting organic compounds display many fascinating 
properties, such as spin-density-wave magnetism, superconductivity, anion ordering, field-
induced spin-density-wave states. The interplay and competition between different ground-
state are related to the highly anisotropic electronic structures of these compounds. 
 
 

 
 
Fig. 6-17: ZF-μSR time spectra observed in (TMTSF)2-X below TSDW. The depolarization and 
oscillation due to SDW magnetic order are seen in the PF6, N03, and C104 systems.  
From L. P. Le et al. Phys. Rev. B 48, 7284 (1993). 
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Fig. 6-18: ZF spectra at T = 3.7 K, 12.15 K, and 12.25 K in (TMTSF)2PF6. The clear onset of 
depolarization due to static magnetic order is seen below TSDW = 12.2 K. (b) Fourier 
transform of the time spectrum at 3.7 K. The real part of the Fourier transform reflects the 
local-field distribution and corresponds to the expected distribution (Fig. 6-15) folded around 
B=0 and including nuclear moments broadening (L. P. Le et al. Phys. Rev. B 48, 7284 
(1993)). 
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Fig. 6-19: Temperature dependence of the muon-spin precession frequency in zero field 
observed in (TMTSF)2-X. Note the first order like phase transition. The magnitude of the 
internal field at T=0 is approximately the same for the three systems, suggesting a common 
SDW amplitude in these systems. Overall the data (e.g. spin stiffness) are incompatible with a 
Heisenberg model for a localized spin system and demonstrate the importance of using an 
itinerant-electron picture to describe the magnetic behavior of this system. 
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6.5 Relaxation via fluctuating fields (stochastic theory) 
 

 
 
 
 
 
  
 
 
 
 
Zeeman splitting of a spin ½ level: 
 
 
 
 
 
The total Hamiltonian is then: 
 
H B B t Iext i= − +γ µ ( ( ))

 





        [6-12] 
Where  



B ti ( )  is a stochastic function of time. The fluctuating field induces transitions 
between the two Zeeman levels, so that the initial muon spin polarization is lost (spin 
relaxation via spin flip) 

P t e e( ) = =−
−

 t
 t
T1λ   

           [6-13] 
T1: is the so-called spin-lattice relaxation (NMR concept, where the spin-lattice (or 
longitudinal) relaxation time T1 quantifies the rate of transfer of energy from the 
nuclear spin system to the neighboring molecules (the lattice). This is relaxation in the z-
direction and leads to restoration of Boltzmann equilibrium in the nuclear ensemble. 
 
With the Redfield theory (see C. Slichter, Principles of nuclear magnetic resonance) one can 
describe the relaxation rate as a function of the field fluctuations ( 0)t(B2

i >≠∆< ) (LF and ZF 
case): 
 

 

Consider a muon in the environment  
of fluctuating internal fields Bi. We have: 
 
< Bi(t) > = 0 but 

0)t(B2
i >≠∆<  

 
In addition an external static field is applied 
 
 

B P zext || ( )|| 0  . 
 

Bi(t) 

m = – ½  
∆E = 2mmΒext= L extBµω = γ    

m = ½  
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L L

2
i t i t

x x y y
1

1 ( B (t)B (t t ) e B (t)B (t t ) e )dt
T 2

∞
µ ′ ′ω ω

−∞

γ
′ ′ ′= < + > + < + >∫              [6-14] 

  
in the transverse field case 

 

B z P xext || , ( )|| 0  one finds: 
 

L

2
i t

z z y y x x
2

1 1[ B (t)B (t t ) ( B (t)B (t t ) B (t)B (t t ) )e ]dt
T 2 2

∞
µ ′ω

−∞

γ
′ ′ ′ ′= < + > + < + > + < + >∫  

           [6-15] 
 

q qB (t)B (t t )′< + > ,   q= x,y,z  is the autocorrelation function of the local field, which 
depends only on t’. 
 
Remark:  

- No cross-correlation: q kB (t)B (t t ) 0′< + >=  for q≠ k . 

- The T1 relaxation depends only on the transverse fluctuations (transverse to P(0)


, 
observation direction). 

 
Often we can assume a simple exponential correlation function (one single fluctuation time): 
 

c

c

t 
2

q q q

t 
2

q q q

B (t)B (t t ) B (0) e

S (t)S (t t ) S (0) e

′
−

t

′
−

t

′< + >=< > ≅

′< + >=< >

      [6-16] 

 
τc  is called correlation (or also fluctuation) time. It gives how fast a well defined 
configuration (of fields or spins) decays, i.e. how fast the correlation disappears. This quantity 
contains the physics of the dynamical processes producing fluctuating fields or moments. 
With [6-16], [6-14] and [6-15] become: 
 

2 2 2 c
x y 2 2

1 L c

1 ( B B )
T 1µ

τ
= γ < > + < >

+ ω τ
       [6-17] 

 
2 2
y x2 2 c

z c 2 2
2 L c

B B1 ( B )
T 2 1µ

< > + < > τ
= γ < > τ +

+ ω τ
     [6-18] 

 
Note the similarity between [6-17] and [5-64], obtained with the strong collision 
approximation.  
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2 2 2
x y zB , B , B< > < > < >  are obtained from the static field components. In a paramagnet <Bq> = 

0, then < >Bq
2  is the second moment of the q-component of



Bi . 
 
T1 minimum or relaxation rate maximum if τc(T) = 1/ωL 

 

 
 

Fig. 6-20: Dependence of relaxation rate on fluctuation time according to Eq. [6-17]. 
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Fig. 6-21: Example of slowing down of spin fluctuations close to the transition temperature 
TN of the Ising AF LaMnO3 (from M. Cestelli et al., Phys. Rev. B 64, 064414 (2001)).  
 
Fit function (after polycrystalline averaging): 
 

1 2

t t  
T T0

i i
i 1,2

AA(t) f [e 2e cos( B t)]
3

−−

µ
=

= + γ∑  
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6.6 Relaxation and spectral density 
 
The Fourier transforms J(ω)  of correlation (fluctuation)  functions are often referred to as 
spectral density. The relaxation rate gives information about this quantity. In simple cases the 
field correlation function coincides with the electron spin autocorrelation function, i.e. the 
response function of the electron system, see [6-16]. 
 
Eq. [6-14] shows that the longitudinal relaxation rate is proportional to the Fourier transform 
of the correlation function of the local field, evaluated at the Larmor frequency. 
This can immediately be seen in the case of exponential field correlation: 

c

t 
2

q q qB (0)B (t ) B (0) e
′

−
t′< >=< >              [6-19] 

 

c

t
 

2 i t c c
q 2 2 2 2

c c

2
L

1

J( ) B (0) e e dt
1

1 J( )
T

′+∞ −
′t − ω

−∞

µ

t ν′ω =< > ∝ =
+ ω t ν + ω

= γ ω

∫
    [6-20] 

 
 
i.e. the relaxation is induced by fluctuations of the local field with μSR frequency ωL 
 

 
 
Fig. 6-22: Spectral density at different correlation times τc .The muon spin relaxation is an 
intrinsic resonant phenomenon. The muon picks up only the component at ωL of the possibly 
much wider spectrum J(ω) of the fluctuating local fields (see [6-17], [6-18] and [6-20]).  

Slow  
1/τc = νc 

ω 
Fast 
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Example: Anisotropic fluctuations 
 
Spin fluctuations slow down (freeze) on approaching a magnetic phase transition. 
In an anisotropic antiferromagnet the spin fluctuations are anisotropic, e.g. in Er. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6-23: Muon-spin-asymmetry and lattice relaxation rate λ  for different orientations of an 
Er single crystal with respect to 



P( )0  . The AF transition is at 85K  (O. Hartmann et al. Hyp. 
Int. 64, 381 (1990)).  
 
The figure shows that the slowing down of fluctuations (increase of λ, decrease of the 
amplitude) is only observable if 



P( )0  is perpendicular to the hexagonal symmetry axis  
(c –axis). The fluctuating fields at the muon site have only components parallel to the c-axis. 
Weaker components perpendicular to it do now show any freezing process. 
 
 

 

 

 

 

 

 

 

 

 
 
 

P(0) ⊥ c 

P(0) || c 
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6.7 Distribution of relaxation times and spin glasses: stretched exponential 
relaxation 
 
Spin glasses are dilute magnetic alloys where the interaction between spins is randomly 
ferromagnetic or anti-ferromagnetic. They are considered as paradigmatic examples of frozen 
disorder. The presence of disorder (the random interactions) induces frustration and leads to a 
greater difficulty for the system to find optimal configurations. As a consequence, these 
systems exhibit non trivial thermodynamic and dynamic properties, different and richer than 
those observed in their non-disordered counterpart. Spin glass systems have been extensively 
studied as a prototype of complex systems, since their magnetic ordering resembles the 
positional ordering of a conventional glass.  
Spin glasses can be modeled using Ising-like Hamiltonians where the bonds between spins 
can be positive or negative at random. Due to the heterogeneity of the couplings, there are 
many loops of spin sequences which are frustrated and for which there is no way of choosing 
the orientations of the spins without  frustrating at least one bond. 
 

 
Fig. 6-24: Example of frustrated interaction: + : FM, and – AF. 
 
Since there are many configurations with similar degree of frustration one may expect the 
existence of many local minima of the free energy. 

 
 
Fig. 6-25: Schematic representation of the free energy of a spin glass vs. a phase space 
coordinate, which measures a particular ordered state (from K. Binder, A.P. Young, Review 
of Modern Physics 58, 801 (1986)). 
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The most familiar and well-studied spin glass systems are the dilute magnetic alloys such as 
AuFe, AgMn and CuMn, so-called canonical spin glasses.  In diluted magnetic metals the 
interaction between localized moments is mediated by the metallic electron gas. This type of 
exchange was first proposed by Ruderman and Kittel and later extended by Kasuya and 
Yosida (Ruderman–Kittel–Kasuya–Yosida coupling, RKKY interaction). A magnetic ion 
induces a spin polarization in the conduction electrons in its neighborhood. This spin 
polarization of the itinerant electrons is felt by the moments of other magnetic ions within 
range, leading to an indirect coupling.  
This indirect exchange couples moments over relatively large distances. It is the dominant 
exchange interaction in metals where there is little or no direct overlap between neighboring 
magnetic electrons.  

 

 

Fig. 6-26:  Random distribution of magnetic moments in a metallic matrix and the resulting 
RKKY exchange interaction plotted as a function of distance.  

 

The interaction is characterized by a coupling coefficient, j , given by 

 

2

i j F i j
F

jj(r r ) 9 F(2k r r )
E

 
− = π −  

 

            [6-21] 

 

 
where kF is the radius of the conduction electron Fermi surface, rj is the lattice position of the 
point moment, EF is the Fermi energy and  
 

4
x cos x sin xF(x)

x
−

=          [6-22] 
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The RKKY exchange coefficient, j, oscillates from positive to negative as the separation of 
the ions changes and has the damped oscillatory nature shown in Fig. 6-16. Therefore, 
depending upon the separation between a pair of ions their magnetic coupling can be 
ferromagnetic or antiferromagnetic.  
These spin glasses have Curie-Weiss susceptibilities at high temperature and form strange 
“antiferromagnetic” low temperature state at low temperatures. There is no sign of any sharp 
feature in the specific heat: only sometimes a broad bump. However, low field ac 
susceptibility shows a sharp cusp as a function of temperature, clear evidence for a well 
defined transition temperature (freezing temperature Tf).  There is a consensus that the spin 
glass transition is a “true” thermodynamic phase transition. 

 

Fig 6-27: Specific heat per Eu atom versus temperature for EuxSr1-xS with x=0.54. The spin 
glass transition temperature Tf and the Curie temperature TC (transition to a ferromagnetic 
phase) are indicated by arrows. 

 

 
 

Fig. 6-28: Static susceptibilities of CuMn vs temperature for 1.08 and 2.02 at. % Mn. After 
zero-field cooling (H<0.05 Oe) initial susceptibilities ( b) and (d) were taken for increasing 
temperature in a field of 5.9 Oe. The susceptibilities (a) and (c) were obtained in a field of  
5.9 Oe, which was applied above Tf before cooling the samples. From S. Nagata et al., Phys. 
Rev. B 19, 1633 (1979). 

FC 

ZFC 
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The apparent freezing of the spin dynamics below Tf leads to random but static order of the  
spin orientation. Above Tf the relaxation of spin glasses is highly anomalous compared to that 
of standard paramagnets, where one can assume an exponentially damped auto correlation 
function for the impurity spins, with one single correlation (relaxation) time τc: 
 

c

t 
(T)

2
S(t)S(0) e

S(0)

−
t< >

=
< >

        [6-23] 

 
 
The experimental data suggest that a single relaxation time is not correct.  
 
mSR can probe slowly relaxing spin systems with a wide relaxation rate spectrum. 
 
