

Library of Processes Nanopatterning and Applications

First Edition with results of the NaPa-project, March 2008

Editor:H. SchiftPublisher:J. Ahopelto, NaPa Consortium

Nanopatterning and Applications

First edition with results of the NaPa-project, March 2008

IMPRESSUM

NaPa-Project:	EC-funded project in EU-FP6 framework, Contract no. NMP4-CT 2003- 500120, NaPa board members J. Ahopelto, C.M. Sotomayor-Torres, J. Brugger, H. Wolf, C. Vieu, G. Grützner, J. Greer and H. Kapitza					
Edited by:	H. Schift, Paul Scherrer Institut, Switzerland					
Published by:	NaPa consortium represented by J. Ahopelto					
Copyright ©:	Part I: H. Schift Part II: by the authors of the library contributions					
ISBN-Number:	978-3-00-024396-7					
Cover:	Nanoimprint setup at Paul Scherrer Institut (photo by H.R. Bramaz)					
Printed by:	micro resist technology GmbH Berlin, Germany, www.microresist.com					

Please reference the NaPa LoP as:

NaPa Library of Processes, ed. H. Schift, published by the NaPa-consortium represented by J. Ahopelto, first edition (2008), ISBN 978-3-00-024396-7.; URL: http://www.NAPAIP.org

Content

The "NaPa" Project	4
	_
Part I: Introduction – a Cookbook for Nanopatterning	7
1 Summary	. 7
2. To Whom this Library is Addressed	7
3. Towards a Library of Processes for Alternative Lithography	8
3.] Generalities	8
3.2 How this Library is Structured	8
3.3 Mode of Dissemination	9
3.4 Addresses for Feedback	. 9
4. Cookbook for Alternative Nanonatterning	10
4.1 Generalities	10
4.2 Which Process to Choose	12
4.3 Nanoimprint Lithography (NIL) – for Beginners	15
4.4 Soft Lithography (SL) – for Beginners	17
4.5 Stencil Lithography (STEN) – for Beginners	20
5. Nanoimprint Lithography	22
5.1 Generalities - Overview	22
5.2 Hard Stamps	23
5.3 Surface treatment	24
5.3.1 Treatment in liquid phase	24
5.3.2 Treatment in vapour phase	24
5.4 Resists, Substrates and Tools	26
5.5 Hot Embossing Machines	27
5.6 Processes – Part 1 : Thermal Nanoimprint with Simple Pattern Transfer	32
5.7 Processes – Part 2 : Process Variants for Resist Patterning	38
5.8 Step and Repeat Nanoimprint Lithography	45
5.9 References	46
Part II : Appendix - Process Library	47
1 Summery	47
1. Summary	47
2. Rules for this Library	47
2.1 Kutes 2.2 Structure of Processes	47
2.2 Shacking of Flocesses	47
2.5 New churcs	47
2.4 Templates	50
3.1 Stamps for Nanoimprint Lithography	51
3.2 Suspended Polymer Membranes	55
3.3 Polymer Multilaveres by Reverse UV-NIL	59
3.4 Combined Nanoimprint and Photolithography	63
3.5 Double Side Patterned OI FD	67
3.6 High Resolution Linear Encoder	72
3 7 Onlical Grating by Step & Stamp NII	78
3.8 Photonic Crystals for Enhanced Light Extraction	81
3 9 Refractive Microlenses	85
3 10 Fast Isothermal Imprint	89
3.11 Pattern Transfer Optimization	92
3.12 Biodegradable Polymer Scaffold	95
3 13 Fluidic Channels by Roll to Roll NIL	00
3.14 V-Grooves for Plasmon Confinement.	03
3.15 NEMS Device	06

4. Soft Lithography - Microcontact Lithography	110
4.1 Alkanthiol Printing	111
4.2 Protein Patterning	114
4.3 Polar Ink Printing	117
5. Soft Lithography – UV-Nanoimprint Lithography	121
5.1 Optical Resonators	122
5.2 Mix- and Match of Soft-NIL and OL	125
6. Stencil Lithography	128
6.1 Surface Structures	129
6.2 Alignment	132
6.3 Cleaning	136
6.4 Double Angle Evaporation	139
6.5 Dynamic Stencil.	142
6.6 OLED Device	145
6.7 Integration of NEMS with CMOS	150

Disclaimer

The research presented here was partially funded in the framework of the EC-funded project *NaPa* (Contract no. NMP4-CT 2003-500120), by EU funds and by the Swiss Federal Office for Science and Education (OFES no. 03.0424-4). The content of this work is the sole responsibility of the authors. However, the authors of the processes are not liable for errors in the descriptions or for improper use of processes that use dangerous or poisonous media. We are not liable for any misuse; the recipes are not error proof.

This library intends to be of help for a researcher, engineer or technician experienced in basic chemical and lithographic processes. It is intented for a person who is familiar with basic cleanroom and chemical process knowledge. The processes described in this library do not have the same level of maturity. Some of the recipes cannot be used without significant own further development. Therefore, the user should make a distinction between processes which are ready to use or which are still in development.

The "NaPa" Project

From 2004 to 2008, the EU Integrated Project "Emerging Nanopatterning Methods" (NaPa) brought together 35 leading academic and industrial European institutions with a vast amount of know-how in nanofabrication. In total, the partners contributed 4'500 person months to the project. The NaPa consortium integrated the new patterning methods, Nanoimprint Lithography, Soft Lithography & Self-assembly and MEMS-based Nanopatterning, into one project, both anticipating and responding to the increasing need for technologies, standards and metrology required to harness the new application-relevant properties of engineered structures with nm-scale features. The NaPa consortium complemented the deep UV technology by providing low-cost scalable processes and tools to cover the needs of nanopatterning from CMOS back-end processes through photonics to biotechnology. It showed the ability to integrate different materials and functionalities. In addition to the further development of process technology, including processes, tools, and materials, a range of applications is an intrinsic part of NaPa. This goes far beyond the development of a next generation nanolithography for chip manufacturing. While at the beginning of the project many processes were still at an embryonic stage, towards the end of the project many processes have gone through a phase of consolidation. An example for this is that during the last years many applications have emerged. The research in the three overarching themes was supported by developments in the subprojects Materials, Tools and Simulation. Complementing R&D, the consortium designed exciting nanoscience and nanoengineering courses to advance the training of the next generation of scientists and engineers and to create a positive attitude towards science among young people. Dissemination activities towards the lay public and sectors underrepresented in nanotechnology formed an integral part in NaPa. Thus, NaPa offered a unique opportunity to unleash the potentials of nanotechnology in Europe. Europe is very well positioned to play a major role in nanomanufacturing but there is strong competition from other parts of the globe. The NaPa project has made this positioning possible, as one of the 40 most successful projects of the European Commission 6th framework program. One of the main outputs of NaPa is the NaPa Library of Processes, which includes processes for scalable and cost-efficient manufacturing of e.g. polymer-based optical elements, organic LEDs and labon-a-chip systems among others. The NaPa library currently consists of 27 processes, which is a small fraction of the process developed during the project. The uptake of the NaPa project results will strongly affect the manufacturability in nanotechnology.

For more information about NaPa, please contact:

Prof. J. Ahopelto, project coordinator: jouni.ahopelto@vtt.fi

WEB site: NaPa Integrated Project [online]. URL: http://www.NAPAIP.org

NaPa Partners

NaPa Core Part	tners	
Technical Research Centre of Finland (VTT) - Finland	Jouni Ahopelto	√∨ <i>π</i>
Tyndall National Institute - National Microelec- tronics Research Centre (NMRC/Tyndall) - Ireland	Clivia Sotomayor-Torres	Tyndall
Ecole Polytechnique Federale de Lausanne (EPFL) - Switzerland	Juergen Brugger	CEDEL POLYTECHNIESE FEDERALF OL LAISANNE
IBM Research GmbH (IBM) - Switzerland	Heiko Wolf	IBM.
Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS-CNRS) - France	Christophe Vieu	°ks <mark>€AA</mark> S•
Micro Resist Technology GmbH (MRT) - Germany	Gabi Grützner	micro resist technol gy
Tyndall National Institute - National Microelec- tronics Research Centre (NMRC/PNG) - Ireland	Jim Greer	
SUSS MicroTec AG (SUSS) - Germany	Hannes Kapitza	

Participating Groups					
Centre suisse d'Electronique et de Microtechnique (CSEM) - Switzer- land	Harry Heinzelmann	csem			
AMO GmbH Gesellschaft für Angwandte Mikro- und Optoelektronik mbH (AMO) - Germany	Ulrich Platchetka	AMO			
CEMES-CNRS Centre d'Elaboration de Materiaux et d'Etudes structu- rales (CEMES) - France	Thierry Ondarçuhu	CEMES			
Fundacion CIDETEC (CIDETEC) - Spain	Jose Pomposo				
Consejo Superior de Investigaciones Científicas - Instituto de Microelectronica de Barcelona (CNM) - Spain	Francesc Perez-Murano	CUUÔ			
EV Group, E. Thallner GmbH (EVG) - Austria	Thomas Glinsner				
C.R.F. Societá Consortile per Azioni (CRF) - Italy	Vito Lambertini				
Institute of Microelectronics Technology, Russian Academy of Sciences (IMT) - Russia	Sergei Zaitsev				
Fundacion Inasmet (Inasmet) -Spain	Isabel Obieta	inasmet			
Instituto per i Processi Chimico Fisici sezione di Bari Consiglio Nacionale delle Ricerche (IPCF) - Italy	M. Lucia Curri	C			
Commissariat à l'Energie Atomique (LETI) - France	Stefan Landis	leti œ			
Linköpings Universitet (LiU) - Sweden	Olle Inganäs				
LPN-CNRS Laboratoire de Photonique et de nanostructures, Déléga- tion Régionale Ile de France, Ouest et Nord (LPN) - France	Yong Chen, Anne Pépin	CAR AND ALLER			
LTM-CNRS laboratoire des Technoloquies de la Microelectronique, Délégation Régionale Rhône-Alpes (LTM) - France	Cecile Gourgon				
Lund University (LU) - Sweden	Lars Montelius	LUND			
University of Twente, MESA+ Research Institute (SMCT) - Nether- lands	Jurriaan Huskens	Universiteit Twente de andersonade entersiteit			
Technical University of Denmark (MIC) - Denmark	Anders Kristensen				
NanoComms (NC) - Ireland	Peter O'Brien	NanoComms			
Nanoplus Nanosystems and Technologies GmbH (nanoplus) - Ger- many	Johannes Koeth	Navvysku avi Deter nano <mark>plus</mark>			
NPL Management Ltd (NPL) - United Kingdom	David Mendels	NPLO			
Obducat (obd) - Sweden	Babak Heidari	abducat			
Paul Scherrer Institut (PSI) - Switzerland	Helmut Schift				

Instituto Nazionale física della Materia (TASC) - Italy	Massimo Tormen	TASC
Fundacion Tekniker (Tekniker) - Spain	Santos Merino	Tekniker
University of Glasgow (UG) - United Kingdom	Chris Wilkinson	University of Glasgow
Warsaw university of Technology (WUT) - Poland	Zygmunt Rymuza	Ô
University of Twente (AMK) - Netherlands	Dave Blank	Universiteit Twente de enterenande entersiteit

Contributions to this library

The first entries into this library (to the Annex in Part II) are from partners in the NaPa project.

VTT Information Technology/Finland Dr. Tapio Mäkelä / Tomi Haatainen / Päivi Majander / Prof. Dr. Jouni Ahopelto

EPFL-IMM - Lausanne/Switzerland Prof. Dr. Jürgen Brugger / Dr. Marc A. F. van den Boogaart

IBM ZRL - Zürich/Switzerland Dr. Heiko Wolf

Tyndall NIL, Cork/Ireland Dr. Vincent Reboud / Dr. Nikolaos Kehagias / Prof. Dr. Clivia Sotomayor-Torres

micro resist technology GmbH, Berlin/Germany Dr. Freimut Reuther / Gabi Gruetzner

AMO GmbH, Aachen, Germany Dr. Ulrich Plachetka

CNM - Barcelona/Spain Irene Fernandez-Cuesta / Julien Arcamone / Prof. Dr. Francesc Pérez-Murano

CRF Fiat - Orbassano/Italy Dr. Vito Lambertini

CNRS - LAAS, Toulouse, France Prof. Dr. Christophe Vieu **CEA-LETI - Grenoble/France** Dr. Stéfan Landis

LPN-CNRS - Marcoussis /France Prof. Dr. Yong Chen

LTM-CNRS - Grenoble/France Dr. Cécile Gourgon

MESA+ - Enschede/The Netherlands Dr. Jurriaan Huskens / Dr. Veera B. Sadhu

MIC/DTU - Lyngby/Denmark Prof. Dr. Anders Kristensen

PSI/LMN - Villigen/Switzerland Dr. Helmut Schift

INFM TASC - Trieste/Italy Dr. Massimo Tormen

Tekniker - Eibar/Spain Dr. Santos Merino

University of Glasgow - Glasgow/United Kingdom Dr. Nikolaj Gadegaard / Dr. Mathis Riehle / Dr. Kris Seunarine / Prof. Dr. Christopher Wilkinson

Lund University - Lund/Sweden Dr. Ivan Maximov / Prof. Dr. Lars Montelius

PART I : INTRODUCTION – A COOKBOOK FOR NANOPATTERNING

1. Summary

This library is not *an introduction to nanopatterning*, with long introductions into the fundamentals of different processes and explanations about the limitations of processes. Nor is it presenting the state-of-the-art, i.e. the newest developments and shippings around the world. It is also not complete; therefore, many nanopatterning methods are missing. This is subject of publications, reviews and books. What is it then?

This is a *cookbook*, and a cookbook should be simple. It also requires a certain amount of familiarity with the subject. As in cookbooks, it will rather be a collection of processes, recipes, references, which can be selected without reading the entire book. It is the result of the European Integrated Project *NaPa*, which during a 4 years period gathered scientists and engineers to develop a range of nanopatterning method, with the aim that they become enabling techniques for a range of institutes.

In this library of processes (LoP) the need of applied scientists and process engineers in research and industry for reliable patterning processes is addressed. It is an introduction into basic nanopatterning processes from a practical point of view, and complements the reviews and publications already published in books and journals in a unique way only possible by a collective approach. This is done for the parallel patterning methods developed in the NaPa project, with a focus on thermal nanoimprint lithography (NIL), but it also takes up the input from the two other main processes for parallel processing from the NaPa project, soft lithography (SL) and stencil lithography (STEN). The aim is to enable researchers and engineers to choose from different processes depending on the specific challenges of a new application. Three different approaches are provided, ordered in two parts. In the first section of this Part I we try to satisfy the beginners' needs for practical advice, with easy-to-go recipes in a cookbook fashion. A second section gives more information about general processing issues, by presenting standard lithographic processes with emphasis on single layer pattern transfer. In addition, tables and schemes are provided. Part II - an appendix - is a collection of more elaborate processes, which - depending on equipment and application - can vary to a large extend. This collection of recipes is intended for the experienced user, and has to be complemented by the technological literature in publications and patents. The library is far from being complete and perfect, and does not have the ambition to cover every aspect of the processes used. It could serve as the basis for a living document, which – depending on its way of dissemination – can be an integral part of the nanofabrication community.