In the temperature regime above the freezing temperature the muons initially polarized are 
gradually depolarized by the fluctuating dipolar fields coming from neighboring local 
moments. The faster these moments relax the more slowly the muons are depolarized; it is the 
familiar motional narrowing effect. 
 
Experiments on moderately concentrated spin glasses (5 to 10% magnetic sites) show 
depolarization functions above Tf, which can be fitted very satisfactorily by stretched 
exponentials 
 
 

 ( t)P(t) e
β− λ∝           [6-24] 

 
 
λ is a depolarization rate and β is an exponent, both are temperature dependent. 
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Fig. 6-29: Raw muon depolarization data in AgMn 7% at T=26K just above Tg=25 K. The 
upper part/lower part show data from the forward/backward counter. Fit parameter β=0.32(1= 
and λ=40(6) μs-1. The inset shows a blown up of early times of the forward time spectrum. 
From I.A. Campbell et al., Phys. Rev. Lett. 72, 1291 (1994). 
 
 
 
 
 
 
 
 
 



 

200 

 
 

 
 
 
 

Fig. 6-29 Fig. 6-30: The stretched exponent β as a function of temperature for ZF data (a) AgMn 5 at. 
% and  (b) AgMn 7 at. % and  (c) ) AgMn 10 at. % (closed symbols). The values indicate 
the Tf values. Just below Tf the apparent value of β increases sharply; this is an artifact as 
the stretched exponential is an inappropriate fit function below Tf. Above Tf  the 
longitudinal field data are essentially identical to the ZF data, while below Tf they are quite 
different and can be fitted with a constant β of about 0.3 (the open squares of (b) are 0.6 T 
LF data). From I.A. Campbell et al., Phys. Rev. Lett. 72, 1291 (1994). 
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While λ increases when the temperature is lowered towards Tf, β drops from a value near 1 at 
high temperatures to a limiting value near 1/3 as Tf is approached. This behavior seems to be 
very general and a number of other spin glasses or glassy systems have been found to follow 
the same pattern. 
 
At high temperatures β tends to 1; the relaxation becomes “normal”: to a good approximation 
we have a regime with a unique exponential relaxation for all spins. 
 
Lower values of β reflect a widening of the relaxation spectrum specific to spin glasses.  
Formally we can write a stretched exponential as superposition of independent exponential 
relaxations λi  (each proportional to a correlation time τi): 
 

it( t)
i i

0

P(t) e G( , , )e d
β

∞
−λ− λ= = λ λ β λ∫        [6-25] 

In the special case β = 1/2 
 

i
3
2

 
4

i
i

1G( , , ) e  
2 2

λ
−

λλ
λ λ β = =

πλ
       [6-26] 

 
 
 

 Fig. 6-31: The temperature dependence of the muon depolarization rate λ for ZF data on 
three AgMn samples (10% sample: squares; 7% sample: open circles; 5% sample: closed 
circles). LF values are identical above Tf. From I. A. Campbell et al., Phys. Rev. Lett., 72, 
1291 (1994). 
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λi 
 
Fig. 6-32: Distribution of relaxation times G(λi, λ) for  β=1/2 and different values of λ. 
The distribution width is determined by β and λ. Small β gives a broad distribution of  
relaxation rates. A large λ value further broadens the distribution. 
 
β=1 corresponds to a single relaxation rate and an exponential muon spin depolarization. 
 

i iG( , , 1) ( ) λ λ β = = δ λ − λ  and  tP(t) e−λ=  
 
An exponential muon spin relaxation with rate λ reflects an exponential relaxation of the 
impurity spin autocorrelation with correlation time τc ( cλ ∝ τ ) 
 

ct /t 2
i i iP(t) e         q(t) S (t)S (0) S (0) e−t −λ= ↔ =< >=< >     [6-27] 

 
In the general case with i iλ ∝ τ , i.e. i iτ = αλ , the autocorrelation function will be given by: 
 

i

t 

i i

0

q(t) G( , , )e d
∞ −

αλ= λ λ β λ∫         [6-28] 

 
For β=1/2 we obtain 
 

4

1q(t)
4t1

=
+

αλ

         [6-29] 

 
This reflects a strongly non-exponential relaxation of the impurity spins. 
 
Remarkable is the degree of universality of the behavior found in canonical spin glasses. It is 
found in other metallic spin glasses, in insulating and even in particular cases of pyrochlore 
spin glasses. This implies that there is a universal from of dynamics, with its associated 
temperature dependent time spectrum, which is a consequence of spin glass ordering. 
  

1 2 3 4 5

0.2

0.4

0.6

0.8

1

 λ=1 

λ=2 

λ=10 



 

203 

7. mSR studies of superconductivity 
 

7.1 The vortex state and the corresponding field distribution 
 
Superconductivity characteristics: 
 

 
 
Fig. 7-1: Zero resistance. Resistance versus temperature. 
 

 
Fig. 7-2: Diamagnetism. Schematic phase diagram of a superconductor of type I, 1 .

2
λ

κ ≡ <
ξ

 

 

 
Fig. 7-3: Schematic phase diagram of a superconductor of type II  1

2
λ

κ ≡ >
ξ

. 

 

Bext= 0 
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Superconductors of type II have above Hc1 a mixed phase, where the magnetic flux can 
penetrate the sample in the form of fluxoids (vortices). Each vortex contains a flux quantum 

15 2
0

h 2.07 10  T m
2e

−Φ = = ⋅ ⋅ . The vortices may form a regular lattice, mostly of hexagonal 

symmetry (flux line lattice, FLL). The FLL is obtained by cooling the superconductor in a 
field. 
 

 
 
 
 
 
 

 
 

 
 
 

Fig. 7-4: Mixed state (Abrikosov 
lattice). 

 

Fig. 7-5: Structure of a vortex 
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Fig. 7-6: Visualization of a vortex lattice. Top left: Bitter decoration technique. Pb-4at%In, 
1.1K, 195 G. (U. Essmann and H. Trauble, Phys. Lett. 24A, 526 (1967)). Top right: Surface 
image by Scanning Tunnel Microscopy NbSe2, 1T, 1.8K, H. F. Hess et al. Phys. Rev. Lett. 62; 
214 (1989) the vortex spacing is ~ 479 Å. Bottom: The hexagonal Abrikosov lattice showing 
the contour lines.  
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Fig. 7-7: Characteristic length scales in the vortex state. Order parameter ψ(r) and magnetic 
field h(r) as a function of distance from the center of an isolated vortex (κ≈8). The order 
parameter squared is proportional to the density of supercarriers ns. 
 
 
 
The field distribution around a single vortex can be obtained from the London equations13: 
 

0
v 02

rB (r) K ( )
2
Φ

=
λπλ

         [7-1]
 

 
K0 is the modified Hankel function zeroth order. 
 

                                                 

13 London equations: )t(E1
dt

jd
2
L0

d

d

λµ
=   and 2

0 L

1rotj  B(t)= −
µ λ




 describe perfect conductivity and 

diamagnetic shielding in a superconductor. 
 

(London) magnetic penetration depth:  
Clean limit: 
mean free path >> BCS coherence length   

F
0

0

v
>> ξ =

π∆




 
*

2
0 s

s
2 *

m(T)
e n (T)

n1       is called superfluid density
m

l =
m

∝
l

        

Δ0    : superconducting gap at T=0 
For a clean sc: ns(0)=n    
m* : effective mass 
ns   : density of the superconducting carriers 
n:   : carrier density 
 
For a “dirty” superconductor: 

01    ξ
λ → λ +



 and the superfluid density is 

reduced by 
0

≈
ξ
  
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This function can be approximated as follows: 
 

0
v 2B (r) ln( )

r2
Φ l

→
πl

   for ξ << r << λ    [7-2] 

r 0
v 2B (r) e

r2

−
λΦ λ

→
πλ

           for r>> λ    [7-3] 

 
mSR can measure the local magnetic field distribution in the vortex state. Qualitatively, we 
expect following picture: 
 

 
 
 
 
Fig. 7-8: Spatial distribution of fields inside a superconductor (schematically) a) Normal state, 
b) Vortex state, T ≈ Tc. c) T << Tc. Right: corresponding asymmetry spectra.  
From S.J. Blundell, Contemporary Physics 40, 175-192 (1999). 
 
 
 
 

 

a) 

b) 

c) 
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Fig. 7-9: Spatial distribution zB (r)  of a regular vortex lattice ( ext ˆB z 



 ). 
 
The corresponding field distribution p(Bz) is given by  

2
z z z

S

1p(B ) d r  (B B (r))
S

= d− ∫ d d  

(S is the surface of the 2D unit cell). The field distribution (and corresponding contour plot in 
the inset) has the form14: 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
14 Note that the maximum field (at the center of the vortex) is infinite in the London model. The field profile has 
been cut here near the flux line center.  
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The expected mSR signal (TF geometry, Bext || z) can be written as (Nμ number of detected 
muons): 
 

N

x i
i 1

x

1P (t) cos( B t )
N

P (t) p(B)cos( Bt )dB

µ

µ
=µ

µ

= γ + φ

= γ + φ

∑

∫
 

 
Polarization and p(B) are related via a Fourier transform. 
 

7.2 Second moment of the field distribution of an extreme type II 
superconductor 
 
The second moment of the field distribution can be calculated explicitely. 
Assumptions:  
-Ginzburg-Landau parameter κ >>1 (we neglect the extension of the vortex core) 
-London model valid (up to ~ Bc2/4) 
-Vortex cores are separated and non-interacting  
-Linear superposition of the vortex fields 
 

      
 
The special field distribution B(r) can be calculated from a modified London equation taking 
into account the flux source given by the vortices15: 
 

2
0 n

n
2

0 n
n

ˆB(r) (rot rot B(r))= (r r )z

ˆB(r) B(r)= (r r )z

+ λ Φ δ −

− λ ∆ Φ δ −

∑
∑

δδ

δδδδ  

δδ

δδδδ  

      [7-4] 

 
In an ideal vortex state the vectors nr

  form a periodic two dimensional lattice. Therefore [7-4] 
can be solved in Fourier space ( k



space): 

                                                 
15 The left hand side is obtained by applying the rot operation to the Maxwell equation 0rotB= j µ




then using the 

second London equation  and  rot(rotB) = grad divB B− ∆
d d d

. 

d Vortex distance d: 
 

2

0
0

Area of the unit cell containing one vortex:   

3S d
2

2S B    d=
B 3

=

Φ
Φ = < > →

< >

 



 

210 

 
For an hexagonal lattice: 
 
a b d,  a b cos120   = = ⋅ = a

d d

d d  

 
Reciprocal vectors:                       

* *b c c aa 2 ,           b 2
a (b c) a (b c)

× ×
= π = π

⋅ × ⋅ ×



 







  

 

* *

* *
m,n

4a b
3d

k ma nb

π
= =

= +

d

d

d d

d

 

(also hexagonal symmetry) 
 

ikr
k

k

B(r) b e= ∑









          [7-5] 

With Fourier components: 
 

ikr 2
k

1b B(r)e d r
S

−= ∫
d

d

d

d
d

d d

 
London equation becomes (fields parallel to z-direction): 
 

2 2 ikr ikr
0k k

k k

1 ˆ(b k b )e z e
S

+ λ = Φ∑ ∑










 
 
We find: 
 

k 2 2
B ˆb z

1 k
< >

=
+ λ



         [7-6] 

 
Where  <B>  is the (space) averaged internal field (<B>= NΦ0,  Ν=1/S: vortex density). 
 
 

ikr
z 2 2

k

BB (r) e
1 k

< >
=

+ λ∑








 
 
With 0b B=< >  we obtain for the second moment of the field distribution: 
 

22
z k

k 0

B b
≠

< ∆ >= ∑ 



 

 
In a perfect hexagonal lattice: 
 

a  

b


 

*a   

*b

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2
2 2 2 2

m,n 2
16k k (m mn n )
3d

π
= = − +   and with k 1λ >>  (<B> >> Bc1) 

 
 

2
2 0

z 4 4 2 2 2
(m,n) (0,0)

3 1B
64 (m mn n )≠

Φ
< ∆ >=

π λ − +∑  

 
 

 
 

2
2 0

z 4
0.003710 B ( )   Φ

< ∆ >=
λ         

[7-7]  

 
The quantity 2B< ∆ >

 
is directly related to the magnetic penetration depth λ.  

 
The measurement of the second moment of the field distribution allows therefore to determine 
the London penetration depth. Note that [7-7] predicts a field width independent of the 
external field. The formula is valid for small inductions b ≡<B>/Bc2 << 1 and large κ, more 
precisely in the range 0.13/ κ2 << b << 1 (H. Brandt, Phys. Rev. B 68, 054506 (2003)). 
 
 
It holds also16: 
 

min 2

max 2

sad 2

1B B  

1B B  

1B B  

− < > ∝
λ

− < > ∝
λ

− < > ∝
λ

 

 
 
 
 
 
 
 
 
 
If we cannot neglect the coherence length ξ (radius of the vortex core), we have to introduce 

                                                 
16  About demagnetization in vortex state. The quantities Hi, magnetization M, demagnetization factor N 
(0 N 1)≤ ≤ and mean magnetic flux <B> (which is the mean internal field measured by μSR) are related to each 

other by: i ext
0

BH M H NM< >
= − = −

µ
. Since the m+ Knight shift is generally negligible (e.g. in high-Tc 

materials), the muon spin precession shift is given by: 0 ext 0B H (1 N) M< > −µ = −µ    (M<0). 
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in [7-6] a „cutoff“ of the terms with k~1/ξ  i.e.17: 
 
 

2 2k

k k2 2 2 2
B B eˆ ˆb z             b z

1 k 1 k

− ξ< > < >
= → =

+ λ + λ



 
 
(E.H. Brandt, J. Low Temp. Phys. 73, 355 (1988)). 
 

 
 

                                                 
17 Near b=1 the Abrikosov solution of the linearized Ginzburg-Landau theory yields for all κ  values (H. Brandt, 
Phys. Rev. B 68, 054506 (2003)): 

4 2 4 2
2 0

z 4 2 2
7.52 10  (1 b)B ( )   

( 0.069)

−⋅ Φ κ −
< ∆ >=

λ κ −
 

2ξ1 

2ξ2 

B(r) FF
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Fig. 7-10: Calculated field distributions. From A. Maisuradze et al., J. Phys.: Condens. Matter 
21, 075701 (2009). 
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Fig. 7-11: Measured field distribution in YBCO obtained from the Fourier transform of the 
mSR spectrum.  
       
To determine the magnetic penetration depth the magnetic field is applied above Tc in a TF 
configuration. Then the temperature is gradually lowered below Tc (field cooling). This way 
one obtains a regular flux line lattice below Tc (Hc1<Hext<Hc2).  In a high-Tc material λ as well 
as the diamagnetism are anisotropic.  
In principle one needs the full field distribution p(B) to determine λ. However, depending on 
the physical situation the relaxation of the transversal field mSR signal below Tc can be 
approximated by a Gauss function. In a polycrystalline sample the signal is the integral over 
all possible orientations of the crystal grains. This leads to a more symmetric p(B), whose 
Fourier transform (=relaxation function) is closer to a Gaussian function. In this case the 
second moment of the field distribution can be obtained from the mSR spectrum fitted with a 
Gaussian relaxation (which implicitly implies that p(B) is Gaussian) and the field width and 
the magnetic penetration depth are directly related to the Gaussian relaxation rate σsc: 
 

2 2 2 2 2 2
sc B ( B B )µµ s = γ < ∆ >= γ < > − < >       [7-8] 

  
To obtain σsc one has generally to subtract from the measured σ the temperature independent 
contribution of the broadening due to the  nuclear moments σn, which is obtained by a 
measurement above Tc: 
 

2 2
sc n(T) (T)s = s−s    
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Assuming Eq. [7-7] and  2sc B
µ

s
= < ∆ >

γ
 there is a simple numerical relationship between 

the muon depolarisation rate σsc and the superconducting penetration depth λ namely 
-1

sc
sc

327.5 ,    in μs , λ in nm.λ = s
s

 A Gaussian fit is only sensitive to the central part of the 

field distribution of a non-Gaussian distribution. This is sometimes taken into account 

empirically by using the expression  -1
sc

sc

270.0 ,    in μs , λ in nm.λ = s
s

 

 

 
 
Fig. 7-12: Comparison of p(B) (a) in a polycrystalline YBCO sample  (from B. Pümpin et al., 
Phys. Rev. B 42, 8019 (1990)) and (b)  in a single crystal (from J. Sonier et al., Phys. Rev. 
Lett. 83, 4156 (1999)). 
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7.3 Field dependence of the muon spin relaxation rate  
 
If the applied magnetic field is not small with respect to Bc2 the decrease of the intervortex 
distance may lead to a decrease of  the width of the internal field distribution. Also the vortex 
core where the superconducting order parameter is suppressed cannot be neglected any more 

(remember 0
c2 02

GL
B ,    flux quantum

2
Φ

= Φ
πx

). In this case, the expected field dependence of 

the second moment of the field distributions has been calculated within the Ginzburg-Landau 
model (E. H. Brandt, Phys. Rev. B 68, 054506 (2003)) and a modified London Model with a 
Gaussian cut off to take into account the finite size of the vortex core (E. H. Brandt, Phys. 
Rev. B 37,  2349 (1988)).The two expressions differ essentially in the higher order 
corrections to the linear field dependence (b ≡<B>/Bc2), generally <B>≈Bext, see 16). 
Calculations based on Ginzburg -Landau can be well approximated by: 
 

1 4 3
sc 2

1[ s ] 4.854 10 (1 b) 1 1.21(1 b)
[nm]

−  s m = ⋅ − + −  λ
    [7-9] 

whereas the modified London model gives: 

1 4 2
sc 2

1[ s ] 4.846 10 (1 b) 1 3.9(1 b )
[nm]

−s m = ⋅ − + −
λ

    [7-10] 

An example of such a behavior in the iron pnictide RbFe2As2 (Tc=2.52 K) is shown below. 
(Z. (Shermadini et al., Phys. Rev. B 82, 144527 (2010)). 

 

Fig. 7-13: Temperature dependence of the depolarization rate σsc due to the FLL in RbFe2As2 
and obtained in fields of 1.5, 0.5, 0.1, and 0.01 T  (lines are guides to the eyes). Inset: field 
dependence of σsc obtained at 1.6 K and analyzed using the Eq. [7-9]. 
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By analyzing at each temperature (not too close to Tc), the field dependence of σsc with  
Eq. [7-9] one obtains λ(T) and Bc2(T). From the temperature dependence of  1/λ(T) 2 we 
obtain information about the superconducting gap of the material (see section 7.6). 
 
 
 
 

 
 
Fig. 7-14: Upper critical field for RbFe2As2. The open circles are obtained by analyzing the 
field dependence of σsc using Eq. [7-9]. The diamonds are the value obtained by analyzing the 
temperature dependence of σsc. The stars correspond to the complete disappearance of the 
resistivity in field. The line is a guide to the eyes. 
 
 
 



 

218 

 
 

Fig. 7-15: Magnetic penetration depth as a function of temperature obtained with Eq. [7-9]. 
Above 0.5 K only the values measured in a field of 0.01 T are plotted. The red dashed line 
corresponds to a BCS s-wave gap symmetry whereas the solid one represents a fit using a 
two-gap s+s model (see Section 7-6). The inset exhibits the penetration depth as a function of 
(T/Tc)2.  
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7.4 Uemura relation: correlation between  Tc und σsc 
 
Since the discovery of superconductivity in the copper oxide materials there has been a 
considerable effort to find universal trends and correlations amongst physical quantities to 
find a clue to the origin of the superconductivity. One of the earliest patterns that emerged 
was the linear scaling of the Gauss relaxation σsc  with the superconducting transition 
temperature (Tc). This is referred to as the Uemura relation  (Phys. Rev. Lett. 66, 2665 (1991) 
and works reasonably well for the underdoped materials. 
The linear relation between Tc und σsc  (Fig. 7-16) implies a direct correlation between  Tc 

and the superfluid density s
s *

n
m

ρ ≡  since s
sc 2 *

n1
m

s ∝ ∝
λ

.  The magnetic penetration depth in 

cuprates is anisotropic. For polycrystalline samples λ is an average of λc and λab (ab = CuO2 
planes). For λc >> λab, σsc  is only sensitive to λab (W. Barford and J.M.F. Gunn, Physica C 
153-155, 691 (1988)).  
 
 

 
 

Fig. 7-16: 
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Such a correlation is not consistent with conventional weak coupling BCS theory for phonon 
coupled superconductors, where 
 

F

2 
VD(E )D

c
B

2T e
k

−ω
≅
          [7-11] 

 
ωD = Debye frequency (phonon coupling) 
D(EF) = Density of states at Fermi level EF 
V= effective attractive pair potential ( Cooper pair). 
 
In [7-11] Tc is proportional to ωD and not simply related to ns.  
 
Fig. 7-16 indicates that these „unconventional“ superconductors belong to a different class  of 
materials than that of the previously known “conventional” superconductors (such as Nb, 
Al,..).  
If the energy scale of the pairing is of the order of the Fermi energy, one would expect:  
 

c FT T∝           [7-12] 
 
For a 2D electron gas the Fermi energy is given by: 
 

2
s 2d

F B F *
nE k T
m

−π
= =



 
       [7-13] 

High- Tc superconductors are to large extent two dimensional, since the CuO2 planes contain 
most of the supercarriers (electrons or holes). 
 
One obtains: 
 

c *
nT

m
∝      

 
A linear relationship between critical temperature and superfluid density is also obtained if Tc 
is primarily determined by long range phase ordering. 
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mSR measurements of the penetration depth in the vortex state and the Uemura plot are used 
to classify superconductors (e.g. Fe based superconductors, discovered in 2008, Y. Kamihara, 
T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc., 130 (2008) 3296). 
 
 
 
 

 
    
Fig. 7-18: Uemura plot for hole and electron doped high Tc cuprates and for the       
LaFeAsO1-xFx pnictide () (from H. Luetkens et al., Phys. Rev. Lett. 101, 097009 (2008)). 
 
  

Fig. 7-17: Crystal structure of 
YBa2Cu3O7-δ with 2 CuO2 planes 
and CuO chains as charge reservoir. 
 

Fig. 7-15 
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7.5 Measurement of the anisotropy of the magnetic penetration depth 
 
Measurement with oriented YBCO single crystals. The theory predicts: 
 

2
2 2c

sc 2
ab c ab

const( ) sin cosλ
s ϑ = ϑ + ϑ

λ λ λ
      [7-14] 

 
In this equation, λab

   and λc are the principal values of the London penetration depth for a 
superconductor with uniaxial asymmetry:  λab

   and λc are determined by superconducting 
screening currents flowing parallel and perpendicular to the CuO2 planes, respectively. 
ϑ is the angle between external field and c-axis. 
From the measurement one can determine the anisotropy parameter γ. 
 

2 *
2 c c

2 *
ab ab

m
m

λ
γ = =

λ
         [7-15] 

 
ϑ = 0, Hext  || c-axis. Shielding currents flow in (a,b) plane  

  
 

ϑ = 90, Hext ⊥ c-axis. Shielding currents flow along c and a (or b) axis  
    

 

 
 
Fig. 7-19: Angular dependence of the second moment of the field distribution in YBCO single 
crystal. The curve is a fit to [7-14], γ=3.9(6). From E. M. Forgan et al., Hyperfine Interact. 63, 
71 (1990). 
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7.6 Temperature dependence of  λ(T ) and of the superconducting carrier 
density and gap symmetry 
 

From a mSR measurement we obtain s
2 *

n1
m

s ∝ ∝
λ

 .  The temperature dependence of ns 

contains information on the superconducting gap ∆(Τ). Therefore, an accurate measurement 
of the temperature dependence of λ provides information on the superconducting gap such as 
value at T=0 K and symmetry. 
 

 
 
 
 
Fig. 7-20: Density of states and state population at different temperatures in an s-wave 
superconductor, showing the opening of the superconducting gap with temperature. 
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By taking into account the thermal population of the quasiparticle excitations of the Cooper 
pairs (Bogoliubov quasiparticles) BCS theory predicts: 
 

[ ]s s
B 0

2n (T) n (0) 1 f ( ,T) 1 f ( ,T) d
k T

∞ 
 = −ε−εε   
 
 

∫      [7-16] 

 
 

2 2

B

(T) 
k T

1f ( ,T)

1 e
e +∆

e =

+

        [7-17] 

 
where e is the energy of the normal state electrons measured from the Fermi level 

( 2 2E (T)= ε + ∆  energy of the quasiparticles measured from Fermi level). 
 
For isotropic s-wave pairing (as in the case of conventional BCS superconductor) and T<<Tc: 
 
 

[ ]s s B
B

2 (0)n (T) n (0) 1 exp (0) / k T
k T

 p∆
= −− ∆  

 
     [7-18] 

and 
 

[ ]B
B

(0)(T) (0) 1 exp (0) / k T
2k T

 p∆
λ = λ + −∆  

 
      [7-19] 

 
(B. Mühlschlegel, Z. Phys. 155, 313 (1959)). 
 
The wave function of the two paired carriers can be written as the product of a space and a 
spin part: 1 1 2 2 1 2 1 2(r ,s , r ,s ) (r , r ) (s ,s )Ψ = φ χ

    . 
 
The wave function must be antisymmetric with respect to particle exchange. 