2. To Whom this Library is Addressed

Alternative nanopatterning methods are needed both by research institutes and by industry. This library is aimed on these different users, with the idea in mind that the *comparison of processes*, rather than the *description of single processes*, helps to step into the manufacturing. The library, however, is not meant to be a buyers' guide for building up a new nanoimprint laboratory or production site. Real comparisons of processes can only be made by benchmarking with defined rules and boundary conditions. In the last 4 years several rounds of benchmarking were performed on NIL within NaPa. The main result can be described as the following: good results can be achieved with almost any kind of equipment currently on the market, and different applications may profit from the advantages of different equipment. The resulting machine is often a compromise. Restrictions of flexibility, alignment, speed, technological limitations can be overcome by further developing both, equipment and processes. The user will profit from the competition between manufactures. However, the inability of machine builders to compare tools in an objective way makes it difficult for the customer to do this and demands a high level of knowledge about the state of the art.

3. Towards a Library of Processes for Alternative Lithography

3.1 Generalities

The vast number of publications, which describe complex processes and are often only valid for one application, overwhelms the user. Furthermore, in these publications, basic concepts are missing, which enable the beginner to become acquainted with the process in an easy-to-go manner. In this library, the need of process engineers in research and industry for reliable pattern processes is addressed.

The NaPa project was a unique platform for a collective approach to develop alternative processes for lithography. It has advantages over the bilateral exchange of scientists and the dissemination during conferences, because:

- It united partners with different equipment to work on related issues with a practical point of focus (e.g. an application or process issue), and gives more room for exchange.
- It created a platform for exchange of researchers and collaborations, which is flexible and adaptable during the project time. Researchers opened their labs to visitors from other labs. They jointly used equipment, and exchanged tools, and samples.

All this is of benefit for the community, which currently growths steadily. While the number of research groups building up NIL processes is continuously increasing, nanoimprint is now moving into industry. All these people normally do not have a platform for comparison, or exchange.

3.2 How this Library is Structured

The reader often wants to get a simple ready-to-use process with a wide process window, or has an application that defines which process can be used. Most of the applications are based on simple pattern transfer: there the resist (one layer of polymer) is structured by an alternative patterning method and post-processing is similar to standard e-beam lithography. In this case, we have to note only the specific differences between conventional techniques and the NIL, i.e. steps or precautions that are necessary, have to introduce a new process step. E.g. for lift-off, undercuts have to be created, since the sidewalls in NIL are at best vertical. For more complex applications, e.g. when multilevel stamps are used, alignment is needed or pattern transfer is done via repeated reversal imprint, it is advisable to revise the entire traditional process route, which is a challenge to the thinking of a process engineer specialized and familiar with planar technology. While in the first case generalities are needed, in the latter case there is an abundance of processes, which cannot be written down in a process library. It is by definition incomplete, and often – depending on specific equipment and materials – not easily transferable without a deep understanding of process characteristics and knowledge about the fabrication tools used.

A library of processes will enable people to get quickly into processes:

- In the first section, we try to satisfy the beginners' needs for practical advice, with a short presentation and comparison of processes and easy-to-go recipes in a cookbook fashion, for the processes nanoimprint, soft lithography and stencil lithography. It is a mixture of concepts and some initial process parameters for a quick start.
- A second section gives more information about general processing issues in nanoimprint lithography, by presenting standard lithographic processes with emphasis on single layer pattern transfer. In addition, tables and schemes are provided. Simple (basic) recipes are presented, which are modified depending on the application.
- The third section, structured as an appendix to the introductory sections, is a collection of more elaborate processes, which depending on equipment and application can vary to a large extend. This collection of recipes is intended for the experienced user, and has to be complemented by the technological literature in publications and patents. The library is far from being complete and perfect, and does not have the ambition to cover every aspect of the processes used. It is a loose collection of processes rather than a book.

3.3 Mode of Dissemination

This library is printed as a booklet in a limited number by the Napa consortium and distributed by NaPa partners. It is not sold in bookshops or via internet. Information about how to get copies of this library will be placed on the NaPa web site [1] or elsewhere. The library's status is that of the end of the NaPa project (Feb. 2008). This has practical reasons, because the NaPa consortium will not meet any more as a whole as it did frequently during the active time of the NaPa project. Whether it becomes a "living document" in a future framework, with recipes added in a regular way, or made available for download, is an open question and largely depends on the feedback, but also the financial and logistic possibilities of a future editor, along with legal issues such as copyright.

The library is not published as a textbook with theory and overviews, about the state of the art of nanopatterning, as it was done before the start of NaPa in [2], with contributions from several NaPa authors, for several reasons: First, time was too short at the end of the NaPa project to go through all the editing process for a book of this size and content. The lifetime of its recipes will be short and within a few years, many of them will be improved or obsolete. Second, the library is mainly the result of a collection of recipes from different researchers, and therefore not of same style and depth. Most recipes are not checked by independent sources, i.e. there is a chance that recipes do not work out if copied.

It can serve as the basis for lectures and courses on nanopatterning. The NaPa project organized a series of Summer Schools in Toulouse each year in July called PANAMA. The concept of this training was a "hands-on" approach of nanotechnologies focused on nanopatterning. PANAMA stands for "PAtterning at the NAnoscale – Methods and Applications". The concept of summer schools dedicated to nanopatterning and applications has been selected as the main tool for training actively young scientists in the domains relevant to NaPa project. The format was a small school (24 students), combining one week of magisterial courses on Nanopatterning, Applications in Industry and Ethical and Societal Issues and one week of practical training on Emerging Nanopatterning Methods. The school was organized by C. Vieu (LAAS-CNRS) together with his team. The lectures and practical training involved researchers from almost all NaPa partners, with a range of basic and specific questions on nanopatterning – with a focus on those processes within the NaPa subprojects. It is therefore a complement to the library of processes. It is planned that the PANAMA Summer Schools will continue in a different framework after the end of NaPa.

- [1] NaPa Integrated Project [online]. URL: http://www.NAPAIP.org.
- [2] C. Sotomayor Torres: Alternative Lithography Unleashing the Potential of Nanotechnology, book series on Nanostructure Science and Technology, book series on Nanostructure Science and Technology in Kluwer Academic/Plenum Publishers, Springer, editor D.J. Lockwood. Hardbound, ISBN 0-306-47858-7, Nov. 2003, 425 pp. (2003).

3.4 Addresses for Feedback

This library is compiled from a range of inputs from different partners. The current version is a direct result from activities of the Napa project. The introduction and overview about nanoimprint lithography stems from lectures and articles written by H. Schift (see Section 5.10), who is the library manager for this edition. Suggestions about new input and a possible update of the library should be addressed to J. Ahopelto, VTT and H. Schift, Paul Scherrer Institut. Please do not contact the editor for copies of this library.

NaPa Project Coordinator and Publisher	Editor and NaPa Library of Processes Manager		
Prof. Dr. Jouni Ahopelto	for this edition		
Research Professor	Dr. Helmut Schift		
VTT Information Technology	Labor für Mikro- und Nanotechnologie		
P.O. Box 1208	Paul Scherrer Institut (PSI)		
FIN-02044 VTT	CH-5232 Villigen PSI		
Finland	Switzerland		
e-mail: jouni.ahopelto@vtt.fi	e-mail: helmut.schift@psi.ch		
www: http://www.vtt.fi	www: http://www.psi.ch/lmn		

4. Cookbook for Alternative Nanopatterning

4.1 Generalities

Either a cookbook contains easy-to-go recipes with thumb rules for the beginner, or more elaborate recipes for the professional. The latter will be able to develop basic recipes into an own set of recipes. In the world of nanopatterning, this means that a basic recipe is something that always works out, with a great tolerance range, while the success of a more elaborate recipe is dependent on the experience and the ability to adapt these experiences to a new situation with many (new) parameters. In this section, we try to do satisfy the beginners' needs for practical advice, however, without going into technological details. More elaborate recipes for the experienced engineer are collected at the end of this report, without any claim on completeness. This cookbook is the part of the library, which may be used as an easy introduction for a beginner, with the aim, to enable him to get a fast hands-on experience with nanopatterning.

Printed circuit boards are a good example of how lithography was used for the patterning of metal wires on an insulating plastic substrate. The assembly of a variety of electronic elements was much facilitated by this board, which served both as a mechanical support, and for the wiring between them. For simple circuits made from discrete elements, a single layer of metal lanes was often sufficient (see Fig. 4.1). The mounting was done by drilling holes into the board and soldering the discrete elements to the wires of the backside of the board. These wires were defined by an optical mask, and produced by photolithography and etching as pattern transfer (see Fig. 4.2).

Printed Boards for Electronic Circuits

Printed board with mounted electronic elements

Backside with wires to connect electronic elements

Figure 4.1: Photographs of a printed board after mounting of the electronic elements (front and back side).

The methods of printed circuit board fabrication were much refined in photolithography (see Fig. 4.2) and scaled down by many orders of magnitude. The mask fabrication, first by gluing patches of opaque tape on a transparent carrier, was then fabricated by plotters and photographic printers, and finally glass masks were fabricated by focused laser or electron beam lithography of resist with a thin opaque chromium layer as blocking layer for UV light. Mask aligners for 100 to 200 mm glass mask and silicon substrates are now precision tools with sub-µm alignment and leveling. The pattern transfer processes have been equally developed, and apart from etching processes, electroplating and lift-off methods are now widely used. An overview is given in Fig. 4.3

Printed Boards for Electronic Circuits - Lithography

Base material

+ Mask foil

Exposure setup

+

Developed Resist

Printed Boards for Electronic Circuits – Pattern Transfer

Copper etching

Drilling

Conductor lines free

Mounting

Soldering

Photographs of printed board fabrication sequence: lithography and pattern transfer (source unknown).

NaPa

Figure 4.3: Example of standard photon and electron based lithography and pattern transfer.

These schemes of lithography and pattern transfer are similar in the alternative patterning methods presented here, with some restrictions and variations.

4.2 Which Process to Choose

Everybody having access to advanced photolithography (PL) and electron beam lithography (EBL) enjoys the benefit of these techniques. He or she will not easily switch to a different process, which is less mature than the standard lithographies. The change is often necessary if either mass fabrication aspects have to be met, or – more and more often – standard lithographies come to their limits, in terms of throughput, resolution, accessability and reproducability. In many cases, the decision for a different lithographic process is based on the needs of a specific pattern transfer process. The lithographic process is only complete when the resist pattern is transferred into another material. This process, in which the resist is transformed into a patterned masking layer, allows the substrate to be attacked by plasma, etching solvents, electroplating, deposition of materials and other substrate altering processes. E.g. in NIL, a unique advantage of molding instead of exposure is that complex stamp profiles, such as staircases, V-grooves, pyramids, both convex and concave, can be replicated. They can be used for the generation of 3D structures as for T-gate transistors or contact holes or serve for the step-wise etching of underlying layers with variation of the opening width. As long as undercuts and 3D patterning is not necessary, in most cases this pattern transfer is therefore similar to EBL.

The general (very simple) rule is the following: If a resist has to be structured with a three-dimensional sub-500 nm pattern, then nanoimprint should be employed, because it is nearest to the common lithography. If chemical patterning is needed, then soft lithography, based microcontact printing is of advantage, it is also low cost, and suitable for fabrication in a chemical lab without expensive cleanroom facilities. In addition, if patterning has to be done over topography, a soft stamp or stencil method is predestined for use – stencil is very adapted to pattern different kinds of materials, too. However, there are many intersections where different techniques may be used with similar results. A first comparison can be seen in Tab. 4.1.

Table 4.1. Comparison of different alternative patterning methods.

Pattering	Patterning Scheme	Process	Specific advantages	Industrial
Process Thermal Nano- imprint Lithog- raphy (NIL, T- NIL) – Hot Em- bossing Lithog- raphy (HEL)		Stamp: hard, opaque (silicon wafers) Process: Thermoplastic molding at elevated temperature (100-200°C), demolding at low temperature (20-100°C) Tools: Hot presses (1-100 kN)	Similar to standard lithog- raphy (generating a thick- ness contrast of a resist) Maximum resolution: 2-5 nm Variety of thermoplastic materials Standard materials for stamps and substrates	Activity Very large research community, industry with increasing activity
UV- Nanoimprint Lithography (UV-NIL) a) Hard Stamp (Step and Flash) Lithography (SL) b) Soft Lithogra- phy (SL)		Stamp: a) transparent (quartz) b) elastomer with hard backplate Process: Molding of liquid resin and hardening by UV-exposure Tools: a) step and repeat tool with UV-lamp b) modified mask aligner	Similar to standard lithog- raphy (thickness contrast of a resist, UV-exposure of negative resist) Maximum resolution: 2-5 nm Fast, no heating involved	Fairly large research community with increas- ing activity, industry
Soft Lithogra- phy (SL) – Mi- crocontact Printing (µCP)		Stamp: Elastomer, often backed by a hard plate Process: Transfer of an ink from the stamp surface (and from the bulk) Tools: chemical lab, modi- fied mask aligner	Surface patterning of functional molecules possi- ble (chemical contrast) Maximum resolution: 50 nm Easy stamp fabrication and printing Unexpensive	Beginning, first profes- sional tools available
Stencil Lithog- raphy (STEN)		Template: hard, thin MEMS membrane (Si ₃ N ₄) Process: Thermal evaporation in vacuum Tools: Physical vapor deposition combined with modified mask aligner	Patterning over topography possible (topological con- trast) Maximum resolution: 50 nm	Beginning, first profes- sional tools available

In the next section, we are presenting the different methods in more detail. For a better comparison, we start by standard optical lithography, before giving an introduction on imprint and stencil lithography.

NaPa

Figure 4.4: Process sequence for photolithography for top: negative resist and bottom: positive resist

Short description

Photolithography is a standard method for resist patterning. It uses a semitransparent mask and exposes the resist locally. Depending on the type of resist (positive or negative tone), the exposed areas become soluble or are crosslinked. This contrast in solubility makes it possible to selectively remove one part of the resist. Both contact of mask to resist and proximity patterning is possible.

Main application

> Standard lithography method for many applications (in the microrange).

Advantages

- > No residual layer.
- > No mechanical contact during proximity patterning.
- Undercuts can be created for better lift-off

Disadvantages

- Semi-transparent mask needed.
- Yellow room needed

- M.J. Madou: Fundamentals of Microfabrication. Second edition, CRC-Press. ISBN: 0849308267, March 2002, 723 pp., (2002) 239-278.
- [2] T.A. Brunner, Why optical lithography will live forever, J. Vac. Sci. Technol. B 21(6) (2003) 2632-2637.

4.3 Nanoimprint Lithography (NIL) – for Beginners

What is Nanoimprint Lithography ? - Short description

In Nanoimprint Lithography (NIL), the thermal version is also called Hot Embossing Lithography (HEL), a hard stamp with a surface relief is used to deform a softened polymer layer. The generated thickness contrast can be used as a mask for pattern transfer to the substrate.

Nanoimprint Lithography in daily life? – Examples

- > Molding of waffles with a hot structured iron.
- Printing a seal into wax.

When do you use Nanoimprint Lithography ? - Main applications

- Resist based processes (replacement of e-beam lithography), 3D patterning of surfaces
- Mix- and match applications with resist based (optical) lithography

Advantages

- > The resist can be prepared as a solid layer on silicon and glass substrates by spincoating before imprint.
- A crosslinkable resist is more stable in subsequent processes
- A photosensitive resist can be exposed by optical lithography after imprint (add microstructures)

Restrictions

- The main bottleneck is to provide suitable stamps, which normally are fabricated via electron beam lithography and etching. It is highly advisable to make stamp copies via NIL and use them instead of the orginal, which reduces the risk of damaging the original due to handling errors.
- Nickel stamps (by electroplating) are often not suitable because of the thermal expansion mismatch between stamp and substrate

How do you start Nanoimprint Lithography ? - Main tools, materials, processes

- Basic cleanroom facilities and processes (mask aligner, silicon cleaning, plasma processes for ashing, residual layer etching) are of advantage. Laminar flow is necessary to avoid contamination by dust.
- Antiadhesive coating setup (basically once the stamp is coated, this coating can last for a long time, but occasional re-coating might be of advantage)
- Hot press (pressure and heat which a parallel force, or a press on a pressurized membrane) with sufficient plate size, pressure, and the possibility to heat and cool these platens
- > Optical microscope (stereo / high resolution) for quality control
- Beginners often break stamps because silicon is susceptible to notching due to contamination, scratches (due to handling errors) and bad alignment of stamp and substrate
- \blacktriangleright Use same size of stamp and substrate (e.g. 20x20mm² or entire wafers), or smaller stamps

Beginners' "kit" for Nanoimprint Lithography

- ➤ Manual hydraulic press with up to 1 tons force and heating platens. Temperature range up to 200 °C. Cost: > 1000 €. Simpler (for demonstration) is a metal clamp which is heated in an oven. However, efficient cooling (e.g. with nitrogen gas is beneficial) is needed.
- ➢ Resist (PMMA, molecular weight 75k, or mr-I 8030E). Thickness 300 nm. Cost: 50 € to 2000 € / lit.
- > Stamp with antiadhesive coating, regular pattern (grating) with largest features around 10 μ m, depth around 200 nm, protrusion coverage around 50%.
- Antiadhesive coating. Cost of perfluorinated silane $100 \in /10$ ml (for > 50 coatings)
- ➤ Rubber (PDMS), 1 mm thick, from the workshop
- > Tweezers and doctors blade for demolding.

Thermal-NIL (Hot Embossing)

NaP

Figure 4.5: Process sequence for thermal nanoimprint lithography.

Nanoimprint : Process description

In a parallel press setup, the imprint is quite simple; apply heat and pressure in a controlled way

Stamp and materials

- Stack of stamp and substrate + compliance layer on top is assembled on press stamper
- > Use stamp silicon with smooth vertical sidewalls, smaller or equal size than silicon substrate
- Antiadhesive coating needed

Process parameters

- > Imprint in purely viscous state $50 70^{\circ}$ C above the glass transition T_g. Demolding 20°C below T_g.
- > Pressure between 10 100 bar, applied after imprint temperature is reached, maintained cooling
- Imprint time 1 min (without heating/cooling) up to 30 min, depending on structures and temperature; e.g. a stamp covered with a grating of dense micropillars will imprint in less than 1 min (without cooling)
- Evacuation before imprint is beneficial but not prerequisite (air is compressed and dissolves)
- > Manual demolding using a doctor's blade easier when substrates have a small wedge at the corner

Restrictions - and how to deal with them

> Avoid any kind of notch effect; furthermore reduce bending, shearing and local high pressures

- H. Schift and A. Kristensen, *Nanoimprint* lithography: Chapter (Part A/8) in "*Handbook of nanotechnology*". Volume editor B. Bhushan, second edition, rev. and extended, Springer Verlag, Berlin, Germany, Hardcover. ISBN: 978-3-540-29855-7, November 2006, XLIV, 1916 pp., 1593 illus, with CD-ROM, 239-278 (2007).
- [2] C. Sotomayor Torres: Alternative Lithography Unleashing the Potential of Nanotechnology, book series on Nanostructure Science and Technology, book series on Nanostructure Science and Technology in Kluwer Academic/Plenum Publishers, Springer, editor D.J. Lockwood. Hardbound, ISBN 0-306-47858-7, November 2003, 425 pp. (2003).

4.4 Soft Lithography (SL) – for Beginners

What is Soft Lithography ? - Short description

In Soft Lithography (SL) a patterned soft elastomer stamp is the key element. Instead of generating a surface profile in a resist by mechanical hard contact through rigid inorganic materials, the pattern is transferred to the substrate by soft, conformal contact using flexible organic molecules and materials.

Soft Lithography in daily life? - Examples

- Printing of ink by rubber stamp.
- Fingerprints

When do you use Soft Lithography ? - Main applications

- > Microcontact Printing (μ -CP)
- ➢ Soft UV-NIL

Advantages

- ➤ Low-cost (precursor SYLGARD 184, 1 bottle 100 €).
- No cleanroom facilities necessary.
- > Low pressure, the flexible stamp accommodates planar and non-planar surfaces by conformal contact.
- ➤ Large areas, the flexible stamp can make contact with and pattern large areas.

Restrictions

- Balanced stamp hardness is necessary (too soft: shallow structures difficult because of local bowing; too hard: conformal contact difficult)
- Stamp swelling by many organic solvents

How do you start Soft Lithography ? - Main tools, materials, processes

- Basic chemical lab (thiols, buffer solutions, vacuum, etch chemistry)
- Template (master) with antiadhesive coating
- Oven for curing
- (Fluorescence) Microscope
- Metal deposition capabilities
- UV-Light source (for Soft UV-NIL)

Beginners' "kit" for Soft Lithography

Stamp fabrication:

- ▶ Mix precursor SYLGARD 184 elastomer base with curing agent 10:1 and degas.
- Pour on master in Petri dish.
- ➤ Cure at 60°C in oven.
- > Cut and peel from master.

Pattern Transfer:

For µ-CP:

- > Ink stamp with alkanethiol from solution or PDMS ink pad.
- Place gently on gold-coated surface.
- Detach.
- > Wet etch.

For Soft UV-NIL:

- Spin-coat liquid resin onto substrate.
- > Place stamp under moderate pressure and cure by UV-light exposure.
- Detach.
- Use residual layer etch and substrate etching techniques to transfer pattern into substrate.

Soft Lithography – Microcontact Printing

NaPa

Figure 4.6: Process sequence for soft lithography – stamp manufacturing and microcontact printing.

Soft lithography / Microcontact Printing : Process description

For Microcontact Printing, one Soft Lithography technique, the soft elastomer stamp is fabricated by molding from a patterned template (master). Next, the stamp protrusions transfer the ink-like resist to the substrate by soft conformal contact.

Main application

> Printing of chemical patterns, alkanethiol SAMs on gold, biomolecules.

Advantages

- Applicable for a wide variety of inks.
- Possibilities for multiplexing.

Restrictions

- > Pattern geometries: printing of very shallow structures is difficult (local bowing = sagging).
- > Ink diffusion might limit resolution and sharpness of pattern.

- [1] Y.N. Xia, G.M. Whitesides, Soft lithography, Angew. Chem.-Int. Ed. 37, 551-575 (1998).
- [2] E. Menard and J.A. Rogers, *Stamping techniques for micro- and nanofabrication*: Chapter (Part A/9) in "*Handbook of nanotechnology*", Volume editor B. Bhushan, second edition, rev. and extended, Springer Verlag, Berlin, Germany, Hardcover. ISBN: 978-3-540-29855-7, November 2006, XLIV, 1916 pp., 1593 illus, with CD-ROM, 279-297 (2007).
- [3] B. Michel, A. Bernard, A. Bietsch, E. Delamarche, M. Geissler, D. Juncker, H. Kind, J.-P. Renault, H. Rothuizen, H. Schmid, P. Schmidt-Winkel, R. Stutz, and H. Wolf: *Printing meets lithography: soft approaches to high-resolution*, IBM J. Res. Dev. 45(5) (2001) 697-719.
- H. Schmid, B. Michel, Siloxane polymers for high-resolution, high-accuracy soft lithography, Macromolecules 33, 3042-3049 (2000).

Soft Lithography – UV-Nanoimprint

NaPa

Figure 4.7: Process sequence for soft lithography – stamp manufacturing and UV-NIL.

Soft lithography / UV-Nanoimprint : Process description

Also for UV-NIL, another Soft Lithography technique, the soft elastomer stamp is fabricated by molding from a patterned template (master). Next, the soft stamp is used to generate a surface topography (resist thickness contrast) via molding of a liquid pre-polymer which is hardened by UV-exposure.

Main application

- Resist patterning
- ➢ 3D patterning

Advantages

- > Low viscosity resist makes molding fast.
- Multilevel 3D geometries are accessible.
- Alignment through stamp is possible.
- > Only low temperature and pressure required.
- Patterning of large areas possible.

Restrictions

- > Liquid resist has to be applied before imprint by dispensing or spin-coating.
- > Transparent stamps (elastomer and quartz backplane) are needed.
- > Easy demolding requires controlled adhesion between stamp and resist

- [1] Y. Xia, G. M. Whitesides: Soft lithography, Angew. Chem. Int. 37 (1998) 550-575.
- [2] U. Plachetka, M. Bender, A. Fuchs, B. Vratzov, T. Glinsner, F. Lindner, H. Kurz: Wafer scale patterning by soft UV-Nanoimprint Lithography, Microelectron. Eng. 73–74, (2004) 167–171.
- [3] U. Plachetka, M. Bender, A. Fuchs, T. Wahlbrink, T. Glinsner, H. Kurz, Comparison of multilayer stamp concepts in UV-NIL, Microelectron. Eng. 83 (2006) 944-947

4.5 Stencil Lithography (STEN) - for Beginners

What is Stencil Lithography ? – Short description

Stencil lithography uses a pellicle instead of a stamp, and has much resemblance with optical proximity lithography, but uses particles instead of photons. Material is evaporated through the openings of the membrane in a shadow type way. In contrast to lift-off in optical lithography, the shadow mask is made for multiple use and either placed in a distance to the surface to be patterned or pressed against this surface. After evaporation the stencil has to be cleaned from material deposited on the stencil structures.

NaP

Stencil Lithography in daily life? – Examples

- > Patterning sugar (icing / powdered sugar) by means of a pellicle onto a cake.
- Airbrush through mask (on cars or walls)

When do you use Stencil Lithography ? - Main applications

- > Mix- and match applications by patterning on already patterned substrates.
- > Dots

Advantages

- > Coating on substrates which do not allow a resist process
- > Patterning of a vast range of materials, which can be evaporated.
- Patterning over topography.

Restrictions

- > Mask distortion due to material deposition and by heat.
- Possible clogging of openings.
- > Design restrictions due to stability of mask (membrane openings).

How do you start Stencil Lithography ? - Main tools, materials, processes

- Basic cleanroom facilities and processes (mask aligner, silicon cleaning, plasma processes for ashing, residual layer etching) are of advantage. Laminar flow is necessary to avoid contamination by dust.
- Antiadhesive coating setup (basically once the stamp is coated, this coating can last for a long time, but occasional re-coating might be of advantage)
- Evaporation machine
- > Optical microscope (stereo / high resolution) for quality control

Beginners' "kit" for Stencil Lithography

- Place stencil on substrate and clamp it
- ➤ Install it at the top of the evaporation chamber opposite to the evaporation source.
- Evaporate metal (no rotation)
- Detach stencil from substrate
- Clean stencil

Stencil Lithography (with Membrane Type Pellicle)

NaPa

Figure 4.8: Process sequence for stencil lithography for two process steps (e.g. for metallization over non-flat surfaces).

Stencil Lithography : Process description

The stencil is placed in constant distance to the substrate. While evaporation takes place, the material builds up both at the substrate and the membrane.

Main application

- > Mix- and match applications with optical lithography.
- > Materials which are difficult to handle in dry and wet etching

Advantages

- Patterning over topography.
- Multiple layers

Restrictions

- ➢ UHV process
- Topology of stamps (closed openings needed).
- > Cleaning of stencil after evaporation needed.
- > Distorsion and cloggings during evaporation have to be minimized.

References:

 J. Brugger, and G. Kim: *Nanofabrication by shadow deposition through nanostencils*: Chapter (7) in "Nanolithography and patterning techniques in microelectronics". Editor D.G. Bucknall, Woodhead Publishing, Cambridge, England, CRS-Press, hardback. ISBN: 1 85573 931 3, September 2005, 424 pp. (2005) 218-237.

5. Nanoimprint Lithography

5.1 Generalities - Overview

The main focus of NaPa was on Thermal Nanoimprint Lithography (NIL or T-NIL, often also called Hot Embossing Lithography). The process is low-cost and easy to employ because it uses non-transparent stamps, and can be used with standard hot presses without any kind of alignment. However, because of the relatively high viscosity of the resists, a high pressure has to be used, and the final thickness of the resist is much dependent on structure sizes and densities (fill factor). Therefore NIL can be quite simple if a regular pattern of nano- or microstructures is imprinted, but can be become more complex if structure sizes and density varies over the surface of a stamp. A good example is shown in Figure 5.1.

Large Area Simulation of Imprints In thermal imprint, your resist can look like

$\begin{array}{c} \mbox{regular micrometer sized holes} \\ (5\mu m squares, 10\mu m pitch) \\ \rightarrow very homogeneous residual \\ layer thickness (70nm) \end{array} \qquad \begin{array}{c} \mbox{or } \dots \\ \mbox{2x2mm}^2 \mbox{ areas with strong local} \\ \mbox{variation of structure sizes} \\ \rightarrow residual layer thickness \\ \mbox{variation due to local bending} \end{array}$

Both results can be used for further processing, but while in the first case the pattern transfer is easy due to the homogeneous thickness of the residual layer of the resist, the second case the process window has to fit into the tolerances given by the variation of residual layer thickness (shown by the different colors of the resist). The optimum case would be, if a process is optimized according to the following sequence:

Aim: full optimization loop(s)					
Anni fun optimization loop	selection of	thickness	pattern		
r design → simulation	→ stamp fabrication → parameters → imprint →	⁺ measurement −	<mark>⊤</mark> * transfer		

This process chain includes **two optimization loops**: The first loop includes a **simulation** step after the design, which means that the imprint of areas of a few mm up to the entire wafer area should be simulated and critical spots for molding and pattern transfer identified and avoided by adapting the design. Then structures can be optimized before expensive stamp manufacturing begins. The second loop characterizes the **optimization of an imprint process** with a given stamp **by experiment** and variation of process parameters. The whole process, however, is only complete if the complete process sequence, i.e. the process including the pattern transfer, and consequently all processes needed for the final application are consired. Simulation tools for large areas are currently been developed, see:

V. Sirotkin, A. Svintsov, S. Zaitsev, and H. Schift, *Coarse-grain simulation of viscous flow and stamp deformation in nanoimprint*, J. of Vac. Sci. Technol. B **25** (6), 2379-2383 (2007)

For the less experienced user, the imprint of a large area micrograting is the best way to begin, with maximum stamp protusion widths of a few 100 μ m. The only restriction is that for large area stamps, the demolding forces increase and the demolding will become more difficult.