If the spin state is a singlet S=0,  1 ( )
2

χ = ↑↓ − ↓↑  the space part must be even, e.g.. s-

wave (l=0) or d-wave (l=2). Conventional BCS superconductors are so-called s-wave 
superconductors, whereas high-Tc cuprate superconductors have d-wave symmetry, with a 
gap which is angular dependent in k-space. This is observable in a measurement of the 
temperature dependence of the magnetic penetration depth. 
Instead of Eq. [7-16] we have for a d-wave superconductor: 
 

[ ]
2

s s
B 0 0

1n (T) n (0) 1 f ( ,T) 1 f ( ,T) d d
k T

π ∞ 
 = −ε−ε    ϕ ε
 π
 

∫ ∫     [7-20] 
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with: 
 

2 2

B

[ (T)cos(2 )] 
k T

1f ( ,T)

1 e
e + ∆ ϕ

e =

+

 

 

 
 
As the gap disappears along some directions of the Fermi surface (“nodes”), extremely-low-
energy quasiparticles excitations (and therefore significant pair-breaking) may occur at very 
low temperature. 
 
This is reflected in a more pronounced temperature dependence of λ than for s-wave 

pairing. Remembering that 2
0 s

m*
e n

λ =
m

 one gets for T<<Tc a linear T-dependence: 

 
Bln 2k T(T) (0) 1

(0)
 

l = l + ∆ 
        [7-21] 

 
(P. J. Hirschfeld and N. Goldenfeld, Phys. Rev. B 48, 4219 (1993)). 
 
 
 
 

ϕ 
Gap function ∆(k). It has lower 
symmetry than the Fermi surface 

xk̂   

yk̂   
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Fig. 7-21: Top: Temperature dependence of 2

ab
−λ  in a YBa2Cu3O6.95 single crystal. 

Measurement of ∆λab with microwave absorption normalized to the mSR measurements.  
Dashed line: temperature dependence for an s-wave superconductor. (mSR measurement: J. 
Sonier, Phys. Rev. Lett. 72, 744 (1994), microwave measurement: W.N. Hardy, Phys. Rev. 
Lett. 70, 3999 (1993)). Bottom: ab (T)λ  showing the linear dependence at low temperatures. 
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7.7 Melting of the flux line lattice 
 
The vortex state of a High-Tc superconductor represents a unique state of the solid that can be 
compared with a crystal and its lattice. The “lattice constant” of the vortex state can be 
changed by the external field and the temperature in a wide range. 
Especially in a HTc superconductor, the combination of extreme anisotropy, thermal 
fluctuations (important since Tc is large) and material defects lead to a complex behavior, 
which can be described by a corresponding phase diagram with phase transitions solid-liquid 
or ordered-disordered. 
 
mSR measurements were the first microscopic investigations that demonstrated the melting of 
the flux line lattice. 
 
The vortex state is characterized by the moments of the field distribution. 
  

13 3 n n
12 2 0

B                             B (B B ) p(B)dB
B

∞
< ∆ >

α = < ∆ > = − < >
< ∆ >

∫   [7-22] 

 
a represents a measure of the asymmetry of p(B). 
 
In the extreme anisotropic HTc-superconductor such as Bi2.15Sr1.85CaCu2O8+d (Tc=84 K) 
following is observed (S.L. Lee et al. Phys. Rev. Lett. 71, 3862 (1993)): 
 

a) Until 54K and Hext=45.4 mT the expected distribution is found. 
b) Increasing the temperature to 54 K (Hext= 45.4 mT) leads to a dramatic change of 

p(B). a jumps abruptly to a negative value. This behavior is interpreted as melting of 
the flux line lattice (Fig. 7-19). 

c) Increasing the external field at constant temperature (in a field cooling procedure) one 
observes above a critical field another phase transition (Fig. 7-22), which is not so 
drastic as the previous one and which is also characterized by a change of a. This 
behavior is interpreted as a transition to a less ordered solid state, with a 
dimensionality change from 3D to 2D (formation of so-called pancakes vortices). 
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 Fig. 7-22: Phase diagram of  
Bi2.15Sr1.85CaCu2O8+d and field 
distribution measured in different 
states (5 K solid, 63.8 K liquid). 
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Fig. 7-24: Phase diagram of the vortex state of BSCCO, determined from mSR and small 
angle neutron scattering experiments (SANS). 
 
 

Fig. 7-23:Magnetic-field dependence of the skewness parameter α in single crystal 
Bi2.15Sr1.85CaCu2O8+δ after field cooling at T=5K. The sharp drop in α at μ0H ~ 50 mT is 
attributed to a 3D to 2D crossover in the vortex lattice. From S.L. Lee et al. Phys. Rev. Lett. 
71, 3862 (1993). 
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7.8 Coexistence of magnetism and superconductivity  
 
Example : YBa2Cu3O6+x  (ref. S. Sanna et al., Phys. Rev. Lett. 93, 207001 (2004)) 
(x Oxygen give h=x/6 holes per Cu planar atom) 
Coexistence of magnetic (AF order and correlations) and superconducting phases can be 
investigated by a combination of ZF and TF (in vortex state) measurements.  
 
ZF: 
 

z L z T x 1

L T ZF

1

A (t) a G (t) a G (t) cos( B t)

a a a

B  : local field

µ= + γ

+ =

d

d

 

 
for a homogeneous magnetic (polycrystalline) sample: 
 

L T

ZF ZF

a a1 2   and  
a 3 a 3

= =  

 
if only part of the sample is magnetic: 
 

L T

ZF ZF

a a1 2   and 
a 3 a 3

> <  

 
The volume fraction is given by: 
 

T L
AF

ZF ZF

a a3 3f (1 )
2 a 2 a

= = −  

 
 
TF in the vortex state: 
 

2 2 2
sc n

x TF x

( )t 
2

x

0

n

A (t) a G (t) cos( B t)

G (t) e
B H(1 )      and  <1

 is the contribution of the nuclear moments

m m

s +s
−

m

= γ

=
= m + cc

s

 

 
The volume fraction is given by: 
 

TF
SC 0 c

0

af     where a  is obtained at T>T
a

=  
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Fig. 7-25:  Phase diagram of 
YBa2Cu3O6+x. Solid 
lines are guides to the eye, 
dashed  Y1-yCayBa2Cu3O6+x) 
and dotted (La2_xSrxCuO4) 
lines from C. Niedermayer 
et al., Phys. Rev. Lett. 80, 
3843 (1998). 
 

Fig. 7-26: Local field vs T at 
different doping x. 
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Fig. 7-28: TF mSR data (moH = 22 mT). Asymmetry (a) for Tf <T = 20 K<Tc and (b) for T = 
3K < Tf in sample Y15; solid curves are best fits to a Gaussian damped precession. (c) 
Relaxation rate σsc (here labelled σμ) and (d) internal field Bm from the best fits for samples 
Y15 and Y17. 
 
 
 
  

Fig. 7-27: (a) magnetic transition temperatures 
  from aL/aZF,  from 1/T1  and sc critical 
temperature Tc, vs hole concentration h; three 
samples show a distinct TN>Tf.  
(b) Muon volume fractions vs h: AF ( at T=0  
K) and SC (, for Tf<T<Tc). Lines in (a), (b) 
are guides to the eye.  
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Determining the electronic phase diagram of the LaO1-xFxFeAs superconductor 
 
 

 
 
Fig. 7-29: a) Typical zero-field mSR spectra. Only for x≤0.04 a spontaneous muon spin 
precession indicative of long-range-ordered magnetism is observed. For x≥0.05 a 
paramagnetic signal is observed down to the lowest temperatures. For x=0.05 a weak 
electronic relaxation typical for diluted static magnetism is detected below 5 K in <30% of the 
signal (visible on the long timescale in the inset). For x≥0.075 the µSR data prove that no 
static magnetism is present. b), Temperature dependence of the magnetic volume fraction for 
x=0 and 0.04. Both samples show a transition to a 100% magnetic volume fraction. The ~ 5% 
non-magnetic signal is attributed to muons stopping in the sample holder. c) Typical 
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transverse-field mSR spectra measured in an external field of 0.07 T (for clarity shown in a 
rotating reference frame with frequency 7.8 MHz). The additional Gaussian relaxation due to 
the formation of the flux-line lattice in the superconducting state is clearly observed below TC. 
Note that for x=0.20 a signal fraction of 15% does not show this additional relaxation, 
indicating the presence of a non-superconducting volume fraction (from H. Luetkens et al., 
Nature Materials 8, 305 - 309 (2009)). 
 
 
 

 
 
Fig. 7-30: a) The doping dependence of the magnetic and superconducting transition 
temperatures determined from the mSR experiments. Also shown are the tetragonal-to-
orthorhombic structural transition temperatures TS determined directly from X-ray diffraction 
and from susceptibility measurements, which show a kink and subsequent strong reduction 
below TS. b) The doping dependence of the low-temperature saturation value of the magnetic 
order parameter Bmuon(T0) and of the superfluid density ns/m* measured through               
1/λab

2(T0) in transverse-field mSR experiments. The grey data points at x=0.03 and 0.08 are 
taken from another work. The error bars indicate one standard deviation. 
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8. Muonium in semiconductors 
 
In semiconductors and insulators the positive muon can capture an electron and form stable 
muonium. This state corresponds to a non-ionized hydrogen atom in the solid. With muonium 
spin rotation it is possible to study electronic states and position of an isolated hydrogen atom 
(impurity) in the solid. Muonium states have been detected in various semiconductors and 
insulators. Muon spin rotation spectroscopy has played a pioneering role in the discovery and 
identification of intrinsic hydrogenlike states in semiconductors. Detailed investigations have 
been performed in SiO2, in the pure semiconductors Si, Ge, in diamond, in the 
semiconductors of the group (III-V) and (II-VI) and in various oxides. 
Contrary to the muon in magnetic substances or superconductors, the positive muon in a 
semiconductor is an active probe. With this we mean that we use mSR spectroscopy to 
investigate a state, which is created by the muon itself. 
 
We consider in the following as examples Si and Ge. One can distinguish different states via 
the hyperfine interaction. In Si and Ge we find at low temperatures three states: 
1) Normal muonium with a strong hyperfine interaction, 2) so called anomalous muonium 
with a weak anisotropic interaction and 3) to about 10% free or diamagnetic muon. (Ref.  
B. Patterson, Rev. Mod. Physics 60, 69 (1988) and S.F.J. Cox, Rep. Prog. Phys. 72, 116501 
(2009)). 
 

8.1 Muon-spin precession in normal muonium in transverse field 
 
Normal muonium has an isotropic hf-interaction. The Hamilton function of the hyperfine 
interaction in muonium is given by Eq. [3-34] (chapter 3), where we have determined the 
eigenstates and energy eigenvalues in a magnetic field (Eq. [3-37] to [3-39], Breit-Rabi 
diagram). 
 
Experimentally, we measure muon spin precession frequencies that correspond to transition  
frequencies between different muonium levels. 
 
Consider the transverse field experiment. At t=0 the muon spin is parallel to the x-direction: 


Bext || z ⊥ 


I( )0 || x.  
In this case we must calculate the expectation value of σx xI= 2 ([Ιx]=[1]). The Pauli matrix σx 
acts only on the muon part of the wave function.  
 
The captured electrons forming muonium are unpolarized, so their spin is with 50% 
probability parallel or antiparallel to the muon spin. 
 
This state can be represented by an incoherent superposition of two wave functions: 
 

1 S I S I

2 S I S I

1 1 1 1 1| (0) | M ,M | M ,M
2 2 2 22

1 1 1 1 1| (0) | M ,M | M ,M
2 2 2 22

 Ψ >= = = − > + = = + >  
 Ψ >= = − = − > + = − = + >  
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The wave functions at any time t are a superposition of eigenstates |i> (given in [3-39]) with 
their corresponding phase: 
 

iE4  i t1,2
1,2 i

i 1

| (t) c | i e
−

=

Ψ >= >∑         [8-1] 

 
The constants have to be determined from the initial conditions and from the normalization. 
 
Initial conditions: 
 

x y z1, 0, 0< σ >= < σ >= < σ >=        [8-2] 
 
The (observed) polarization in x-direction is then given by following expression: 
 

j k j k

1 x 1 2 x 2
(E E ) (E E )4 4 i t  i t1* 1 2* 2

k j k j
j,k 1 j,k 1

P(t) (t) | | (t) (t) | | (t)

1 1      c c e k | ( ) | j c c e k | ( ) | j
2 2

−−
−−

+ − + −
= =

=< Ψ σ Ψ > + < Ψ σ Ψ >

= < σ + σ > + < σ + σ >∑ ∑ 

         
  [8-3] 

 
This expression can be evaluated using the explicit expression for the eigenstates (see [3-39]).  
P(t) can be also evaluated within the density matrix formalism, which is useful in case of 
partial (or zero) polarization (as is the case here for the electrons) (see for instance  
E. Karlsson, Solid State Phenomena as seen by Muons, Protons and Excited nuclei, Oxford 
Science Publications 1995). 
 
Some important properties of [8-3]: 
 
• P(t) depends only on transition frequencies. 
• Selection rules of the matrix elements: the terms in the sum with j=k are zero since ,+ −σ σ  

do not possess diagonal elements. 
• From the explicit expression for |1>, |2>, |3> and |4>  (Eq. [3-39]) we note that the 

transitions 12 and 34 do not contribute to P(t). 
 
The result of the calculation gives for [8-3]: 
 

2 2
13 24 14 32

1P(t) cos (cos t cos t) sin (cos t cos t)
2

 = β ω + ω + β ω + ω     [8-4] 

 
1/ 2

2 1/ 2

1/ 2

2 1/ 2

1 xcos 1
2 (1 x )

1 xsin 1
2 (1 x )

 
β = + 

+ 

 
β = − 

+ 

       [8-5] 
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where e B B
2

0

(g g )B Bx
BA

µ
µµ + µ

= ≡


   [8-6] 

 
(for vacuum  muonium B0=0.158 T). 
 
 
Special cases 
 
A) The transition frequencies ω24 and ω14 are generally too large, to be resolved with 
conventional spectrometers with time resolution of about 0.5 ns (rms).  
 
Therefore:  
 

24 14cos t cos 0< ω >=< ω >=    
 
so that: 
 

2 2
13 32

1P(t) cos cos t sin cos t)
2

 = β ω + β ω         [8-7] 

 
This equation can be written in the following form: 
 

2

32 13

1 1 xP(t) cos t cos t sin t sin t
2 2 1 x

2

+ − + −

±

= ω ω + ω ω
+

ω ± ω
ω =

       [8-8] 

 
which gives a beat frequency (see Fig. 8-1). 
 

 
 

Fig. 8-1: TF-mSR spectrum in quartz at room temperature. Note the beating between 
frequency ν13 and ν32. 
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The corresponding frequency spectrum is: 
 

 
                                                      50                               100                              150  [MHz] 
 
Fig. 8-2: TF frequency spectrum in quartz (10 mT) at room temperature. Visible are the 
m+ precession frequency  and that of the isotropic muonium (frequency pair ν13 and ν32 
centered around 140 MHz ). 
 
From the frequency splitting we can determine the hyperfine constant A. 
With the help of Eq. [3-37] we find an expression for A or the hyperfine frequency hfν , 
which depends only on experimental quantities: 
 
 

2
13 322

hf

32 13

(h h 2h )1h A h
2 h

µ ν + ν + ν
 ν = = − ∆ν

∆ν  
∆ν = ν − ν



     [8-9] 

 
 
B) If the applied field is very small (x<<1) one can further simplify [8-7] (see also Fig. 8-6a): 
 

2 21 1cos ,sin
2 2

β ≅ β ≅  

T
32 13 Mu Mu e

1B ( )B
2

0

µ

−

ω ≅ ω ≡ ω = γ = γ − γ

ω ≅
 

 
[8-7] becomes 
 

Mu
1P(t) cos t
2

= ω          [8-10] 
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This means that in very small TF fields (< 0.5 mT), muonium shows only half of the 
polarization amplitude (corresponding to the precession of the MF = ± 1 components in the 
triplet state). In this case the muon spin polarization precesses with a Larmor  frequency

Mu 103 µω ≅ ω (with opposite sense of rotation of the precession of a “free” muon). This 
allows distinguishing the charged (m+) from the uncharged state (Mu). 
 
B) No applied field, isotropic hyperfine interaction. 
 
In this case there is only one hyperfine frequency, which in free muonium (corresponding to 
vacuum muonium) is very high (ω0/2π = 4.46 GHz). Generally it is observable only in  
systems with very good time resolution. 
 
 

 
 

  

 
Fig. 8-3: A zero-field μSR spectrum of quartz at room temperature. The Mu hyperfine 
frequency is close to the vacuum value (4.463 GHz). The FWHM time resolution of this 
experiment is 110 ps. From E. Holzschuh et al., Helvetica Physica Acta 54, 552 (1981). 
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Example of muonium spectroscopy of synthetic quartz crystal in 8 T with a high resolution 
spectrometer. The High Field μSR instrument HAL-9500 at PSI, which uses Avalanche Photo 
Diodes (APD’s) instead of the conventional photomultipliers to transform and amplify the 
scintillator signal, has a very good time resolution (variance σ=58 or 80 ps, depending on the 
readout system). This allows spectroscopy of muonium in high fields. 
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Fig. 8-4: Breit-Rabi diagram and transitions in a synthetic quartz crystal measured with 
the HAL-9500 high resolution spectrometer at PSI in a 8 T field (R. Scheuermann, 
private communication).  
 



 

242 

 
In inert non conducting substances muonium can exist in a state which is very similar to the 
atomic state. In this case it is localized in interstitial lattice positions. In alkali fluorides the 
hyperfine coupling is slightly higher than in vacuum muonium. This corresponds to a slightly 
compressed wave function with higher spin density at the muon site. Generally the hyperfine 
coupling is smaller. In some semiconductors it is even much smaller than in the free state. For 
instance in the elementary semiconductors of the group IV the electron spin density at the 
muon site is only 50% of the value in the free atom. 
 
 

 
Fig. 8-5:  Hyperfine constant for interstitial muonium in semiconductors and dielectrics. The 
graph shows the correlation between spin density at muon site and band-gap of host material 
(S.F.J. Cox J. Phys. C: Solid State Phys. 20, 3187 (1987)). 
 

8.2 Anomalous muonium 
 
In several semiconductors an additional muonium state has been found with a hyperfine 
constant which is axially symmetric around the [111] crystal axis. This state is called 
„anomalous muonium“or „anisotropic muonium“ and indicated with Mu*. 
 
In general we can write the Hamilton function of the hyperfine interaction as follows: 
 

eH B B IASµ= −µ ⋅ −µ  ⋅ +
  

          [8-11] 
 
(Compare with [3-34] Chapt. 3. Muonium and muonium spectroscopy). 
 
For anomalous muonium the assumption of an axial symmetric hyperfine tensor is justified. 
[8-11] can be written as: 
 

e x x y y || z zH B B A (I S I S ) A I Sµ ⊥= −µ ⋅ −µ  ⋅ + + +


       [8-12] 
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In the special case ˆB || z || [111] axis−


 (<111> symmetry axis)     
  
 

*
z z
e z z || z zMu

AH B B (I S I S ) A I S
2
⊥

µ + − + −= −µ ⋅ −µ  ⋅ + + +     [8-13] 

 
The eigenvalues of this Hamilton operator can be calculated as in the isotropic case. We 
obtain: 
 

2
||

1 e B B

2
||

2 e B B

2 2
|| 2

3

2 2
|| 2

4

A 1E (g g )B
4 2

A 1E (g g )B
4 2
A AE 1 x

4 2
A AE 1 x

4 2

µ
µ

µ
µ

⊥

⊥

= + µ−µ 

= −µ−µ  

= − + +

= −−  +













      [8-14]   
         
 
with  
 

2
BBe

A

B)gg(
x

⊥

µ
µ

⊥
µ+µ

=        [8-15] 
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Fig. 8-6:  Energy levels of muonium in low magnetic fields. a) Isotropic muonium. 
b) Anosotropic muonium with axial symmetry.  
 
 
 
The hyperfine interaction of Mu* is generally smaller than that of Mu 
 
A Mu

A Mu
⊥ ≅

( )
( )

.
*

0 05  in Si. Furthermore it is anisotropic A
A

|| .
⊥

≅ 0 2 in Si. The precession 

frequencies depend not only on the B-field strength but also on its direction (see Fig. 8-7, and 
Fig. 8-8 bottom). 
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Fig. 8-7: The field-dependent μ+ and Mu* precession frequencies in Si. The field was 
directed along the [111] axis. The solid line shows the expected dependence of the 
diamagnetic μ+ signal, and the finely and coarsely dashed curves are fits to the axially 
symmetric spin Hamiltonian [8-13] for angles between the field and Mu* symmetry axis of 
0 and 70.50 , respectively. From B. Patterson et al., Phys. Rev. Lett. 40, 1347 (1978). 
 
 
 
 
 

 
Fig. 8-8: Transverse-field μSR frequency spectra taken at 10 mT in quartz at room 
temperature and [111] Si at 77 K showing the precession components from diamagnetic μ+ 
(νμ+=1.36 MHz) and isotropic Mu (the pair ν12 and ν23 centered on 140 MHz). Note the 
larger Mu splitting in Si, indicating a weaker hyperfine interaction and the presence in Si 
but not in quartz of Mu* precession lines (ν12 and ν34 , θ=70.50

 , at 41 and 46 MHz). From 
J. Brewer et al., Phys. Rev. Lett., 31 143 (1973). 



 

246 

 
 
Note that in our notation of Eq. [3-37] ν12 ,ν23  and ν34 in Fig 8-8 and 8-9 are designed as ν13 
ν32  und ν24. 
 
 
 

 
Fig. 8-9:A μSR frequency spectrum taken with a high-time-resolution apparatus in high-
resistivity GaAs at 10K with a 1.15 T field applied along the [110] axis. Note the two Mu lines 
ν12  and ν34, the Mu* lines νij

*(θ) (θ is the angle between the [111] Mu* symmetry axis and the 
applied field), and the diamagnetic muon line νμ+ . From R. Kiefl et al.Phys. Rev. B 32, 530 
(1985).  
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From B. Patterson, Rev. Mod. Physics 60, 69 (1988) 
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Muonium states in elemental and III-V compound semiconductors have been found and 
studied to a great extent. Charged states Mu+ and Mu- and two forms of the neutral state Mu0 
have been identified and the interplay of site and charge states is understood. Mu0 can either 
be isotropic, when in a symmetric interstitial site such as the tetrahedral site in diamond or 
zincblende structures (Mu0

T), or anisotropic when situated at the bond-center site (Mu 0BC). In 
these semiconductors, isolated H and Mu are known to form deep-level centers. 
 

 
 

 
 
 

8.3 Weakly bound muonium (shallow muonium) 
 
More recently, studies of Mu in II-VI semiconductors revealed the existence of a third form of 
neutral anisotropic Mu0 in CdS, CdSe, CdTe and ZnO. This state has binding energies 
characteristic of shallow-level donor centers and is believed to be at the interstitial site anti-
bonding to S (Se, Te, or O). Its hyperfine interaction is very weak, amounting to 
approximately 10-4 of the free-atom value. Figure   8-9 shows the µSR signal in CdS, taken 
over a period of eight muon lifetimes. The Fourier transform of the signal shows five distinct 
frequencies, indicating an extremely shallow muonium state and providing the first 
information on this hydrogen-like impurity in the compound (J. M. Gil et al., Phys. Rev. Lett. 
83, 5294 (1999)). In addition to the Larmor precession signal at 1.38 MHz, the Fourier 
spectrum shows two pairs of lines symmetric around the central line. The outer pair  (Δν= 
335.7 kHz) and the inner pair (Δν= 214.5 kHz) together with their intensity ratios can be 
assigned to two orientations of the muonium defect center. The shallow muonium state is 
described by a hyperfine tensor which can be oriented along definite crystallographically 
equivalent directions (specific bond directions) which have different orientation with respect 
to the applied magnetic field. 
 

Fig. 8-10: Two different muonium states in Si and Ge. 
„Bond Centered muonium” MuBC  (Mu*) and “tetrahedral muonium“ MuT .  
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Fig. 8-11: µSR spectrum and its Fourier transform for undoped CdS at 2.1 K (From J.M. Gil 
et al, Phys. Rev. Lett. 83, 5294 (1999)). The magnetic field of B =10 mT was parallel to the 
hexagonal <0001> axis which was also normal to the plane of the disc-like sample. In this 
geometry, one Cd-S bond direction (suggested to be the symmetry axis of the hyperfine 
tensor) is at 0o and three are at 70.6o to the field direction. 
 
In the high field limit (A << γeB/2 = 140 MHz for B =10 mT) and axial symmetry a simple   
relation between measured frequencies and hyperfine tensor holds:  
 

2 2
||A( ) A cos A sin⊥∆n = θ = θ + θ    [8-16] 

 
where Δν is the separation of two lines symmetrical around the central line, A(θ) is the 
hyperfine interaction for a given angle θ (angle between magnetic field and symmetry axis), 
and A|| and A⊥

are the hyperfine interaction couplings parallel and perpendicular to the 
symmetry axis, given by the Cd-S bond direction.  
The analysis of the spectrum of Fig. 8-11 yields A|| = 335(7) kHz and A⊥

=199(6) kHz. 
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Fig. 8-12: Paramagnetic (Mu) fraction (open squares) and diamagnetic fraction (closed 
circles) as a function of temperature for CdS at B=10 mT and an angle of 54.7o. 
 