5.2 Hard Stamps

Stamp Fabrication

Any kind of surface relief can be replicated by hot embossing, as long as the thermomachanical properties can be varied between molding and demolding. For thermal NIL, it is of advantage to use silicon wafers rather than electroplated molds (because of the themal expansion mismatch between stamp and substrate). Apart from standard silicon micromachining techniques, a process for the coating of antisticking layers is needed.

Master Fabrication using e-Beam Lithography and RIE

Figure 5.2: Exposure and pattern transfer for stamp fabrication by electron beam lithography.

Short description

Silicon as a stamp material for thermal nanoimprint is widely used.

Main application

- > All kinds of thermal NIL processes where the substrate is silicon
- Moderate number of imprints due to limited mechanical strength (in constrat to Sic and Si₃N₄

Advantages

- Standard material in semiconductor industry with high surface quality, availability, suitable for standard cleanroom processing such as RIE, KOH etching, anodic bonding in quartz and Pyrex.
- Possibility to coat antiadhesive layer with silane chemistry.
- > Thermal expansion coefficient matched to substrate.

Disadvantages

- > Non-transparent and not very resistant to damages due to notches.
- > Cannot be easily clamped or fixed by screws (avoid strain due to thermal expansion mismatch)

material	Young's modulus (GPa)	Poisson's ratio	thermal expansion (10 ⁻⁶ K ⁻¹)	Knoop micro- hardness (kg mm ⁻²)	thermal con- ductivity (Wm ⁻ ¹ K ⁻¹)	specific heat J·kg ⁻¹ ·K ⁻¹
silicon	131	0.28	2.6	1150	170	705
SiO ₂ fused sili- ca(bulk)	73	0.17	0.6	500	1-6	700
quartz (fused)	70-75	0.17	0.6	>600 (8 GPa)	1.4	670
silicon nitride (Si ₃ N ₄)	170-290	0.27	3	1450	15	710
diamond	1050	0.104	1.5	8000-8500	630	502
Nickel	200	0.31	13.4	700-1000	90	444
TiN	600	0.25	9.4	2000	19	600

Table 5.1. Comparison of different materials for stamps.

5.3 Surface treatment

Since silicon is not hydrophobic, we need a kind of ultrathin Teflon-like coating. The common material for that is Heptadecafluoro-1,1,2,2-tetrahydrooctyl)-trichlorosilane (F13-TFS), a silane with a reactive end group and a long hydrophobic tail group (see Fig. 5.3). The anti-adhesion treatment of the surface can be done in liquid or in gas phase. In the first case, difficulties are reported for stamps with structures of very high resolution and aspect ratio, due to the incomplete wetting of recessed surface areas. However, wet phase treatment is usually simpler and adequate for stamps with structures down to hundreds of nanometers.

Processes for coating

- 1) Chemical Vapor Deposition (CVD) using evaporation of fluorinated silanes by heating or in vacuum, as described by ref. [1] and [2]
- 2) Optool: wet coating of using Optool DXF a fluorinated silane in a fluorinated solvent, http://www.daikin.com/chm/, [3]
- CVD tools fro NanoNex Ultra-100 Integrated tool for mold cleaning and surface release treatment for Nanoimprint Lithography, http://www.nanonex.com/
- Molecular Vapor Deposition (MVD) from Applied MicroStructures, Inc., 1020 Rincon Circle, San Jose, California 95131-1325, http://www.appliedmst.com/

5.3.1 Treatment in liquid phase

The silane containing solution has to be prepared possibly in inert atmosphere, such as argon or nitrogen, in order to avoid water contamination. The solvent typically used is toluene, but other solvents, with lower water solubility such as heptane or dodecane have been used successfully to maintain the solution with a water content sufficiently low to avoid bulk polymerization. A typical process could be done in the following conditions:

- 1) Solution of perfluoroalkytrichlorosilanes (for example (F13-TFS)) 0.1-1 mM in toluene or (heptane, octane, dodecane), prepared in inert atmosphere.
- 2) Immersion of the samples for 1 h at room temperature.
- 3) Rinsing in toluene.

5.3.2 Treatment in vapour phase

The most reliable surface treatment is obtained by chemical vapour deposition (CVD), by applying a moderate vacuum of some mbar in an atmosphere containing perfluoroalkytrichlorosilanes molecules. One of the most prominent advantages of the vapour deposition method is that it is not affected by the wetting ability of a surface, so that it is suitable for stamps with extremely small nanostructures.

A possible surface treatment by chemical vapour deposition (CVD) is the following

- Injection of perfluoroalkytrichlorosilanes (for example F13-TFS) into a previously evacuated process chamber (with a 1-10mbar residual pressure of inert gas) at room temperature. The amount of molecules is in the range of 10 μL per liter of the chamber volume.
- 2) Optional: inject a small amount of water ($\sim 2 \mu L$ of the chamber volume).
- 3) Leave the samples under this atmosphere for between 10 min and 1 hour (depending on setup).
- 4) Rinse with toluene

Fluorinated organosilane as molecular anti-adhesive layer

Figure 5.2: Silane binding on silicon dioxide.

Short description

Wet coating, CVD coating. Silane chemistry. Cleaning and activation either by so-called Pyranha etch, or by O2-plasma (RIE) or ozone –UV cleaning. The qualities are different but oxygen plasma seems to be best.

Main application

- Critical processes with high aspect ratio
- Isothermal processes are possible (no cooling needed before demolding)

Advantages

- > The crosslinked resist can be demolded more easily, and the resist is more stable in subsequent processes.
- > The resist can be used in a mix- and match process (exposure by optical lithography)

Disadvantages

- > The molding and curing step have to be temporarily separated.
- > resist cannot be dissolved easily, e.g. if resist is sticking to the stamp.

- H. Schift, S. Saxer, S. Park, C. Padeste, U. Pieles and J. Gobrecht, *Controlled co-evaporation of silanes for nanoimprint stamps*, Nanotechnology 16 (2005) S171-S175.
- [2] M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T.G.I. Ling, M. Keil, L. Montelius, *Improving stamps for 10 nm level wafer scale nanoimprint lithography*, Microelectron. Eng. 61–62 (2002) 441–448.
- [3] J. Tallal, M. Gordon, K. Berton, A.L. Charley, D. Peyrade, AFM characterization of anti-sticking layers used in nanoimprint, Microelectron. Eng. 83 (2006) 851–854

5.4 Resists, Substrates and Tools

Resists for thermal NIL can be easily prepared by dissolving thermoplastic polymer, e.g. PMMA or PS (powder, pellets) in appropriate solvents. Meanwhile a range of commercial NIL resists is available with enhanced rheological and process properties specifically developed for NIL.

Table 5.3	Resist	materials	for	thermal	nanoim	nrint
1 able 5.5.	RUSISI	materials	101	uncimai	nanonn	$p_{1}m$

Resist	Solvent	Glass transi- tion temp. T _g and molecu- lar weight M _w	Viscosity @ temp., Young's modulus	Comments
poly(methyl metacrylate) (PMMA)	anisole, ethyl acetate, ethyl lactate	100 °C, 25 – 120k	10 ⁵ – 10 ⁷ Pa·s @ 170 °C; 380-540 MPa	the "classic" NIL resist
poly(styrene) (PS)	toluene	100 °C, 50k		integrated optics
poly(carbonate) (PC)	cyclohexan- one, 1,1,2,2- tetrachloro- ethane	145 °C, 34k	2350 MPa	integrated optics, n =1.6 high etch resistance
cyclic olefine co- polymer (COC)	toluene	60 – 180 °C	2·10 ⁴ Pa·s @ 170 °C 2600 MPa	highly transparent polymer, chemically resistant, low water absorption, lab-on- chip and optical applications
mr-NIL 6000	safe solvent	40 °C (before imprinting)	0.2·10 ⁴ Pa·s @ 100 °C	low T _g NIL resist for combined thermal and UV-based NIL (STU TM process of Obducat), mix-and-match, multi-level patterning, polymer stamps, reverse UV NIL [1], [3]
mr-I 7000E	safe solvent	60 °C	3·10 ⁴ Pa·s @ 120 °C	low T _g NIL polymer with very good flow ability and high plasma etch resistance
mr-I 8000E	safe solvent	115 °C	10·10 ⁴ Pa·s @ 175 °C	NIL polymer with very good flow ability, good thermal stability and high plasma etch resistance
mr-I 9000	safe solvent	65 °C (before imprinting)		thermally curable NIL resist
mr-I 9000E	safe solvent	35 °C (before imprinting)		low T _g thermally curable NIL resist al- lowing almost isothermal imprint process with high plasma etch resistance [2]
Hybrane	toluene	0 – 10 °C		room temperature imprint, SF ₆ RIE etch resistant
NEB22		80 °C, 3k		negative EBL resist, high etch resistance in fluoro- and chloro- based plasmas
mr-I T85	safe solvent	80 °C	300·10 ⁴ Pa·s @ 140 °C	thermoplastic NIL polymer for micro optical and bio applications with high chemical stability and excellent UV and optical transaracy

- [1] C. Schuster, M. Kubenz, F. Reuther, M. Fink, G. Gruetzner, Proc. SPIE 6517 (2007), 65172B.
- [2] F. Reuther, M. Kubenz, C. Schuster, M. Fink, M. Vogler, G. Gruetzner, J. Grimm, A. Kaeppel, Proc SPIE 5751 (2005), 976-985.
- [3] N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, C. Schuster, M. Kubenz, F. Reuther, G. Gruetzner, C. M. Sotomayor Torres, Nanotechnology 18 (2007), 17, 175303.

5.5 Hot Embossing Machines

A press for hot embossing should be able to apply pressures over 10 bar and should have a temperature range between 60 and 200°C. The size of the stamp should be selected according to the pressure achievable.

Heating by electrical resistance heating is most suitable, and can also be intregrated into a compact setup. Homogeneity is ensured by using large metal plates on top. However, this also enhances the thermal mass (slow heating and cooling). Cooling can be done by blowing nitrogen gas or air through holes in the holder. Cooling by air convection is extremely slow. Additional water cooling below an insulating sheet may be helpful to keep the heat away from the alignment and pressing unit. Because the wafers do not need to be attached to the stampers of the press, the only need is to use hard plates with flat surfaces. Be aware that the whole setup can bend during the high pressures involved, and if pressure is not equally distributed, even 5mm thick metal plates can bend. This means that silicon wafers can even cut into soft metals. Large wafers are therefore more likely to print homogeneously than small pieces of chips, as long as a compliance layer (e.g. a 1 mm thick layer of silicon – PDMS) is used for the homogenization of thickness variations (both due to tolerances of wafers and local pressure inhomogeneities during imprint).

Pressing mechanism:

It is advisable that the pressure is not built-up in an instant, but softly during a few seconds. The PDMS will also ensure that there is a gentle pressure build-up. NIL presses are easier to build than presses for high aspect ratio microstructures, because an equal distribution of the pressure can be ensured by the compliance layer, and does not need a totally stiff setup where a precise lateral alignment and a precise vertical movement is needed, involving an attachment of the stamp (and substrate). The stack can be removed from the press after embossing, and the demolding is done manually outside the press, using a doctors blade. Therefore after the imprint process, the pressure can be released instantly.

Hot Embossing Equipment (in PSI)

Figure 5.4: A simple (oil) hydraulic imprint machine.

Pressure Equilibration – Cushion / Compliance Layer

A thick (1 mm) sheet of standard silicone, called PDMS (Polydemethylsilane), is sufficient to equilibrate any kind of unevenness, e.g. caused by substrate undulations or even dust particles. The stamp can bend around these particles and leaves some "halo", where the imprint is not complete. PMDS can be taken from any kind of workhop. When made hot, it tends to glue, which is an advantage to keep the substrate or stamp fixed, but if not wished, a polyimide layer can be used as an intermediate layer for separation. The cushion layer can be placed at the backside of the stamp (or the substrate), see Fig. 5.5. Normal PDMS will expand when pressed (e.g. some cm over the borders of a 100 mm wafer). The initial size should be slightly bigger than the stamp.

Figure 5.5: Principle of a cushion / compliance layer for pressure equilibration at the backside of the stamp. The bending of the stamp due to the variation of structure density in the stamp is exaggerated.

HEX03 Nanoimprint Machine from Jenoptik

NaPa

front side with opened embossing chamber and inserted microscope

Main Features

 molding of thermoplastic polymers with resolutions of below 10nm pressing force up to 200kN (operation force/position controlled) embossing temperature up to 320°C (heating electrical, cooling with oil)
 embossing under vacuum
 automatic mold release optical alignment with 3 µm overlay accuracy for double sided /

overlay accuracy for double sided / aligned embossing

Figure 5.6: Integrated optical microscope in a hot embossing machine (Jenoptik HEX03).

NaPa

- 8" imprint bonder in LETI / Grénoble • imprint under vacuum
- alignment separately in mask aligner
 (+) good accessability, usable for anodic bonding
- (-) low pressure, speed (no water cooling)

Figure 5.7: Nanoimprint machine from EV Group based on an anodic bonder. Alignment is possible by using an appropriate mask aligner.

Nanoimprint Machines from SÜSS Microtec

The SÜSS imprinter is based on the bonder • using alignment fixture stacks of wafer / substrate can be transferred to the bonder • pre-alignment of the stamp to the substrate is possible in the SÜSS mask aligner (MA6) with +/- 1um accuracy. • slow cooling (normally substrate is introduced into the hot machine)

Figure 5.8: Nanoimprint machine from Süss based on an anodic bonder. Alignment is possible by using an appropriate mask aligner.

JENOPTIK HEX03 Adapter Mount with SÜSS

substrate is possible in the SÜSS mask aligner (MA6). • fast embossing possible (constant T)

NaPa

Jenoptik HEX03 nanoimprint machine with and integrated adapter for a Süss aligment fixture for Figure 5.9: an anodic bonder. Alignment is possible by using the appropriate mask aligner.

Figure 5.10: Schematic of a fast imprint with an alignment fixture: a) alignment and clamping of stamp (top) and substrate (bottom), b) contact of upper plate and down-movement, c) begin of molding upon contact to lower plate, d) pressure release and lift-up, e) cooling, f) manual demolding outside the press. For fast processing, the press plates are kept at constant (molding) temperature.

Nanoimprint Machines from OBDUCAT

Thermal imprint: soft press technology, uniformity of pressure by using a membrane with air pressure over the entire imprint area UV-cured imprint: simultaneous application of thermal and UV imprint

From 2.5" to 6" imprint

- imprint under vacuum, up to 250°C, 70 bar • alignment possible
- (+) simple setup, fast embossing, versatile tool for NIL
- (-) membrane tends to glue (small stamp on large substrate); not well adapted for micro-embossing

NaPa

<u>Figure 5.11:</u> Nanoimprint machine from Obducat using a pressurized membrane on one side instead of a hard stamper (call soft imprint – not to be confused with soft lithography). By using a transparent membrane, thermal imprint can be combined with UV-curing.

Figure 5.12: Principle of soft imprint approach by using a pressurized membrane.