The asymmetry as a function of temperature shows that the diamagnetic line grows at the 
expense of the paramagnetic lines (Fig. 8-12). This is taken as evidence that the muonium 
center becomes ionized, i.e., that the electron is no longer bound to the muon. The binding 
energy of the electron obtained from the activation energy is Ed=18 meV indicating that 
muonium forms a shallow level with a widely distributed electron wave function as already 
suggested by the low hyperfine interaction. 
 

 

 
 
 
 
Fig. 8-13: Shallow muonium state in CdS (green circle) and energy level. 
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9. Thin film and heterostructure studies with low energy muons 
 
 
Experiments making use of surface muons can’t provide depth selective information or study 
extremely thin samples. With the initial implantation energy of 4.1 MeV, the stopping range 
of muons in a solid varies from 0.1 mm to 1 mm with a wide distribution of about 20% of the 
mean value and thus only measurements of the bulk properties can be performed. To extend 
the scope of the mSR technique to materials, which are of interest in the newly developing 
technologies of nanomaterials, multilayered thin films, high temperature superconductors etc., 
spin-polarized muon beams with tunable energies from several eV to several keV and narrow 
energy distribution are required. These particles can be implanted at well-defined depths 
ranging from just fractions of a nanometer to a few hundred nanometers (see Fig. 9-1).  
 
 

 
Fig. 9-1: Mean (straight curve) and rms (dash–dotted curve) projected range of positive 
muons implanted in YBa2Cu3O7−δ as a function of kinetic energy. An absolute energy 
uncertainty of 400 eV for low energy muons and a relative uncertainty of 6% for the energetic 
ones has been assumed. The dotted curve at low energies displays the intrinsic resolution for a 
monoenergetic beam. Whereas the so-called surface muons (~ 4 MeV) are used to investigate 
bulk properties of matter, low energy muons (LEM) extend the applications of mSR 
techniques to the study of thin films, multilayers and depth dependent investigation on 
nanometer scale.  
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9.1 Generation of slow m+ by moderation in thin layers of cryosolids 
 
The most successful method of generating muons with energies of only ~ 15 eV is the muon 
moderation technique in condensed van der Waals gases, developed at the Paul Scherrer 
Institute (PSI) in Switzerland, where it is now routinely used for nanoscale investigations. 
If energetic surface m+ are injected into the back of a thin foil (~ 100 mm) covered with a very 
thin layer (< 1 mm) of a condensed van der Waals gas (such as the Ar, Ne or N2 cryosolids), 
very slow m+ are emitted from its downstream side (D.R.  Harshman et al., Phys. Rev. B 36, 
8850 (1987), E. Morenzoni et al.,  J. Appl. Phys. 81, 3340 (1997)). The energy distribution of 
these particles shows a maximum near 15 eV, with a tail extending to higher energies (see 
Fig. 9-2). The mechanism is hot emission: the observed very slow m+ are particles, which have 
not completely thermalized in the thin overlayer; therefore they are termed epithermal (i.e. 
above thermal) m+.  

 
Fig. 9-2: Energy spectrum of the emitted muons after moderation of surface muons in some 
rare gas solids and solid Nitrogen. The useful energy interval of epithermal muons is shown. 
From E. Morenzoni, Physics and applications of low energy muons, in Muon Science, edited 
by S. Lee, S. Kilcoyne, R. Cywinski , IOP Publishing, pp. 343-404, (1999).   
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The moderation steps can be summarized as follows. Initially, the surface m+ rapidly loses 
energy in the thin foil substrate by Coulomb collisions with electrons and by ionizing and 
exciting the target atoms (electron-hole pair and exciton creation). When a m+ has lost most of 
its energy, at energies below ∼ 10 keV, charge exchanging cycles, involving muonium 
formation in one collision (where the positive muon captures an electron) and muonium 
break-up in one of the following collisions, also acquire importance as energy dissipating 
mechanisms (see Chapt. 4. Positive and negative muons in matter). In wide band-gap perfect 
insulators such as solid Kr, Ar, N2, and Ne (band-gap energy between 11 and 22 eV) these 
electronic processes have high threshold energies.  
Therefore once the m+ has reached a kinetic energy of the order of these levels, the 
corresponding efficient electronic energy loss mechanisms are strongly suppressed or even 
become energetically impossible. As a consequence, the energy loss rate becomes 
considerably lower, since the relatively inefficient elastic scattering and phonon excitation 
processes remain as the only energy loss mechanisms (see Fig. 4-1).  
 
This results in a large escape depth for epithermal m+ (about 100 nm for Ar and 50 nm for Kr), 
giving rise to a particularly efficient moderation to epithermal energies in these materials. 
Epithermal m+ emission conserves the initial polarization (practically 100%), since 
depolarization via electron and Coulomb scattering is negligible and the overall time for 
slowing down to ~10 eV is very short (∼ 10 ps).  This is an essential feature for the use of 
these particles as magnetic microprobes on the nanometer scale. Moderation efficiencies 
range between 1.5 ·10-4 for solid Ne and ~ 5·10-5 for N2 and Ar. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Fig. 9-3: Asymmetry of very slow muons emitted from a solid Argon layer and precessing in 
a 5 mT transverse magnetic field. The amplitude corresponds to a 
practically 100% polarization. From E. Morenzoni et al., Phys. Rev. Lett. 72, 2793 (1994).  
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Fig. 9-4: Moderation efficiency εμ , defined as the number of epithermal μ+ divided by the 
number of incoming surface μ+, for various moderating materials as a function of the 
thickness of the solid van der Waals layer condensed onto a patterned Ag substrate, which 
was held at a temperature of 6 K. From E. Morenzoni et al., J. Phys.: Condens. Matter 16, 
S4583 (2004) and T. Prokscha et al., Applied Surface Science 172, 235 (2001). 
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9.2 Generation of slow m+ by laser resonant ionisation of muonium 
 
An alternative method uses resonant 2-photon ionisation of muonium atoms, which are 
thermally diffusing out of a hot W foil where surface muons are stopped. Muonium is ionized 
by the pulsed operation (25 Hz or 50 Hz) of a specially developed laser system (K. Nagamine 
et al. Phys. Rev. Lett. 74, 4811 (1995)). 
This method is well-suited for pulsed experiments and can potentially produce muons with 
energies as low as 0.2 eV (2000 K). This method has been tested at the ISIS (UK) pulsed 
muon source producing about 10-20 slow muons per seconds and is being implemented at the 
new μSR facility at J-PARC, Japan, where higher intensities are expected (Y. Miyake et al., 
JPS Conf. Proc. 010101 (2014)). 
 
 
 

 
 
 
Fig. 9-5: Principle of thermal muonium (Mu) generation from tungsten foil and 2-photon 
resonant ionization of muonium resulting in the production of low energy positive muons. 
From P. Bakule and E. Morenzoni, Contemporary Physics 25, 203 (2004).   
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9.3 The Low-Energy Muon (LEM) instrument at PSI 
 
 

 
 
 
Fig. 9-6: Low energy polarized muon beam generated via moderation and mSR spectrometer 
for experiments on thin films, multilayers and near surface regions at the Paul Scherrer 
Institute. Typical intensities and beam characteristics are given. 
 
Epithermal muons emitted from a moderator represent the source of the low energy beam of 
polarized m+ with tunable energy in the desired range. The practical realization of this scheme, 
developed and in use at PSI, is shown in figure 9-5. This beam is an example of a tertiary 
beam (the primary being the proton beam generating pions and the secondary the surface 
muon beam originating from the decay of the pions).  
 
The detailed operation is as follows. “Surface” muons are incident at a continuous rate of 
presently ~2 108/s onto the cryogenic moderator held at a positive potential between 12 and 
20 kV. Epithermal muons emerging from the moderator are accelerated in this potential, 
transported and focused by electrostatic lenses and a mirror to the sample, where they arrive 
at a rate of ~ 4500/s. The electrostatic mirror is used to separate the low energy muons from 
any fast muons exiting the moderator. The low energy muons are detected when they pass 
through a ~ 10 nm thick carbon foil (corresponding to only about 50 atomic layers) placed at 
an intermediate focus of the beam transport system (“trigger detector” in Fig. 9-6 and 9-7). 
The m+ traversing the foil eject a few electrons, which are directed by a grid system to a 
micro-channel plate detector where they are detected. This scheme keeps the amount of 
material interacting with the muons and the consequent effects on the trajectory minimal, 
while allowing for an efficient (>80%) and fast detection. On passing through the foil, the 
muons lose about 1 keV and acquire an rms energy spread of ~ 0.4 keV. This detector 
provides the information about the implantation time of the muon in the sample and starts a 
time differential measurement (remember: PSI delivers so called continuous beams and only 
one muon at a time has to be present in the sample, see Chapt. 5. Principles of Muon Spin 
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Rotation/Relaxation/Resonance). The trigger signal is also used to measure the time-of-flight 
(TOF) of each low energy muon after it was detected at a scintillator on entering the 
apparatus. By selecting on TOF, one discards muons coming from the moderator with 
energies outside the epithermal region, but with low enough energy to be reflected by the 
mirror. The final kinetic energy of the muons implanted into the sample may be varied over 
the range 0 to 30 keV by applying an accelerating or decelerating potential of up to 12 kV to 
the sample, which is mounted in good thermal but electrically insulating contact with a 
cryostat for low temperature experiments or on other types of sample holder. The 90° 
deflection at the electrostatic mirror has also the practical effect of transforming the initially 
longitudinally polarized muon beam into a transversely polarized beam (when the muons 
arrive at the sample, they are horizontally polarized, transverse to their direction of motion). 
A small spin rotator can rotate the spin by 90° to have the spin parallel to the momentum (Z. 
Salman et al.,  Physics Procedia, 30, 55, (2012)). The decay positrons from the muons 
implanted in the sample are detected by a set of scintillator detectors placed left, right, above 
and below the beam axis. 
 

 
 
Fig. 9-7: Details of the main components of the LEM setup.  
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Fig. 9-8: LEM instrument in the μE4 area at PSI. Top: last section of the high intensity 
surface muon beam feeding the LEM apparatus. Bottom: LEM Apparatus. The surface muons 
are coming from the right. The moderator cryostat with the 90° deflection as well as the μSR 
spectrometer and sample chamber in the lower part of the picture are visible (T. Prokscha et 
al., Nuclear Instruments and Methods in Physics Research  A 595, 317 (2008)).  
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9.4 Stopping profiles of Low-Energy Muons in thin films 
 
In bulk mSR experiments the exact stopping position is not known and is also irrelevant, as 
long as the sample is homogenous; in the experiment it is sufficient to ensure that the particles 
stop inside the sample. In contrast, for unrestricted use of muons on the nm scale, it is 
important to understand their implantation behavior in detail.  
 
When the muon enters a solid sample the initial kinetic energy, which is much larger than the 
thermal energy of diffusion, is dissipated within a few ps. It continuously loses energy 
predominantly by electronic collisions and changes direction mainly by Coulomb scattering 
with the target nuclei. Due to the random nature of the collisions a stopping profile n(z, E) is 
obtained as a result of the thermalization process of a muon ensemble of energy E (z depth 
from the sample surface). First moment and rms of 
this distribution are shown in Fig. 9-1 for μ+ stopping in the high temperature superconductor 
YBa2Cu3O7−δ. The first quantity represents the projection to the beam direction of the total 
distance travelled (projected range, Rp) and the second the corresponding straggle (ΔRp). The 
curves shown in Fig. 9-1 have been obtained from the moments of implantation profiles 
calculated by using Monte Carlo codes originally developed for protons and heavy ions and 
taking into account the typical finite energy resolution of the impinging beam. In the 
simulation the muon is treated as a proton-like projectile of mass mμ ≈ 1/9 mp = 0.113 amu. At 
low energies 
the profile width is typically 5–10 nm. Even for perfectly monoenergetic particles there is an 
inherent limit to the depth resolution due to the statistical broadening of the μ+ implantation 
profile. This intrinsic broadening is the dominant effect for μ+ of  energy larger than ≈ 2 keV.  
 
To determine experimentally their stopping site one can rely on the property that polarized 
muons thermalized in metals behave as a free m+, whereas the large majority of muons 
thermalized in insulators bind an electron and form muonium (Fig. 9-9). Because of the 
different magnetic moments, the two states (free muon and muonium in the triplet state, mF= 
± 1) and therefore the rest position can be easily distinguished by their different muon spin 
precession frequency in a low static magnetic field 



B transverse to the initial spin direction 
(Larmor precession frequency [ ]mT BmT/Mrad 8516.0B ⋅=γ=ω mm

 

and 

[ ]Mu 87.617 Mrad / mT B mT  ω = ⋅ , see Chapt. 8. Muonium in semiconductors). In a sample 
composed of a thin (thickness d) metallic layer deposited on an insulator, the amplitude of the 
corresponding frequency is then directly proportional to the fraction of muons stopped in the 
corresponding layer. In the experiment one determines partial integrals of the range 
distribution: 
 

d

0

N(d, z) n(z,E)dz= ∫          [9-1] 

 
By comparing these fractions with the predictions obtained by Monte Carlo programs, which 
calculate step-by-step the trajectory of the particle implanted and simulate their slowing 
down, scattering and thermalization, we are able to test our understanding of these processes.  
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Fig. 9-9: Principle of the muon depth profile studies in metal-insulator films. The fraction of 
muons stopping in the metal or in the insulator layer can be distinguished by their different 
Larmor frequency. The results can be compared with Monte Carlo simulations of the muon 
stopping profile n(x,E). 
 