5.6 Processes - Part 1 : Thermal Nanoimprint with Simple Pattern Transfer

Thermal Imprint Process

NIL was first reported as thermoplastic molding, and is therefore often referred to as hot embossing lithography (HEL). The unique advantage of a thermoplastic material is that the viscosity can be changed to a large extent by simply varying the temperature. The first stage of the NIL process is the molding of a thin thermoplastic film using a hard master. During a process cycle the resist material is made viscous by heating, and shaped by applying pressure (see Figure 5.13). Here the thermoplastic film is compressed between the stamp and substrate and the viscous polymer is forced to flow into the cavities of the mold, conforming exactly to the surface relief of the stamp. When the cavities of the stamps are filled, the polymer is cooled down, while the pressure is maintained. Thus the molten structure is frozen. After relieving the pressure, the stamp can be retrieved (demolded) without damage, and reused for the next molding cycle. The demolding step is often done by peeling (see Figure 5.14) and only by using stamps and substrates attached to the press stampers, or by using small stamps of a few mm size, parallel demolding can be anticipated. In a second step, the thickness profile of the polymer film can now be used as a resist for pattern transfer. For this, the residual layer remaining in the thin areas of the resist has to be removed, which is done by homogeneously thinning down the resist in an (ideally) anisotopic etching process. In this way, process windows are opened to the substrate and the polymer can be used as a masking layer for further processing steps (see Figure 5.15).

Thermal-NIL (Hot Embossing)

Figure 5.13: Process sequence for thermal nanoimprint (spincoating, imprint and demolding).

Figure 5.14: Principle for parallel and wedge induced demolding.

Residual Layer Etch (Substrate Window opening)

NaPa

Figure 5.15: Process sequence for residual layer etching.

Short description

The residual layer is a result of the limited ability to mechanically squeeze material out of gap. In order to open windows to the substrate, the layer has to be removed, which is normally done by homogeneously thinning the resist by RIE.

Advantages

> By opening the substrate window, the substrate is chemically "activated".

Disadvantages

- > Possible dependence on structure size and depth results in inhomogeneous layer thickness.
- > The exposure of the substrate to the RIE may result in damage, e.g. for biological coatings.
- Isotropic etching of structures may result in structure loss

Alternative solutions

- A hard mask below the resist may enhance the selectivity of the patterned structure with respect to the underlying substrate.
- > Imprint at very high pressures was reported to result in a zero-residual layer
- > A combination of imprint and exposure through a semitransparent stamp makes it possible to dissolve the residual layer in a developer after exposure of the elevated structures.

- M. Li, L. Chen, W. Zhang, S.Y. Chou, Pattern transfer fidelity of nanoimprint lithography on six-inch wafers, Nanotechnol. 14 (2003) 33–36
- H. Schift, S. Park, J. Gobrecht, Nano-imprint molding resists for lithography, J. Photopolym. Sci. Technol. (Japan) 16 (3) (2003) 435-438.
- [3] H. Schift, S. Park, C.-G. Choi, C.-S. Kee, S.-P. Han, K.-B. Yoon, J. Gobrecht, *Fabrication process for polymer photonic crystals using nanoimprint lithography*, Nanotechnol. 16 (2005) S261–S265.
Window Opening + Substrate Etching

NaPa

Figure 5.16: Process sequence for residual layer and substrate etching.

Short description

Etching of the substate can be done as in normal resist processes. There is no major difference to optical or electron beam lithography

Advantages with respect to other pattern transfer processes

Etching is the process of choice in industry because the pattern transfer is more precise than in additive processes.

Disadvantages

> Suitable etching gases have to be found for RIE with high selectivity.

References:

 L.J. Heyderman, B. Ketterer, D. Bächle, F. Glaus, B. Haas, H. Schift, K. Vogelsang, J. Gobrecht, L. Tiefenauer, O. Dubochet, P. Surbled and T. Hessler, *High volume fabrication of customised nanopore membrane chips*, Microelectronic Eng. 67-68 (2003) 208-213.

Fabrication of Sieves

NaPa_Library of Processes

Lift-off

Figure 5.18: Example for lift-off as a pattern transfer process after NIL.

Short description

Lift-off is the adding of material by evaporation, and partial release of the material by dissolving the underlying resist. Lift-off works best if the resist has undercuts, which can be adjusted in optical or electron beam lithography, but not in NIL.

Advantages with respect to other pattern transfer processes

> Lift-off can be applied for a range of materials.

Disadvantages

> Directed evaporation avoiding sidewall coverage is crucial. Dependent on structure sizes.

References:

 H. Schift, R.W. Jaszewski, C. David and J. Gobrecht, Nanostructuring of polymers and fabrication of interdigitated electrodes by hot embossing lithography, Microelectron. Eng. 46 (1999) 121-124.

Fabrication of Interdigitated Electrode Arrays

Figure 5.19: Example for lift-off as a pattern transfer process after NIL.

Electroplating

Figure 5.20: Example for electroplating as a pattern transfer process after NIL (with a conducting substrate).

Short description

Electroplating is a deposition by growing material from a solution. Lift-off works best if the resist has undercuts, which can be adjusted in optical or electron beam lithography, but not in NIL.

Advantages with respect to other pattern transfer processes

> Electroplating fills structures well from the bottom. Overplating is possible.

Disadvantages

- > The range of materials is limited.
- ➤ A plating base (seed layer) has to be deposited before plating and often has to be removed selectively after plating.

References:

L.J. Heyderman, H. Schift, C. David, B. Ketterer, M. Auf der Maur and J. Gobrecht, *Nanofabrication using hot embossing lithography and electroforming*, Microelectron. Eng. 57-58 (2001) 375-380.

Fabrication of Electrodes using Electroplating compression molding pattern transfer

Figure 5.21: Example for electroplating as a pattern transfer process after NIL.

5.7 Processes – Part 2 : Process Variants for Resist Patterning

NIL is a parallel patterning method in which a surface pattern of a stamp is replicated into a material coated on a hard substrate by mechanical contact and 3D material displacement, to be used in fields until now reserved to electron beam lithography (EBL) and photolithography (PL). This definition fits very well for thermal NIL and UV-NIL, and can be extended to resists which can be both molded by heat and pressure and cured. It can also include all variants processes of reversal imprint, as long as a pre-patterned film is transferred and bonded to another substrate. However, often the term nanoimprint is often used when a pattern with nano-dimensions is molded in a functional material, without any further pattern transfer. Then the process is rather taking advantage of the toolbox of NIL than being a NIL process. The table 5.3 below gives an overview about the basic differences between thermal NIL and UV-NIL, but – as can be seen in the following and in Part II of this library – does not cover all possible variants of NIL processes.

<u>Table 5.3.</u> Comparison of hot embossing (NIL) and UV-imprint (UV-NIL), with typical parameters of current processes.

type of NIL /	NIL	UV-NIL	
properties	hot embossing	UV-imprint	
basic process sequence (see Figure 6) 1) spin-coat thermoplastic film 2) place stamp on film 3) heat until viscous 4) emboss at high pressure 5) cool until solid 6) demold stamp		 dispense liquid resin parallel alignment of stamp with defined gap imprint at low pressure expose with UV-light through stamp and crosslink demold stamp 	
pressure p	20-100 bar	0-5 bar	
temperature T_{mold}	100-200°C	20°C (ambient)	
temperature T_{demold}	20-80°C	20°C (ambient)	
Resist	solid, thermoplastic $T_g \approx 60-100^{\circ}C$	liquid, UV-curable	
viscosity η	$10^{3}-10^{7}$ Pa·s	10 ⁻³ -10 ⁻¹ Pa·s	
stamp material	Si, SiO ₂ opaque	glass, SiO ₂ Transparent	
stamp area	full wafer, > 200 mm diameter	25x25 cm ² , limited by control of gap	
stamp contact	facilitated by bending	planarization layer	
embossing time	from sec to minutes	< 1 min (per exposure)	
Advantage	low-cost, large area equipment and stamps	low viscosity, low pressure, align- ment through stamp	
Challenge process time, thermal expansion due to thermal cycle		step and repeat needed for large areas	
development needed	alignment, residual layer homogeneity	material variety	
Hybrid approaches	thermoset resists: embossing and curing before demolding	thermoplastic resists: hot molding and UV-curing before demolding	
Advantage low temperature variation cycle: demolding at high temperature possible		solid resist: full wafer single imprint possible	

Thermal-NIL + Thermal Curing (before Demolding)

NaPa

Figure 5.22: Process sequence for thermal NIL with a curable resist.

Short description

Thermal curing imprint uses a thermoset resist instead of a purely thermoplastic resist, which can be crosslinked after imprint. This is normally done before demolding, while the stamp is still within the molded resist. Maintaining the pressure during curing can compensate for shrinkage.

Main application

- > Critical processes with high aspect ratio
- > Isothermal processes are possible (no cooling needed before demolding)

Advantages

- > The crosslinked resist can be demolded more easily, and the resist is more stable in subsequent processes.
- > The resist can be used in a mix- and match process (exposure by optical lithography)

Disadvantages

- > The molding and curing step have to be temporarily separated.
- > resist cannot be dissolved easily, e.g. if resist is sticking to the stamp.

- H. Schulz, D. Lyebyedyev, H.-C. Scheer, K. Pfeiffer, G. Bleidiessel, G. Grützner, J. Ahopelto, *Master replication into thermosetting polymers for nanoimprinting*, J. Vac. Sci. Technol. B 18(6) (2000) 3582-3585.
- [2] K. Pfeiffer, F. Reuther, M. Fink, G. Gruetzner, P. Carlberg, I. Maximov, L. Montelius, J. Seekamp, S. Zankovych, C.M. Sotomayor-Torres H. Schulz, H.-C. Scheer, *A comparison of thermally and photo-chemically cross-linked polymers for nanoimprinting*, Microelectron. Eng. **67-68** (2003) 266-273.

Thermal NIL + UV-Curing (after Demolding)

NaPa

Figure 5.23: Process sequence for sequential thermal NIL into a low T_g thermoplastic material and subsequent curing.

Short description

Thermal imprint of a UV-curable material uses a thermoplastic resist instead of a liquid resin, which can be crosslinked after imprint and demolding. This can be done through exposure through the stamp (or sub-strate).

Main application

- > Mix- and match applications.
- Isothermal processing

Advantages

- The resist can be prepared as a solid layer by spincoating before imprint. The crosslinked resist is more stable in subsequent processes.
- > The resist can be used in a mix- and match process (exposure by optical lithography)

Disadvantages

- Transparent stamps or substrates needed.
- Material can be too soft for demolding before crosslinking (low Tg). Crosslinked resist cannot be dissolved easily, e.g. if resist is sticking to the stamp.

- F. Reuther, K. Pfeiffer, M. Fink, G. Gruetzner, H. Schulz, H.-C. Scheer, F. Gaboriau, C. Cardinaud, Mix and match of nanoimprint and UV lithography, Proc. SPIE 4343 (2001) 802-809.
- [2] K. Pfeiffer, M. Fink, G. Gruetzner, G. Bleidiessel, H. Schulz, H.-C. Scheer, Multistep profiles by mix and match of nanoimprint and UV-lithography, Microelectron. Eng. 57-58 (2001) 381-387.

UV-NIL + Residual Layer Etch + Substrate Etching

NaPa

Short description

With the integration of light sources into imprint machines, UV-NIL was developed for curable resists. The basic difference between UV-NIL and NIL is that a resin, which is liquid at room temperature, is shaped by a moderate pressure, which is then crosslinked and hardened by curing..

Main application

> Step & Flash Imprint Lithography (SFIL) process.

Advantages

- Low viscosity resist makes molding fast.
- Alignment through mask possible
- Room temperature process.

Disadvantages

- > Liquid resist has to be applied before imprint by dispensing. Transparent stamps needed (quartz).
- Equilibration (wedge control) before exposure, low pressure does not squeeze stamp around dust particles

- M.D. Stewart, S.C. Johnson, S.V. Sreenivasan, D.J. Resnick, C.G. Willson, *Nanofabrication with step* and flash imprint lithography, J. Microlith. Microfab. Microsyst. 4(1) (2005) 011002.
- [2] D.J. Resnick, W.J. Dauksher, D. Mancini, K. J. Nordquist, T.C. Bailey, S. Johnson, N. Stacey, J.G. Ekerdt, C.G. Willson, S. V. Sreenivasan, N. Schumaker, *Imprint lithography: lab curiosity or the real NGL?*, Proc. SPIE **5037** (2003) 12-23.
- [3] D.J. Resnick, S.V. Sreenivasan, C.G. Willson, Step & flash imprint lithography, Materials Today 8 (2005) 34-42.

Thermal + UV-NIL (before Demolding)

NaP

Short description

Thermal imprint of a UV-curable material uses a thermoplastic resist instead of a liquid resin, which can be crosslinked after imprint (but before demolding). This can be done through exposure through the stamp (or substrate).

Main application

- > Mix- and match applications.
- Isothermal processing

Advantages

- The resist can be prepared as a solid layer by spincoating before imprint. The crosslinked resist is more stable during demolding and in subsequent processes.
- > The resist can be used in a mix- and match process (exposure by optical lithography)

Disadvantages

- > Transparent stamps or substrates needed.
- > Crosslinked resist cannot be dissolved easily, e.g. if resist is sticking to the stamp.

References:

 M. Beck, B. Heidari, Nanoimprint lithography for high volume HDI manufacturing, OnBoard Technology Sept. 2006, 52-55, URL: http://www.Onboard-Technology.com/, accessed July 11, 2007.

NIL + Photolithography (with Semitransparent Stamp)

NaPa

Figure 5.26: Process sequence for combined thermal and photolithography with a semi-transparent stamp.

Short description

Thermal imprint of a UV-curable material through a semitransparent stamp uses a thermoplastic resist instead of a liquid resin, which is a negative photoresist resist can be crosslinked after imprint (but before demolding). This can be done through exposure through the stamp. If the elevated are nontransparent, then the thinned regions of the resist (residual layer) stay soluble and can be selectively removed in a developer.

Main application

- > Processes where the reduction of process steps is of advantage.
- Isothermal processing

Advantages

- The resist can be prepared as a solid layer by spincoating before imprint. The crosslinked resist is more stable in subsequent processes.
- > The resist can be used in a mix- and match process (exposure by optical lithography)

Disadvantages

- > Semi-transparent stamps or substrates needed. Possible problems with diffraction.
- > Works only for very thin residual layer thickness.

- X. Cheng, L.J. Guo, A combined-nanoimprint-and-photolithography patterning technique, Microelectron. Eng. 71 (2004) 277–282.
- X. Cheng, L.J. Guo, One-step lithography for various size patterns with a hybrid mask-mold, Microelectron. Eng. 71 (2004) 288–293.
- M.B. Christiansen, M.Schøler, A. Kristensen, Combined nano-imprint and photolithography (CNP) of integrated polymer optics, Proc. SPIE 6462 (2007) 64620.

Reversal Imprint (Hot Embossing)

Figure 5.27: Process sequence for reveral imprint by thermal bonding of a resist layer from a stamp to a separate substrate.

Short description

Reversal imprint makes it possible to structure a resist before transfer to another substrate. The transfer is done via thermal bonding of the resist and demolding is done after bonding.

Main application

- > Applications where a larger degrees of freedom is needed.
- ➢ 3D structures (embedded channels) possible

Advantages

- > Patterning of substrates is possible which do not support solvents.
- Reduction of residual layer thickness possible

Disadvantages

- > Spincoating on stamp with antiadhesive coating not easy.
- > Possible dependence of transfer on local structure size and aspect ratio.

- T. Borzenko, M. Tormen, G. Schmidt, L.W. Molenkamp, *Polymer bonding process for nanolithogra*phy, Appl. Phys. Lett. **79**(14) (2001) 2246-2248.
- [2] X.D. Huang, L.-R. Bao, X. Cheng, L.J. Guo, S.W. Pang, A.F. Yee, *Reversal imprinting by transferring polymer from mold to substrate*, J. Vac. Sci. Technol. B 20(6), (2002) 2872-2876.
- [3] T. Yoshikawa, T. Konishi, M. Nakajima, H. Kikuta, H. Kawata, Y. Hirai, *Fabrication of 1/4 wave plate by nanocasting lithography*, J. Vac. Sci. Technol. B23(6) (2005) 2939-2943.
- [4] K. Sogo, M. Nakajima, H. Kawata, Y. Hirai, Yoshihiko, *Reproduction of fine structures by nanocasting lithography*, Microelectron. Eng. 84(5-8) (2007) 909-911.

NaPa_Library of Processes

5.8 Step and Repeat Nanoimprint Lithography

Step and Stamp Imprint Lithography (SSIL) is complementary to full wafer single imprint (FWSI), because it allows to pattern entire wafers by repeated imprint of a small stamp with a lateral movement after each imprint. New setups such as the NPS300 from Suss Microtec are equipped with heating stages, and can imprint thermoplastic resists, which makes the process comparable to thermoplastic molding of full wafer stamps. Small stamps allow to employ small forces, which results in pressures similar to full wafer single imprint. By using a low density of sub-micron sized protrusions on a stamp, an extremely small residual layer thickness can be achieved, due to the high local pressure of the protrusions and the ease of the polymer to flow laterally. Then standard RIE processes, with pure oxygen at low pressure, as common in many laboratories, can be used for the etching of the residual layer with good control of CDs. In this report this is demonstrated along with the pattern transfer using standard fluorine plasma chemistry.

Figure 5.28: Process sequence for step and repeat imprint.

Process description : Step and Stamp Nanoimprint Lithography

Sequential imprint method, in which stamp heating and cooling are repeated in each pressure applying cycle.

Stamp and materials

Small stamp (size few millimeters). Stamp is attached to SiC-support by glue or vacuum chuck. Antiadhesive coating recommended

Process parameters

- > Imprinting at 50-70 °C stamp temperature (in viscous state) and substrate temperature 0-10 °C above T_g.
- > Pressure is applied until stamp and substrate are cooled 10-20 °C below T_g.
- Stamp to substrate levelling (collimation) needed before imprints. Possibility to align stamp to substrate using automatic or manual alignment
- Imprint time: From few seconds to several minutes depending on stamp size, feature density and lateral dimensions (collimation and alignment increase cycle time by 10-20 s.)

Restrictions

Wafer backside must free of particles. Wafer bending leads failure during collimation.

- [1] T. Haatainen, J. Ahopelto, G. Grueztner, M. Fink, K. Pfeiffer, *Step & stamp imprint lithography using a commercial flip chip bonder*, Proc. SPIE **3997** (2000) 874 880.
- [2] T. Haatainen, J. Ahopelto, *Pattern Transfer using Step&Stamp Imprint Lithography*, Physica Scripta 67 (4) (2003) 357 360.

NaPa Library of Processes

5.9 References

An introduction into nanoimprint for engineers and scientists:

[1] H. Schift and A. Kristensen, Nanoimprint lithography. Chapter (Part A/8) in "Handbook of nanotechnology", Volume editor B. Bhushan, second edition, rev. and extended, 2007, Springer Verlag, Berlin, Germany, Hardcover. ISBN: 978-3-540-29855-7, November 2006, XLIV, 1916 pp., 1593 illus, with CD-ROM, 239-278 (2007).

A third edition with revised chapters is planned for publication in 2009.

A good overview about the state of the art in nanoimprint and critical issues:

- [2] L.J. Guo, Recent progress in nanoimprint technology and its applications, J. Phys. D: Appl. Phys. 37 (11)(2004) R123-R141.
- [3] L.J. Guo, Nanoimprint Lithography: Methods and Material Requirements, Adv. Mater. 19 (2007) 495-513.
- [4] H. Schift, Nanoimprint lithography: An old story in modern times? A review, J. Vac. Sci. Technol. B 26(2) 458-480 (2008).

Recent review article with emphasis on nanorheology and material deformation:

[5] G. L.W. Cross, The production of nanostructures by mechanical forming, J. Phys. D: Appl. Phys. 39(20) (2006) R363-R386.

An overview about nanoimprint, with emphasis on developments in Japan (most chapters in Japanese):

[6] Book "Science and new technology in nanoimprint". Volume editor Y. Hirai. Frontier Publishing Co., Ltd., Japan, ISBN4-902410-09-5, June 2006, 281 pp., English 74-89, Japanese translation (extract) 90-93 (2006).

Springer the language of science		8. Nanoimprint Lithography
Springer ► Hand bado kof Nano- technology Bhushan Editor 2nd Edition	Nanoimprint lithography is an emerging nanopat- teming method, combining nanometer-sole resolution and high throughput. In a top-down approach, a rigid stamp with a surface relief is pressed into a thin film of soft material on a hard substrate. The film is hardened before the stamp is retrieved, and the surface relief is copied into the thin film. A pattern with nano- to mi- cometer scale features can be replicated in a parallel process, and the stamp may be reased mary times. This makes nanoimprint lithography a promising technique for volume manufacturing of nanostructured components. At present, struc- tures with feature sizes down to 5 mn have been realized, and the resolution is limited by the abil- ity to manufacture the stamp relief. For historical reasons, the term nanoimprint lithography (NII) refers to a hot embossing process, where a thin film of thermoplastic material is softened by heat- ing it, and the methods of the sued together with a UV-tansparent stamp. The resin is liquid at room temperature, allowing easy embossing of the stamp, before the resin is hardened by UV expo- sure. In this chapter we will give an overview of nanoimprint lithography, Will expohasis on NIL.	8.1 Emerging Nanopatterning Hethods
2nd Edition Contents: Torewords by Neal Lane and James R. Heath Part A: Nanoitruitures, Micro-Nanofabrication, and Materials Part B: MIMSINEMS and BioMEMS/BioNEMS Part D: Nanoithology and Nanoinechanics Part D: Nanoithology and Nanoinechanics Part D: Mocataby Thick Films for Labrication	cussed. Thin-film theology plays a central role of the understanding of the nanoimprint process, since the resist is patterned by mechanical de- formation. We discuss specific applications where imprint methods have significant advantages over other structuring methods. We conclude by	8.5 Conclusion and Outlook

Take a piece of wax between your fingers and imprint the fingerprints from both sides into it. The pressure is tern is distorted during molding, but even an incomplete sufficiently high to replicate the soft surface pattern of our skin into the wax by mechanical deformation. The process is facilitated by the heat resulting from our blood circulation, which softens the wax in order to make it

molding allows the identification of the person according to the purely two-dimensional (2D) code of its finger-print. The pattern resolution of below 1 mm is similar to that of the first records fabricated over 100 years ago deform until it conforms to the three-dimensional (3D) in celluloid. In 1887 Emile Berliner applied for a patent

Figure 5.29:

Due 7 November 2006

sdevice Reliability Part G: Micro- Nanodevice Reliability Part H: Technological Convergence and Governing Nanotechnology About the Authors.- Subject Index

2006 2nd ed. Approx. 1800 p. 1340 illus, in color. With CD-ROM, Hardcover ISBN 3-540-29855-X ▶ \$ 199.00 For PC and Mac; for the complete system requirements see: springer.com

Nanoimprint Lithography in Chapter A/8 of the Springer Handbook on Nanotechnology.

PART II : APPENDIX - PROCESS LIBRARY

1. Summary

This appendix contains rules for the process library, and was used by NaPa partners to prepare their processes. It is planned that these processes are either used as a growing collection of a living appendix, or used as a collection of processes which can be separately stored, e.g. as PDFs in a web page.

2. Rules for this Library

2.1 Rules

The library of processes shows and documents typical processes that can be used by customers. It gives insight into main results, but also critical steps and solutions. This is not only to lower the threshold for using a NIL or other nanopatterning process, but also to give a hint which of the processes are reliable and which process needs careful optimization. The emphasis should be on processes that are reliable (with a large process window)

The process description should be simple and compact. The aim is the chronological description of the main processes needed for the fabrication of the device, with emphasis on the issues related to the nanopatterning steps. In case that the process has been published, the main references should be added.

2.2 Structure of Processes

Every process in this library is structured in three parts: a header, a process flow and references/additional remarks. The title of the process will be as name for the process in a web-based library.

- a) The header should be in the format proposed here and should contain information that makes it possible to identify the process and where the process was done. The information should help to make a glossary or contents page for all processes. It would be very suitable if the device could be illustrated with one simple micrograph, which makes it possible to identify the structure and process in an easy way.
- b) The format for the **process flow** is more relaxed. The process flow should describe the process in chronological order, aiming to give relevant information about the parameters used and the critical issues.
- c) The **references** should indicate where more information can be found about this or similar processes. It could also contain more micrographs and information about the application in a concise and compact form. It should show which steps you consider as standard and at which steps further development is needed. Any further **remark**, e.g. on alternative processes, should be added at the end of the process.

2.3 New Entries

For entries into the LoP, please follow these rules

Generate front page which makes it possible to get a quick overview of the process

- a) classify the process (here only NIL, Soft Lithography, Stencil)
- b) name the process and add a picture (as an identifier)
- c) give major references
- d) give a minimum information about WHO is responsible for each step and who is the main contact

Stick to the format as much as possible, particulary keep all information in ONE single front page

2.4 Templates

Using the the templates is a prerequisite for any new entry. The library manager will shorten information, which does not fit to the page outline, or will move abundant information to the end of the process run sheet (remarks).

NaPa_Library of Processes

PAGE 1 : identify process / application / partner Put essential information on this ONE page in a standardized way

BEGINNING OF PAGE 1

A.X TITLE Device (A: process category, X number, only one line!).

DESCRIPTION Fabrication of ... Short description of process (max. two lines!).

MAIN PROCESS CATEGORY Process: nanoimprint lithography, soft lithography, microcontact printing, stencil lithography one category only

Essential: Insert a micrograph or	Figure:	Process:
figure here which serves as an eye-	Description of the micrograph	processes used and tasks of partners
catcher (rather than describing the	(not the whole process)	
process)	This figure should be an identifier	
	and eyecatcher	Application:

Keywords: thermal nanoimprint, ... – one line only

1. HEADER : identify the laboratory, the active person and the process

Project leader: LEAD PARTNER / INSTITUTE	Process: partner – process	
Address: postal (only town and country)	Responsible: person / group	
Web-Address: web-page of institute	E-mail: if wished	
Partner: ADDITIONAL PARTNER / INSTITUTE	Process:	
Address:	Responsible:	
Web-Address:	E-mail:	

Process description: A process is described ...

Purpose: The aim of this process is ...

Major challenges: ...

Application and state-of-the-art: Research process, used for ...

Level of maturity: Area: Industrial relevance: for which products

References:

[1] A. [2] B...

Contact information (only one partner): Additional information, e.g. full address of responsible researcher or supervisor Institute Street ZIP Code and Town – Country Phone : Only if wished This name below is standardized and should be unique : future new processes will be saved as PDF or DOC , this name will be given by the library manager

DOCUMENT NAME LoP2007_NIL000_process name (max 30 characters). PDF

PAGE 2 and following : process description

Put PROCESS STEPS into chronological order, do not forget figures and remarks

BEGINNING OF PAGE 2

TITLE Device ... (not necessarily "fabrication of...", but short identifier, only one line!).

MAIN PROCESS CATEGORY Process: nanoimprint lithography, soft lithography, microcontact printing, stencil lithography <mark>one category only</mark>

Process Te	chnical Parameters	Remarks
(general headline + figure) (sp	pecific)	(general - text)
Number What was done in chronological How	w it was done, relevant	Critical issues and alterna-
order (major steps and schematic pro-	cess parameters	tives
figures) (ma	achines, materials used,	
size	e, temperature,)	
1.0 Process 1: Preparation		
1.1 wafer selection and preparation star	ndard Si substrate	
Si s	substrate, 4", <100>,	
d=4	465 μm, one side polished	
1.2 substrate preparation oxid	dation	
RC.	A clean (Caros Acid)	
End of Process 1		
2.0 Process 2: Lithography		
2.1 resist coating spin	ncoating of PMMA	
2.2 Nanoimprint Lithography imp	print with HEX03 (PSI)	•
tem	nperature.(heat)180°C	
pres	ssure20 kN	
hea	ting time (80-180°C)	
	oling time (180-80°C)	
hold	d time (180°C)	
ove	erall time20 min	
	nperature.(demold)80°C	
resi	idual polymer thickness in	
gro	oves 20-30 nm	
2.3 den	nolding	
2.4 process control SEI	М	•
End of Process 2		
3.0 Process 3: Pattern Transfer		
3.1 Residual Layer (Breakthrough) O2	RIE:	•
Etching		
3.2 process control		•
End of Process 3		
End of Process		

General remarks:

any other relevant information

other resources (web-pages), micrographs and specific tools and processes, or information which could not be placed on page 1

END OF PROCESS DESCRIPTION

3. Nanoimprint Lithography

Contributions to this section of the library are from

VTT Information Technology/Finland Dr. Tapio Mäkelä / Tomi Haatainen / Päivi Majander / Prof. Dr. Jouni Ahopelto

Tyndall NIL, Cork/Ireland

Dr. Vincent Reboud / Dr. Nikolaos Kehagias / Prof. Dr. Clivia Sotomayor-Torres

AMO GmbH, Aachen, Germany Dr. Ulrich Plachetka

CNM - Barcelona/Spain Irene Fernandez-Cuesta / Prof. Dr. Francesc Pérez-Murano

CRF Fiat - Orbassano/Italy Dr. Vito Lambertini

LPN-CNRS - Marcoussis /France Prof. Dr. Yong Chen LTM-CNRS - Grenoble/France Dr. Cécile Gourgon

MIC/DTU - Lyngby/Denmark Prof. Dr. Anders Kristensen

PSI/LMN - Villigen/Switzerland Dr. Helmut Schift

INFM TASC - Trieste/Italy Dr. Massimo Tormen

Tekniker - Eibar/Spain Dr. Santos Merino

University of Glasgow - Glasgow/United Kingdom Dr. Nikolaj Gadegaard / Dr. Mathis Riehle / Dr. Kris Seunarine / Prof. Dr. Christopher Wilkinson

Lund University - Lund/Sweden Dr. Ivan Maximov / Prof. Dr. Lars Montelius

Standard fabrication process for stamps and antiadhesive surface coating for Nanoimprint lithography

NaPa

Process: Thermal Nanoimprint

Responsible: Helmut Schift

E-mail: helmut.schift@psi.ch

Process: nanoimprint lithography				
	Figure: SEM micrograph of a Grating with 100 nm period etched in Si using dry etching process (ICP) and PMMA resist as an etch mask.	<u>Process:</u> Electron beam lithography on posi- tive or negative resists and plasma etching <u>Application:</u> NIL stamps for optical, photonic, electronic or micro/nano-fluidics.		
Keywords: thermal nanoimprint, electron beam lithography, plasma etching, surface coating				
Best of the state				
Project leader: TASC Laboratory Process: Thermal NanoImprint				
Address: 34012 Basovizza-Trieste, Italy Responsible: Massimo Tormen				
Web-Address: http://www.tasc-infm.it E-mail: tormen@tasc.infm.it				

Partner: Paul Scherrer Institut (PSI) Address: 5232 Villigen PSI, Switzerland Web-Address: http://www.psi.ch

Process description: A general purpose process is described for fabrication of stamp and surface functionalization for reducing adhesion forces towards polymers after the imprinting step.