 
 
Figure 9-10 shows as an example the muon fraction measured in a bilayer consisting of Cu 
deposited on quartz SiO2.  
After an increase at low energies, the fraction of muons stopping in the metal saturates, when 
essentially all the particles thermalize in the metallic layer. Increasing further the energy the 
fraction decreases, when the muons penetrate the metallic layer and reach the insulating layer, 
where they predominantly form muonium. The decrease of the free muon fraction is 
accompanied by a corresponding increase of the muonium fraction (not shown). The increase 
with energy at a few keV is a consequence of reflection and simultaneous neutralization of 
muons scattered at the metallic surface or re-emerging from the bulk. This effect is especially 
pronounced in samples containing heavy elements. The comparison with simulated integrals 
of implantation profiles and reflection probabilities shows that we are able to suitably predict 
the behavior of keV muons. 
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Fig. 9-10: Energy dependence of the diamagnetic asymmetry in Cu deposited on a quartz 
glass: closed symbols thin (d = 68 nm), open symbols thick (d = 500 nm) sample. The solid 
lines are the prediction of a simulation based on the TRIM.SP Monte Carlo program (W. 
Eckstein, Computer Simulation of Ion–Solid Interactions, 
Springer, Berlin, Heidelberg, New York, 1991). The dotted line in the intermediate energy 
region shows upper and lower limits due to the layer thickness uncertainty. The dashed curves 
are the prediction of the SRIM2000 code (J.F. Ziegler et al., in The Stopping and Range of 
Ions in Solids, Vol. 1, Pergamon, New York, 1985). From E. Morenzoni et al., Nucl. Instrum.  
Meth. B 192, 254 (2002). 
 
 
The full differential implantation profile n(z, E) can be directly imaged in a single 
implantation and imaging experiment. In analogy with the magnetic resonance imaging 
technique this quantity can be obtained from the spectrum of the Larmor precession 
frequencies in an inhomogeneous transverse magnetic field 
B(z) of known gradient applied to the sample. The local magnetic field at each stopping site 
causes a corresponding precession of the muon spin. The temporal evolution of the 
polarization, P(t), measured at a well-defined energy E is related to the field profile B(z) and 
the stopping distribution n(z,E):  
 

0

P(t) p(B)cos( Bt )dB
∞

µ= γ + ϕ∫        [9-2] 

 
p(B) is obtained by Fourier transform. 
 
The field distribution sensed by the muons distributed over a profile n(z, E) is connected to 
this quantity by the relationship 
 
n(z,E)dz p(B,E)dB=        [9-3]  
 
which states that the probability that a muon will experience a field in the interval [B, B +dB] 
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is given by the probability that it will stop at a depth in the range [z, z + dz].  
 
From [9-3] we have 
 

dBn(z,E) p(B,E)
dz

=  

 
Which shows that the differential stopping distribution can be determined if a sufficiently 
large and known magnetic field gradient is applied over the range profile 
 
Due to the reduced values of Rp and ΔRp sizably larger field gradients are necessary. For this 
we make use of the magnetic field exponentially penetrating the surface of an extreme type-II 
superconductor in the Meissner state B(z) = Bext exp(−z/λ) ( see Sect. 9.5). With typical 
values of Bext≈ 10 mT and λ ≈100 nm, field gradients Bext/λ ≈ 105T m−1 can be generated 
within the range distribution of LE-μ+.18 
 

 
 
Fig. 9-11: Implantation profile of 3.4 keV muons in a thin film of YBa2Cu3O7-δ obtained by 
the direct imaging technique (circles). The profile is compared with predictions of Monte 
Carlo calculations using the code TRIM.SP with different assumptions about the scattering 
potential. From E. Morenzoni et al., J. Phys.: Condens. Matter 16, S4583 (2004). 
The various tests show that muon implantation profiles in thin films and heterostructures can 
be reliably simulated with a modified version of the Monte Carlo program TRIM.SP. 
  
 

                                                 
18 Please note that in the next section we will assume the knowledge of the implantation profile to 
microscopically prove that the field is penetrating exponentially and to make an absolute measurement of the 
London penetration depth and its temperature dependence. Here, by contrast, we assume an exponentially 
decaying magnetic profile with known λab to measure the depth profile. The argument is non-circular since for 
the present analysis we determine the value of λab by an independent measurement in the vortex state (C. 
Niedermayer et al., Phys. Rev. Lett. 93, 3932 (1999)). 
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Fig. 9-11: Monte Carlo calculation of stopping profiles of low energy muons in YBCO, as a 
function of the implantation energy. 
 
 
 
  

0 50 100 150 200
0.00

0.01

0.02

0.03

0.04

0.05

29.4 keV

24.9 keV
20.9 keV

15.9 keV

6.9 keV

3.4 keV

 

 

 Depth [nm]

St
op

pi
ng

 D
en

si
ty



 

264 

9.5 Magnetic field penetration at the surface of superconductors 
 
 
The depth sensitivity in nm range of LE-m+ implanted in the surface region and the local 
character of the muon probe allow to directly measure single values of magnetic fields as a 
function of depth, thus to image magnetic field profiles beneath the surface of materials on a 
nanometer length. At the moment, no other technique is able to provide this information.  
 
To illustrate the near surface sensitivity of LE-μSR we consider here the Meissner effect and a 
measurement of B(z). This yields a direct determination of otherwise not easily accessible 
quantities such as magnetic penetration depth and coherence length. 
 In a superconductor in the Meissner state an applied field is excluded from the bulk and will 
penetrate only in a near surface region. In the so-called London limit (λ>>ξ, “clean” 
superconductor l >>ξ0), for a plane superconducting surface, the functional form of the  
decaying magnetic field B(z) is predicted to be exponential, with the decay length determined 
by a single parameter, the London penetration depth λL. 
 
This follows from the description of the electrodynamic response of an extreme Type II 
superconductor, which can be described by the two London equations: 
 
 

2
0 L

2 2
0 L 0 L

dj 1 E     
dt

1 1rotj B      (j= A)  

=
µ λ

= −−
µ λ µ λ

d

d

d d dd

  

 
From the second London equation and the Maxwell equation relating field and current (see 
Chapt. 7. mSR studies of superconductivity) it follows for Bappl parallel to the surface: 

L

z 

applB(z)=B e

                                           

−
l        [9-4] 

The magnetic penetration depth 𝜆𝜆𝐿𝐿 is a fundamental length of a superconductor, since its 
value reflects the number density ns and effective mass m* of the superconducting carriers 

through the London expression 
*

2L
0 s

m
e nλ =

m
.  

 
As expressed by the name, it is a measure of how deep a magnetic field penetrates at the 
surface of a superconductor in the Meissner state when a field is applied parallel to its surface. 
It is a measure of the response of the superconductor to a low frequent electromagnetic field. 
Besides perfect conductivity, the diamagnetic response to an applied magnetic field is a 
fundamental property of a superconductor. The superconductor tries to exclude or expel the 
magnetic flux from its core by shielding the interior with supercurrents flowing in the surface 
layer. Since an infinite surface current is unphysical the external field is able to penetrate a 
short distance into the superconductor.  
It is interesting to note that Eq. [9-4] was predicted already in 1935 (F. London  and H. 
London Proc. R. Soc. A 149, 71 (1935)), but never experimentally tested before at 
microscopic level. LE-mSR provided the first experimental proof of it. Differently from a 
measurement in the vortex state, the measurement in the Meissner state provides an absolute 
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and model independent determination of λ. Α determination from the vortex state (Chapt.7. 
mSR studies of superconductivity) is a very reliable and efficient method but it has to rely on a 
theory describing vortex state (Ginzburg-Landau, London, …) relating measured field 
distribution p(B) (or its moments) with λ, a regular vortex lattice of known symmetry and 
eventually  take into account effects of field dependence, non-local and non-linear effects, and 
the influence of disorder. 
 
If the second fundamental length scale in a superconductor, the coherence length ξ,  is non-
negligible, the electrodynamical response of the superconductor has to be averaged over it 
(A.B. Pippard Proc. R. Soc. A 216, 547 (1953) and J. Bardeen, L.N. Cooper and J.R. 
Schrieffer Phys. Rev. 108, 117521 (1957)). 
 
Pippard first considered this non-local electrodynamical response 
 

R
ξ

2 4
0 L

0

R R ×A(r )1 3j(r)  e dr
4 (T) R

1 1 1      R = r - r          ,          = +
ξ ξ

- ′  ′= -
µ πλ ξ

′

∫
 

            

      

dd d

d

d

d d

d

d d



    [9-5] 

 
The equivalent BCS expression is: 
 
          [9-6] 
 
  
 
 
 
 
 
 
If λ>>ξ the response becomes local and  
 

2
0 L

1j(r) A(r) = −
µ λ

 

           [9-7] 

 
From which [9-4] follows. 
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Fig. 9-12 shows the first measurement of a field profile with LE-muons in a YBa2Cu3O7-δ film 
providing a direct confirmation of the London formula. 
 

 
 
Fig. 9-12: Values of field versus depth for various values of sample temperature 20 K, 50 K, 
70 K, and 80 K. The solid lines represent fits of Eq. (5) to the data with 𝜆𝜆𝐿𝐿 as the free 
parameter. From T.J. Jackson et al., Phys. Rev. Lett. 84, 4958 (2000). 
 
The theoretical lines are plots of 
 

L
ext

L

d zcosh( )
B(z)=B dcosh( )

                                           

−
λ

λ
       [9-8] 

 
which is the form taken by Eq. [9-4] for a film of thickness 2d, with flux penetrating from 
both surfaces. The value of z in Eq. [9-8] has been corrected by a small quantity z0, 
corresponding to a “dead layer.” This may partly be due to a thin layer that is non- 
superconducting, but arises mainly from the surface roughness of the film, which increases 
the effective penetration depth in the surface layers.  
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Fig. 9-13 shows an example of non-local response in a Pb film. From the fit one finds a 
coherence length ξ0=59(3) nm and an effective London penetration depth λeff(0)=90(5) nm. 
The effective London penetration depth takes into account corrections due to the scattering of 
electrons. In the clean limit (i.e. for  𝑙𝑙 → ∞)  
λeff = λL. 
 
 

 
 
 
 
Fig. 9-14: Magnetic penetration profiles for Pb at various temperatures. The solid lines are 
BCS fits to the data, whereas the dashed line represents B(z)=Bext exp(−z/λ) where the λ from 
the BCS fit is used. From A. Suter at al. Phys. Rev. B 72, 024506 (2005). 
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9.6 In-plane anisotropy of the magnetic penetration depth in ultra clean 
YBa2Cu3O6.92 
 
The dependence of λ on T, Bappl, orientation, composition, gives information about 
microscopic properties of superconductor (order parameter, gap symmetry, anisotropy,..).  
Recently, a direct measurement of the magnetic field profile in an oriented mosaic of high-
purity crystals of YBa2Cu3O6.92 (Tc = 94.1 K, ΔTc ≤ 0.1 K) has been performed, to determine 
the anisotropy of the magnetic penetration depth. The crystals are detwinned, so that by 
applying the external field parallel to the a-axis (b-axis), λb (λa)  is measured (see Fig. 9-15). 
 
 

 
 

Fig. 9-15: Geometry of the experiment to measure the in-plane anisotropy of the magnetic 
penetration depth.  
 
In YBa2Cu3O6+x the x additional Oxygen goes to the b-axis (so called CuO chains). This 
additional Oxygen provides holes to the CuO2 planes leading to superconductivity for x 
0.35.  
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Fig. 9-16: Structure of YBCO, showing the CuO2 planes and the CuO chains (orange: Cu, 
green: O). 
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Fig. 9-17: (a) The muon precession signal in the normal state of YBa2Cu3O6.92 at  
110 K in an external field of 9.46 mT applied parallel  to the a-direction. The mean 
implantation energy is E=14.1 keV that corresponds to a mean implantation depth of  62.8nm. 
The small damping rate is attributed to Cu nuclear dipole moments.  
(b) Same conditions as (a) except  in the superconducting state at T=8 K. The curve is a fit to 
a London model profile. The inset shows the calculated stopping distribution. (c) Same 
conditions as (b) except the energy of implantation is increased to 22 keV. From R. F. Kiefl et 
al., Phys. Rev. B  81, 180502(R) (2010). 
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Fig. 9-18: The average magnetic field versus mean stopping depth in an applied field of 9.46 
mT such that the shielding currents are flowing in the a and b direction, respectively. The 
curves are the average fields generated from a global fit of all the spectra at T = 8 K taken at 
all energies and for both orientations. From B. M. Wojek, PhD Thesis, University of Zurich, 
2011. 
 