Purpose: The aim of this process is to produce large arrays of microstructures (e.g. lenses) with a high control of geometrical parameters of the elements.

Major challenges: Accurate pattern definition by Electron Beam Lithography, control of sidewall profile and roughness in the reactive ion etching process, durability of surface treatment process.

Application and state-of-the-art: Standard process

References (mainly on antiadhesive coatings):

- H. Schift, S. Saxer, S. Park, C. Padeste, U. Pieles, J. Gobrecht: Controlled co-evaporation of silanes for nanoimprint stamps, Nanotechnology 16 (2005) S171-175.
- [2] M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T.G.I Ling, M. Keil, L. Montelius, *Improving stamps for 10 nm level wafer scale nanoimprint lithography*, Microelectron. Eng. 61-62, 441, (2002).
- [3] M. Keil, M. Beck, G. Frennesson, E. Theander, E. Bolmsjö, L. Montelius, and B. Heidari: Process development and characterization of antisticking layers on nickel-based stamps designed for nanoimprint lithography, J. Vac. Sci. Technol. B 22(6) (2002) 3283-3287
- [4] S. Park, H. Schift, C. Padeste, B. Schnyder, R. Kötz, J. Gobrecht: Anti-adhesive layers on nickel stamps for nanoimprint lithography, Microelectron. Eng. 73-74 (2004) 196-201
- [5] H. Schift, S. Park, C.-G. Choi, C.-S. Kee, S.-P. Han, K.-B. Yoon, J. Gobrecht, *Fabrication process for polymer photonic crystals using nanoimprint lithography*, Nanotechnol. 16 (2005) S261–S265.

Contact information:

Dr. Massimo Tormen CNR-Istituto Nazionale per la Fisica della Materia Laboratorio Nazionale TASC Area Science Park - Basovizza S.S.14 - km163,5 I-34012 Basowizza - Trieste (TS), Italy

LoP2007_NIL001_Stamps for NIL. PDF

1

Stamps for Nanoimprint Lithography Process: nanoimprint lithography

	Dresses	Technical Denomotons	Dementre
	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0	Process 1: Wafer preparation	Silicon wafer format	
1.1	wafer selection and preparation	standard Si substrate	
		Si substrate, 4° , <100>,	
		thickness d=400-600 μm	
1.2	h = 4 4	one side polished	
1.2	substrate preparation	pretreatment	
		wafer is clean an hydrophilic)	
		water is clean an nyutopinite)	
	End of Process 1		
2.0	Process 2: Resist coating	for electron lithography	
2.1	dispensing of resist	resist	Ethyllactate is a safer solvent
		no priming	(in contrast to chlorobenzene
		Allresist PMMA 4 % in ethyl-	(CB)) and results in similar
		lactate (safer solvent) (EL)	thickness. Only for very high
		(600k), process lab (clean	concentrations of PMMA
		room)	(e.g. 9%) CB is a better sol-
			vent.
2.2	coating resist (homogeneous layer)	spincoating of PMMA	PMMA is known for its high
		speed: 3000rpm,	resolution as a positive resist,
		acceleration: 3000rpm/sec,	but has a limited sensititivy
		time: 45 s	for electron exposure and
		-> ~200 nm thickness	etch resistance. An alterna-
			tive positive resist with better
			etch resistance is ZEP520A.
			of protructing structures
			solution is to use negative
			resists such as NEB22 HSO
			SU8.
2.3	post bake	solvent evaporation	Alternative: convection oven
		bake 1 min @ 170°C (hot	at 180°C, for 30 min
		plate)	
	End of Process 2		
3.0	Process 3: Lithography	Electron beam lithography	
3.1	Design and file generation	Functional structures	The exposure strategy often
5.1	Seneration	if the stamp consists of large	depends on the preference for
		arrays of pillars, then either:	positive or negative resists
		crossed gratings can be ex-	and the pattern transfer

NaPa_L	NaPa_Library of Processes			
		posed in a positive resist and transferred to the substrate by RIE single dots can be exposed in a negative resist and trans- ferred by RIE crossed gratings can be ex- posed in a positive resist, a metal dot pattern created by lift-off and this hard mask transferred to the substrate by RIE	process to be used. Often it is also dependent on the ability to reduce exposure time. For different resists datasheets are available with the range of exposure and development parameters.	
3.2	Pattern definition	serial exposure with focused beam PMMA expose exposed to a 30 kV electron beam dose: 200 μC/cm ²	For different resists data- sheets are available with the range of exposure and devel- opment parameters.	
3.3	Resist development	wet development in MIBK:IPA(1:3)60 sec and rinsed in IPA 30 sec		
	End of Process 3			
4.0	Process 4: Pattern transfer	dry etching of silicon		
4.1	Substrate patterning	Dry etching of silicon A typical process uses combi- nation of gases (e.g. C_4F_8 $45sccm / O_2 3 sccm /SF_6$ 30sccm). The etching pa- rameters are usually strongly dependent on the tool. In an ICP system RF Power 450 W (ICP RF source), 30 W (Platen RF source), 5.5 mTorr) using PMMA as an etch mask.	Reactive Ion Etching (RIE) or Inductively Coupled Plasma (ICP) tools are highly anisot- ropic etching processes and can generate deep structures with vertical sidewalls or sidewalls with defined (posi- tive) slope. Control of Criti- cal Dimensions (CD) is needed, undercuts and roughness have to be avoided, because this results in enhanced demolding forces and damage of struc- tures in NIL	
4.2	Resist removal (stripping)	RIE resist ashing A low bias oxygen plasma for few seconds allows to remove the resist without damage of the patterned silicon surface. For positive resist an alterna- tive solution is to dissolve the resist in a convenient solvent.		
4.3	process control	optical and electron micros- copy non-destructively	destructive (cleaving, metal coating) in SEM profilometry	

	End of Process 4		
5.0	Process 5: Anti-adhesive coating	surface treatment by chemi- cal vapor deposition	
5.1	Preparation of stamp surface	cleaning and activation Typically, RIE treatment with O ₂ plasma removes organic contaminants and activates the surface (generation of free reactive silanol bonds for silane binding) for about 60 min. Alternatively, UV-ozone treatment can be used.	Alternatively to dry treatment of the surface, the cleaning and activation of the surface can be done in a fresh solu- tion of H_2O_2 : H_2SO_4 (1:4). Attention: danger of explo- sion! Dip the silicon stamp for 5-10 min.
5.2	Solution preparation $CI \subseteq I H H F F F F F F F F F F F F F F F F F$	Diluted silane Prepare a solution 1-10 mM of perfluorotrichlorosilane mole- cules in toluene. The prepara- tion of the solution and the surface treatment is to be performed in an atmosphere with low content of humidity. A convenient solution is to operate in glovebox.	Alternatively, chemical vapor deposition methods have been developed which allow to generate the silane monolayer from the gas phase. The coating should be done within about 1 hour after surface activation
5.3	Coating (c) R R R R R R HO Silicon substrate	Dip of the stamp The stamp is inserted in the silane solution for 1-2 hours, where the silane reacts with the silanol groups of the sur- face, but also with neighbor- ing molecules (crosslinking).	In order to avoid the forma- tion of a bulky deposit of molecules instead of a monolayer, washing of the stamp in acetone has to be performed in dry atmosphere.
5.4	Process control End of Process 5	Optical microscope, AFM The quality of the antisticking layer can be done by contact angle (CA) measurement, for perfluorotrichlorosilane a CA 115° can be reached	Profile control not any more with SEM (exposure and damage of anti-adhesive layer); a high CA can also be a result of roughness due to deposits; these deposits are removed after a few imprints
	End of Total Process		

General remarks:

This is only one of many processes to fabricate stamps in a silicon substrate by e-beam lithography. Basically every cleanroom provides processes using different resists for electron beam or other lithographies. Apart from PMMA directly coated on Si, hard (metal, e.g. Cr) masks are beneficial for etch ratio enhancement. They can be applied at the bottom of the resist and etched, or evaporated onto the patterned resist and locally removed by lift-off. Furthermore negative resists are commonly used.

In case of substrate etching, care has to be taken that undercuts and high sidewall roughness are avoided. Sloped sidewalls are beneficial but no prerequisite for moderate aspect ratio structures. A further issue is that residual polymer or other contaminants deposited during the etching on the structure sidewalls should be fully removed before applying the antiadhesive coating. In most cases this can be effectively done in wet (oxidizing) etching or ashing in oxygen plasma, which is also the step to activate surface (creating silanol groups) for silane binding.

3.2 Suspended Polymer Membranes

Fabrication of suspended polymer membranes on LOR resist

Process: nanoimprint lithography				
supporting columns meniscus	Figure:SEM micrograph of a pore arrayin 1 μ m thick polystyrene sup-ported by 2 μ m high pillars with 3 μ m hole diameter and 5 μ m pe-riod (cleaved sample)	Process: Thermal nanoimprint of a thermo- plastic polymer on top of a sacrifi- cial polymer. Pattern transfer using RIE and underetch. <u>Application:</u> Microfluidic devices (alternative to sieves based on pillar array)		
Keywords: thermal nanoimprint, double resist, sacrificial layer, perforated membrane				

Project leader:Paul Scherrer Institut (PSI)Process:Thermal NanoimprintAddress:5232 Villigen PSI, SwitzerlandResponsible:Helmut SchiftWeb-Address:http://www.psi.chE-mail:helmut.schift@psi.ch

Process description: A process for polymeric sieve structures is presented. It is based on a twolayer resist (LOR) with a sacrificial layer below a thermoplastic resist. Because the two polymer layers have different sensitivities to solvents, the LOR can be selectively dissolved through the pores.

Purpose: The aim of this process is not the fabrication of a specific device, but to demonstrate a process sequence which the specific requirements on NIL processing.

Major challenges: While the thermoplastic molding step is standard therefore standard resists such as PMMA, PS or COC, as well as the common MRT resists can be interchanged, the LOR dissolution is dependent on structure sizes, resist thickness and process conditions.

Application and state-of-the-art: Research process, used for DNA separation

References:

- H. Schift, S. Bellini and J. Gobrecht, Perforated polymer membranes fabricated by nanoimprint lithography, Microelectron. Eng. 83, 873–875 (2006).
- [2] H. Schiff, S. Bellini, U. Pieles and J. Gobrecht, Sustained polymer membranes fabricated by nanoimprint lithography, J. Microlith., Microfab., Microsyst. 5(1), 011010 (Jan–Mar 2006).

Contact information: Dr. Helmut Schift Paul Scherrer Institut Laboratory for Micro and Nanotechnology 5232 Villigen PSI Switzerland e-mail: helmut.schift@psi.ch URL: http://www.psi.ch

LoP2007_NIL002_suspended polymer membranes. PDF

Suspended Polymer Membranes Process: nanoimprint lithography

	Process	Technical Parameters	Remarks
	What	How it should work	Critical issues
1.0	Process 1: Wafer preparation		
1.1	wafer selection and preparation	standard Si substrate	
		Si substrate, 4", <100>,	
		thickness d=465 µm	
		one side polished	
1.2	substrate preparation	no pretreatment	
	End of Process 1		
2.0	Process 2: Stamp preparation		
2.1	layout	Functional structures the stamp consist of large arrays of pillars (about 1 mm ² area) with a 10 mm pitch between arrays, all over the wafer. Arrays consist of orthogonal patterns with pillar diameters from 1.5 to 6 μ m and periods of 5 to 15 μ m (800 nm deep). The (<i>p</i> : <i>a</i>) combinations were (5:1.5), (5:3), (10:2), (10:4), (15:4) and (15:6) μ m.	microstructures are very good for the set-up of the process, because the process control can be done using optical microscopy
2.2	antiadhesive coating	silane CVD evaporation standard process	silane coating from gas phase is beneficial for side- wall coating
	End of Process 2		
3.0	Process 3: Lithography	1	
3.1	coating of layer 1 (sacrifical layer)	double-spincoating of LOR	long prebake of 3 min at
5.4		no priming LOR 10B from Micro- chem TM) 3000rpm, 60 s -> ~1000nm bake 3 min @ 190°C (hot plate) 3000rpm, 60 s -> ~1000nm bake 3 min @ 190°C (hot plate) total thickness: 2000 nm	190°C on a hot plate was chosen in order to achieve a high T_g and a low etching rate almost independent from further heat treatment
3.2	coating of layer 2 (functional NIL layer)	spincoating of PS no priming of LOR Polystyrene 125kg/kmol, Polyscience GmbH, dissolved in dissolved in toluene 3000rpm, 60 s -> ~1000nm bake 1 min @ 170°C (hot plate)	<i>PS was chosen because of its excellent optical and physio-logical properties.</i>

NaPa_Library of Processes

3.3	Nanoimprint Lithography	Jenoptik HEX03 (PSI) no vacuum stack preassembled before heating and pressing (order from top to bottom): PI (polyimide) 50µm, PDMS (standard) 1mm, PI 50µm stamp (loose or clamped) substrate with resist, PI 50µm temperature.(heat)180°C pressure20 bar heating time (80-180°C) cooling time (180-80°C) hold time (180°C)30min overall time40 min temperature.(release)70°C residual polymer thickness in	the PI (polyimide) reduces the adhesion of the PDMS to the silicon) the loosely assembled stack is first fixed with contact force(for better heat trans- fer), then heated to T _{process} then equilibrated, and pres- sure applied cooling while pressure is kept cooling while pressure is kept constant The thickness of the resist h _{top} (1000nm) was chosen in order to have a sufficient lateral flow of material with the 800 nm high structures. Similar values and process parameter were used for PS, PMMA and COC
3.4		demolding pressure release at about 70°C demolding manually by apply- ing a razor blade between stamp and substrate and in- ducing a wedge	demolding of dense array of pillars more difficult reduction of thermal expan- sion by molding at low / demolding at high tempera- tures
3.5	process control	optical microscopy non-destructively	destructive (cleaving, metal coating) in SEM profilometry
	End of Process 3		
4.0	Process 4: Pattern Transfer		
4.1	Residual Layer (Breakthrough) Etching	RIE Oxford Plasmalab 100: thinning of resist PMMA etch with no cooling O ₂ 20 sccm gas pressure 20 mtorr power 20 W temperature 300 K ecthing rates PS 30 nm/min, LOR 10B 48 nm/min	residual layer can either be measured by profilometry (near the relevant structures) PS etching rate in oxygen plasma is significantly lower relative to LOR, which means that once the windows are opened, the etching continues at a higher speed in the LOR
4.2	process control	Profilometer /Microscope	
4.3	Sacrificial layer etching	LOR wet etching Microposit MF319 (from Microchem [™]) dilution of MF319/water of 3:2 (60%) underetching rates of LOR range from 2.5 nm/sec for	The developer penetrates the pores and dissolves the LOR isotropically. In order to reduce the proc- ess time, the dilution was changed to 5:1 (85%). In this