Figure 9.18 shows the average local field <B> as a function of beam energy (bottom scale) 
and the corresponding mean implantation depth (top scale) at T = 8 K.  
The filled circles and open squares are from data taken with the shielding currents flowing 
along the a and b axes, respectively, or equivalently the magnetic field along the b (magnetic 
penetration depth λa) and a axes (magnetic penetration depth λb), respectively. The profiles 
clearly reflect the anisotropy of the penetration depth. From the measurements at different 
temperatures we extrapolate the in-plane anisotropy λa/λb =1.19 ± 0.01 at T = 0. This shows 
that the chain contribute to the superfluid density. Fig. 9-19 (top) shows the temperature 
dependence of the superfluid density along a and b direction. The data can be well fitted with 
a pure dx2-y2 order parameter. The bottom part of Fig. 9-19 shows the data normalized to 
1/λa,b(0)2, where for the normalization the absolute values of the magnetic penetration depths 
obtained from the LE-μSR experiment have been used. No particular difference between the 
two crystal orientations is observed, at variance with previous surface impedance 
measurements. In this respect it is important to remark that the slopes of the normalized 
curves crucially depend on the knowledge of the absolute value of λa,b(0). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

272 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 9-19: Top: Temperature dependence of the superfluid density along a and b axis. Bottom: 
Normalized superfluid density. From  B. M. Wojek, PhD Thesis, University of Zurich, 2011. 
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The very similar shape of the normalized superfluid densities indicate that the presence of the 
CuO chains along the b axis simply adds superfluid density without changing the symmetry 
of the order parameter. The measured λa and λb are in surprisingly good agreement with 
average value of the in-plane magnetic penetration depth λab = (λa∙λb)1/2 obtained from bulk 
μSR studies of the vortex state of an earlier generation of crystals. In that case λab is obtained 
from an extrapolation of an effective field-dependent penetration depth to zero field. This 
suggests that the effective field-dependent penetration depth in the vortex state, at least in the 
present case, extrapolates to the actual London penetration depth in the Meissner state to 
within an accuracy of a few percent. The agreement is remarkable considering that there are 
several phenomenological parameters involved in the fit of the vortex-state data.  
 
 

9.7 Giant proximity effect in cuprate heterostructures 
 
By directly mapping the magnetic field profile in cuprate heterostructures, it is possible to 
probe the diamagnetic Meissner response of non-superconducting cuprate barrier layers, when 
they are brought in close contact with superconducting layers. 
Generally the adjacency of materials with different electronic properties gives rise to 
reciprocal influence. For instance, if a thin normal metal layer is brought in close contact with 
a superconducting layer, in the interface region Cooper pair can enter the normal layer. The 
layer may become superconducting and the same time superconductivity is weakened in the 
superconducting layer (proximity effect).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9-20: Normal-superconducting bilayer (NS), showing qualitatively the order parameter 
and the proximity effect. 
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In cuprates the proximity effect is non-conventional due to the anomalous ‘normal’ (metallic) 
state above the critical temperature Tc of high-temperature-superconducting cuprates which 
features a pseudogap in the density of states and unexpected charge and spin responses. Also 
unusual diamagnetic signals have been observed, among other an enhanced Nernst effect and 
unusual supercurrent transport over thick barriers at temperatures well above the Tc′ of the 
barrier.  
 
The results of B(z) are shown for heterostructures consisting of three layers, each 46 nm 
thick; optimally doped (OP) La1.84Sr0.16CuO4 (Tc ≈ 32 K) was used for the top and the bottom 
‘electrodes’, whereas underdoped (UD) La1.94Sr0.06CuO4 (Tc′ < 5 K) served as the ‘barrier’. 
The barrier with a low Tc′ offers a broad temperature interval to search for putative long-range 
proximity effects. Similar results have been obtained with 32 nm thick barriers.  
The films were grown on (001)-oriented LaSrAlO4 substrates in a molecular beam epitaxy 
system designed for atomic-layer engineering of complex oxide materials. The typical surface 
roughness determined by AFM was 0.5 nm, much less than one unit-cell height (1.3 nm). The 
UD layer was grown as a single layer (SL) or as a barrier in the trilayer structure (TL). The 
single phase films were used for control measurements. The comparison of the magnetic 
behavior in the two cases, which strongly depends on the doping level, confirms the 
equivalence of the layer and its position in the La2 − xSrxCuO4 phase diagram.  
To map the diamagnetic response of the heterostructure as a function of position along the 
crystal c axis (z coordinate), the samples are cooled in ZF from above Tc to  ~ 4.3 K,  a 
magnetic field of 9.5 mT parallel applied to the ab planes (x direction) and μSR spectra 
collected as a function of the muon implantation energy. The depth profile of the mean field 
〈Bx〉 at different temperatures is shown in Fig. 9-21. 
 
It demonstrates the main result: At 10 K, 15 K and 17 K—that is, well above Tc′—the local 
field is lower than the applied field at all depths, meaning that the entire heterostructure 
excludes the magnetic flux like a conventional superconductor. The profile has the form of an 
exponential field decay in the Meissner state with the flux penetrating from both sides and 
looks like that for two superconductors with different magnetic penetration depths. The 
observed field profile reflects the shielding supercurrent that runs along the c axis as well as 
in the ab planes of the barrier; note that 〈jab〉 = 〈(1/μ0) dBx/dz〉 ≠ 0. This is unexpected when 
one recalls that in this geometry the supercurrent must pass through the ‘barrier’ La1.94Sr0.06CuO4  

region that is 46 nm thick.  
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Fig. 9-21: Depth profile of the local field in a cuprate heterostructure at different 
temperatures. The vertical lines indicate the position of the interfaces of the La1.84Sr0.16CuO4 
(46 nm)/La1.94Sr0.06CuO4 (46 nm)/ La1.84Sr0.16CuO4 (46 nm) heterostructure. The horizontal 
dashed line shows the applied field of 9.5 mT. Points: measured average fields. The entire 
heterostructure excludes the magnetic flux like a superconductor: it shows the Meissner effect 
with the UD layer active in the screening.  This functional form can only be observed if 
shielding supercurrents flow across (that is, along the c axis) as well as in the ab planes of the 
UD barrier. The lines are obtained from fits using a London model. The fit takes into account 
the energy-dependent muon stopping profiles, which are also used to calculate the average 
stop depth <zμ> (upper scale). From E. Morenzoni et al., Nature Communications 2, 272 
(2011). 
 
A comparison of the temperature dependence of the average field in the center of a single-
phase film of UD La1.94Sr0.06CuO4 with that in the barrier of the same composition inside a 
trilayer heterostructure clearly shows that the SL case no shift is observed, whereas in the TL 
structure a shift up to Teff ≈ 22 K is observed. What we observe here is a manifestation of a 
giant proximity effect. This is particularly remarkable if one considers that the Meissner effect 
is a hallmark of superconductivity.   
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Fig. 9-22: Temperature dependence. Field measured at the centre of the underdoped (UD) 
layer: as a single layer (open symbols) or as a barrier with thickness of 46 nm in the trilayer 
(filled symbols). In the latter case the average local field is diamagnetically shifted up to Teff 
≅ 22 K. Above this temperature its value is within the experimental error equal to the applied 
field. No shift is observed for a single UD layer 
 

 
 
Fig. 9-23: Temperature dependence of the magnetic penetration depths in the barrier (black 
triangles, 𝜆𝜆′ and in the electrode layer (red circles, 𝜆𝜆) compared with typical behaviour in 
optimally doped crystals (blue line). Error bars give the fit errors. The dashed lines are guides 
to the eyes. The divergent behavior of  𝜆𝜆′ close to 22 K indicates the disappearance of the 
induced superconductivity in the barrier at that temperature. The temperature dependence 
indicates that the induced superfluid density in the barrier layer is more sensitive to thermal 
excitation than in a bulk superconductor. 
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The conventional proximity theory in which the depth of penetration of Cooper pairs into a 
normal metal N is given by the induced coherence length ξN cannot account for this 
observation. In the usual situation, where the electron–electron interaction VN → 0 and Tc′ = 0, 
one has N F B( /2π )v k Tξ =   in the clean limit (vF is the Fermi velocity). For T > Tc′, given that in 
UD cuprates the transport along c axis is semiconducting, it is more appropriate to use the 
dirty-limit expression 1 2

N B( /2π ) /
chv l k Tξ = , where l is the mean free path and vc the velocity 

along the c axis. For T > 8 K, this gives ξN < 2.5 nm, much smaller than the barrier thickness d 
= 46 nm.  
Several models (existence of local superconducting clusters, quenching of phase fluctuations 
by the presence of adjacent layers with long-range phase order) have been proposed that are 
able to provide an enhanced length scale of the proximity effect.  
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9.8 Probing the spin injection in an organic spin valve 
 
An organic spin valve is an example of heterostructure studied with LE-μSR, which is also a 
prototype device. Spin valves consist essentially of two ferromagnetic layers which can be 
magnetized parallel or antiparallel to each other and a barrier level. They show 
magnetoresistance. The property of giant magnetoresistance in metallic multilayers was 
discovered in 1988.  Already in 1997 this property found its application in sensors (e.g. in 
read-head of hard disks). In 2007 A. Fert and P. Grünberg won the Nobel prize for the 
discovery. Using organic materials has great potentially technological relevance because 
organic materials can be synthetized at low price and can be easily shaped. Magnetoresistance 
with organic semiconducting spacer has been demonstrated (Fig. 9-24). 
 

 
 

 
 
 

Fig. 9-24:  Magnetoresistance AP P

AP

R RRMR
R R

−∆
= =   versus temperature and as a function 

of thickness for an organic spin valve (Z.H. Xiong et al., Nature 427, 821 (2004)). AP: 
antiparallel orientation of the magnetization of top and bottom layer. P: parallel orientation 
(see Fig. 9-25 and 9-27). 
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The injection of polarized spins in an organic spin valve has microscopically been observed 
by a depth-dependent change of the mean field and the skewness of the LE-μSR line shape 
p(Bμ) (see Fig. 9-25 and 9-26). 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

Fig. 9-25: a) Principle of the LE-μSR experiment to probe spin injection in an organic spin 
valve. (A. Drew et al.   Nature Materials 8, 109 (2009), L. Schultz et al. Nature Materials 10, 
39 (2011)). Muons are stopped in the barrier layer at a depth determined by their energy. 
There they precess in the local field, which is composed of the applied field and the field 
produced by the electronic spin polarization. The stopping profile is shown in b). 

 

 

 

Fig. 9-26: Organic semiconductor Alq3:  C27 H18 N3 O3Al. 

  

I on 

I  off 

appl 

Alq3 

x 



 

280 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9-27: Magnetoresistance and hysteresis of the organic spin valve used in the LE-μSR 
experiment. The different coercive field of the top and bottom ferromagnetic layers allow to 
switch the spin valve in one of the 4 states (2 with parallel magnetization, two with 
antiparallel magnetization). 

Principle of the experiment: 

-Spins are injected from the top (and bottom) layers into the barrier by applying a small 
voltage across the structure. These spins have long spin coherence time >10-5 s >> τμ , giving 
rise to a static electronic polarization <sz(x)>.   

-In the organic material they produce static field Bspin(x) ∝  <sz(x)> that adds (or subtracts) to 
Bappl used to select the spin valve state 

- Bµ =Bappl ± Bspin(x) is detected by muons stopped at various depths.  
     
- The field distribution p(Bµ) is obtained from the Fourier transform of the polarization signal.  

-The Bspin component can be determined by switching on/off the injection with current 
(voltage) and by changing its sign with respect to Bappl , i.e. by reversing the polarization of 
the top electrode. 

 

 

   Bappl 
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Fig. 9-28: Field distribution measured at various values of the applied voltage.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9-29: Field distribution measured with and without polarized current and difference of 
the two spectra.  
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Fig. 9-30: a) Magnetoresistance and measured points with corresponding spin valve state. b) 
Difference of field distributions (Current on –current off) for two states of the spin valve and 
c) Skewness of the field distribution determined from the differences.  

 

 

 

 

 

 

 

 

 

 

Magnetoresistance  

Skewness 

field distributions: Ion - Ioff 

b) 
c) 

a) 



 

283 

 

 

 

Fig.  9-31: Spin injection detected by shape analysis of local field distribution p(Bµ). The 
temperature dependence of the spin diffusion length correlates with the magnetoresistance. 
This experiment is the first direct measurement of spin diffusion length in a working spin 
valve. From A. Drew et al. Nature Materials 8, 109 (2009). 

From the overall analysis of the field distributions in the different states of the spin valve the 
spin diffusion length can be determined. It is found that its temperature dependence correlates 
with the temperature dependence of the magnetoresistance. 
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