NaPa_Li	laPa_Library of Processes			
		smaller to 5 nm/sec for larger periods For the (10:2) μ m combina- tion a time t _{min} of about 13 min for half the distance etch was observed. Stopping the process was possible by extensive rinsing in de-ionized water. After drying in nitrogen, the water is completely removed from the cavities.	case the underetching rates were enhanced and range from 22 nm/sec to 36 nm/sec. Although for combinations of smaller periods and pore diameters the underetching rate slows down, no limita- tion for the application of this technique for smaller diame- ters of below 1 µm could be seen.	
4.4	process control	optical microscope 100 x Connected cavities with sup- porting columns (PS 1 μm / LOR 1 μm, view size 30 x 30 μm ²). The area between the pores and the sidewalls of the undercuts (bright) defines the membrane, and contrasts well the border and columns (dark) in diamond shape	online, without breaking substrate pores and undercuts with <0.4µm can be resolved, not suitable for nanopores (< 200nm)	
4.5	process control	SEM Micrograph of a pore array in 1 μm thick polystyrene sup- ported by 2 μm high pillars with 3 μm hole diameter and 5 μm period (cleaved sample)		
	End of Total Process			
	Enu of Total Process	1	1	

General remarks:

3.3 Polymer Multilayeres by Reverse UV-NIL

Fabrication of multiplayered woodpiles by reverse UV-NIL

Process: nanoimprint lithog	raphy	
	Figure: SEM images of a three- layer woodpile-like struc- ture fabricated by the re- verse contact imprinting technique.	<u>Process:</u> A lift-off resist and a UV cross-linkable polymer are spin-coated successively onto a patterned UV mask-mold. These thin polymer films are then transferred from the mold to the substrate by contact at a suitable temperature and pressure. The whole assembly is then exposed to UV light. After separation of the mold and the substrate, the unexposed polymer areas are dissolved in a developer solution leaving behind the negative features of the original stamp. <u>Application:</u> Microfluidic devices, Photonic crystals
Neyworus: reverse nanoimprint	nunography, uree-dimension	ai nanotaorication

Project leader: Tyndall National Institute	Process: Reverse UV nanoimprint
Address: Lee Maltings, Prospect Row, Ireland	Responsible: Clivia Sotomayor Torres
Web-Address: http://www.tyndall.ie	E-mail: clivia.sotomayor@tyndall.ie

Process description: A lift-off resist and a UV cross-linkable polymer are spin-coated successively onto a patterned UV mask-mold. These thin polymer films are then transferred from the mold to the substrate by contact at a suitable temperature and pressure. The whole assembly is then exposed to UV light. After separation of the mold and the substrate, the unexposed polymer areas are dissolved in a developer solution leaving behind the negative features of the original stamp.

Purpose: This process delivers a resist pattern transfer without a residual layer thereby rending unnecessary the etching steps typically needed in the imprint lithography techniques for threedimensional patterning. Three-dimensional woodpile-like structures were successfully fabricated with this new technique.

Major challenges: At a too high temperature and pressure, the polymer layer will flow in the underlying structure. The UV exposure dose must be controlled to avoid the formation of a residual layer. The UV light diffracted by the metallic protrusion of the stamp may be back-scattered from the imprinted substrate. The control of the exposure dose can be done by selecting the light intensity and the exposure time.

References:

- [1] N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, F. Reuther, C. Schuster, M. Kubenz, G. Gruetzner, C. M. Sotomayor Torres, Sub-micron three-dimensional structures fabricated by reverse contact UV nanoimprint lithography, J. Vacuum Science and Technology B, 24, 6, 3002-3005, 2006.
- [2] N. Kehagias, V. Reboud, G. Chansin, M. Zelsmann, C. Jeppesen, C. Schuster, M. Kubenz, F. Reuther, G. Gruetzner, C. M. Sotomayor Torres, *Reverse contact UV nanoimprint lithography for three-dimensional fabrication*, Nanotechnology, 18, 17, 175303, 2007.

Contact information:

Prof. Dr. Clivia M. Sotomayor Torres Tyndall National Institute University College Cork Lee Maltings, Cork, Ireland email: clivia.sotomayor@tyndall.ie

LoP2007_NIL003_RUVNIL woodpile. PDF

Polymer Multilayeres by Reverse UV-NIL Process: nanoimprint lithography

	Process	Technical Parameters	Pomarke
	What	How it should work	Critical issues
1.0	Process 1. Wafer preparation	110w it should work	Clitical issues
1.1	wafer selection and preparation	Standard Si substrate Si substrate, <100>, thickness d=500 µm one side polished Standard glass or Pyrex substrate	
1.2	substrate preparation	no pre-treatment for the first layer	
	End of Process 1	~	
2.0	Process 2: Stamp preparation	Standard glass or Pyrex sub- strate with metal protusion	
2.1	Iayout Metal Glass	Functional structures the stamp consist of gratings (about 5 mm ² area) with a pitch variation from 200 nm to 10 μ m between lines, all over the wafer.	
2.2	Spin coat sacrificial polymer layer	A thin film of lift-off resist (LOR 1A from Micro Chem) is spin coated at 1000 rpm for 1 min on the stamp and baked at 150 °C for 5 min. This sacrificial polymer layer is used as an adherence pro- moter, a planarization layer and to protect the stamp from contamination by the photo- curing resist.	No antiadhesive coating needed
2.3	Spin coat UV crosslinkable polymer	A film of a UV crosslinkable polymer (mr-NIL 6000 from micro resist technology) is spin coated at 3000 rpm on the LOR layer and soft-backed at 120 °C for 5 min to evaporate the residual solvent	
	End of Process 2		
3.0	Process 3: Lithography		
3.1	Reverse imprint	The polymer bilayer is reverse imprinted onto a Si substrate. Stamp and substrate are then heated to a temperature above the T_g of mr-NIL 6000 and exposed to UV radiation. Optimized imprint parameters on a non-flat substrate are: temperature of 90 °C, UV exposure time of 3 s, pressure	The UV exposure dose must be controlled to avoid the formation of a residual layer. The UV light diffracted by the metallic protrusion of the stamp may be back-scattered from the imprinted substrate. The control of the exposure dose can be done by selecting the light intensity and the
	apply	of 40 bars and PEB time of 30 s.	exposure time. In our ex- periments the dose was con-

NaPa_L	ibrary of Processes		
	$T_{e} \xrightarrow{T_{e}} Pot Biguage Bat}$ Schematic of RUVNIL process showing the time at which point of UV light exposure occurs and the time of post exposure baking.	Nanoimprint has been per- formed with a 2.5" Obducat embosser.	trolled by the time duration of UV light exposure. As shown in Figure below the UV light must be applied just before the pressure is applied in order to avoid a polymer flow in the underlying first imprinted layers. The trade- off of the imprint process has been performed.
43.2	Separation and development.	Demolding Demolding in a developper bath. Unexposed polymer areas as well as the LOR layer are removed with acetone and/or remover 1165 (Shipley) leav- ing behind the negative fea- tures of the original stamp. No residual layer in final struc- ture.	The oxygen plasma-etching step, usually necessary in standard NIL is avoided.
	End of Process 3		
4.0	Process 4: Pattern Transfer		
4.1	First layer transfer	Test of the technique on a flat Si substrate. The imprint tem- perature was carried at 90 °C with 40 bars of pressure ap- plied for 30sec. UV light ex- posure was applied for 3 sec prior applying the pressure.	Due to the difference of sur- face energies between the stamp surface and the Si substrate, the polymers are successfully transferred onto the Si substrate.
4.3	Second layer transfer	Imprint parameters on a non- flat substrate are: temperature of 90 °C, UV exposure time of 3 s, pressure of 40 bars and PEB time of 30 s.	Surface patterned about 4 mm ²
4.4	Third layer transfer and process control	Imprint parameters on a non- flat substrate are: temperature of 90 °C, UV exposure time of 3 s, pressure of 40 bars and PEB time of 30 s.	Surface patterned less of 0.5 mm ²

General remarks:

Other references:

[3] N. Kehagias, G. Chansin, V. Reboud, M. Zelsmann, C. Schuster, M. Kubenz, F. Reuther, G. Gruetzner, C. M. Sotomayor Torres, Embedded nano channels fabricated by non–selective reverse contact UV nanoimprint lithography technique, Microelectronic Engineering, accepted.

3.4 Combined Nanoimprint and Photolithography

Fabrication of optical SU-8 integrated optics by Combined Nanoimprint and Photolithography (CNP)

Process: Combined Nanoimprint and Photolithography (CNP)				
	Figure: Schematic illustration of a poly- mer DFB laser made of Rhoda- mine 6G laser due doped SU-8	<u>Process:</u> Combined nanoimprint and photo- lithography using a hybrid stamp/UV mask		
	integrated with an undoped SU-8 waveguide	<u>Application:</u> Definition of arbitrary structures containing nm to mm sized features, and made from an imprintable and UV definable material		
Keywords: combined nanoimprint and photolithography, CNP, polymer optics, integrated optics				
Project leader: MIC - DTU	Proc	ess: CNP		

Project leader: MIC - DTU	Process: CNP
Address: DTU building 345E, 2800 Lyngby, Denmark	Responsible: Anders Kristensen
Web-Address: www.mic.dtu.dk/ak	E-mail: ak@mic.dtu.dk

Process description: A process is described for waferscale definition of nm to mm sized optical structures by combining nanoimprint lithography with UV lithography. A hybrid stamp/UVmask is used and additional structures are added in a standard UV lithographic process. Both active (lasers) and passive (waveguides) optics are defined.

Purpose: Definition of rhodamine 6G laser dye doped SU-8 first order DFB lasers integrated with optical waveguides

Major challenges: Stamp/mask fabrication. The fact that the stamp is made of quartz complicated E-beam lithography somewhat, but once the stamp is done, the process is quite straight forward.

Application and state-of-the-art: Research process, used for definition of polymer lasers and integrated waveguides.

References:

 M. B. Christiansen, M. Schøler, and A. Kristensen, "Integration of active and passive polymer optics", Optics Express 15(7) pp. 3931-3939 (2007)

Contact information: Anders Kristensen MIC – Department of micro and nanotechnology Technical University of Denmark, DTU Building 345E DK-2800 Kgs. Lyngby, Denmark Email: ak@mic.dtu.dk URL: www.mic.dtu.dk

LoP2007_NIL004_CNP Combined NIL and PL process.PDF

Combined Nanoimprint and Photolithography Process: nanoimprint lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0	Process 1: Wafer preparation		
1.1	wafer selection and preparation	Si substrate, 10 cm,	
1.2	substrate preparation	oxidation	
		thermal oxide, approximately	
		3 μm	
• •	End of Process 1		
2.0	Process 1: Stamp preparation		
2.1	layout	Functional structures	
	(a)	silica with an integrated Cr	Fused silica
		shadow mask In the mask	
		windows, which are 1 mm by	
	(b)	250 microns, 100 nm tall glass	Metal
	(0)	lines with a with a width of	
		approx. 100 nm and a period	
		of approx. 200 nm are pro-	
		truding.	
2.2	antiadhesive coating	FDTS coating	Rather slow deposition is
		molecular vapour deposition	wall coverage
		tool from Applied Microstruc-	wan cover age
		tures Inc.	
	Stamp layout		
	End of Process 2		
3.0	Process 3: Combined nanoimprint		
	and UV lithography (CNP)		
3.1	coating of layer 1	spincoating of Rh6G doped	
		SU-8	
		SU-8 2002 from MicroChem	
		thinned to 20% with 3.2 mu-	
		mol Rh6G dye per g solid.	
		Spun at 7000 RPM, 3000	
		RPM/s, 60s.	
		Pre-baked @ 90°C for 1 min	
3.2	thermal imprint	EVG 520HE imprinter	Fused silica
		heating and pressing (order	
	(0)	from top to bottom).	
		Al foil	Metal
		graphite (standard) 0.5 mm,	
		stamp	SiO ₂
		substrate with resist,	
		graphite Al fail	Rh6G doped SU-8
		AI 1011 temperature (heat) 100°C	
		pressure	
		hold time (100°C)10 min	
		overall time45 min	
		temperature.(release)40°C	
		residual polymer thickness in	

NaPa_Library of Processes				
		grooves 150 nm on purpose. We just want a surface corru- gation		
3.3	UV exposure UV (d)	Karl Suss aligner 9 mW/mm2 30 s x 11 with 15 s breaks PEB: 90°C, 2 min		
3.4	Demolding	Separation using scalpel		
3.5	Development (e)	PGMEA 30s IPA rinse N2 or spin dry		
3.6	process control	SEM and AFM		
	End of Process 3			
4.0	Process 4: Waveguide definition			
4.1	Spin coat	spincoating of undoped SU-8 no priming SU-8 2005 from MicroChem Ramp to 500 RPM at 100 RPM/s. Ramp to 3000 RPM at 300 RPM/s, spin for 30 s Pre-baked @ 90°C for 1 min		
4.2	UV exposure UV (f)	Cr Mask used. Aligned to laser layer Karl Suss aligner 9 mJ/mm2 Hard contact 20 s PEB: 90°C, 2 min	Undoped SU-8	
4.3	development (g)	PGMEA 3 min IPA rinse N2 or spin dry		
4.4	process control	Optical microscope, AFM and SEM, see figure below:		

Γ

Web-Address: www.crf.it

E-mail: vitoguido.Lambertini@crf.it

3.5 Double Side Patterned OLED

Fabrication of OLED device with double side patterned substrate

Process: nanoimprint lithography					
NaPa NaPa NIL - OLED Keywords: OLED, UV nanoimprint	\dot{F} igure: Organic light emitting device wi both side nanopatterned surfaces with squared shape (resolution 1 μ m and height 300 nm).	Process: ith OLED device fabrication on double s side UV nanoimprinted substrate. Application: Lighting systems and displays.			
Project leader: Centro Ricerche Fiat Process: OLED fabrication					
Address: Strada Torino 50, 10043, Orbassano (TO) Responsible: Vito Lambertini					

Process description: A process is described to fabricate a light emitting devices based on organic materials deposited by spin coating onto a double side nanopatterned substrate The process described for the double side patterning is UV nanoimprinting.

Purpose: The aim of this process is demonstrate the increasing of efficiency more than 50% introducing low cost nanostructured surfaces enhancing the light extraction.

Major challenges: Anti-sticking treatments and deposition of ITO on plastic materials.

Application and state-of-the-art: the structuring of OLED device has been proposed in several work mainly based on microstructuring. Only in the last 2 years the introduction of sub-wavelenght patterns has been proposed.

References:

- [1] Improvement of the external extraction efficiency of OLED by using a pyramid array, Stanley Electric Co., Ltd. (Japan)
- [2] Nanohole OLEDs embedded in the 2D periodic SIO2 nanohole array. Yoon-Chang Kim R&DCenter, Samsung SDI Co. Ltd., Young Rag Do Dep. of Chemistry, Kookmin Un., Seoul, 2005 Optical Society of America.

Contact information: Vito Lambertini CENTRO RICERCHE FIAT Micro and Nanotechnologies department Strada Torino 50, Orbassano (TO), Italy Email: vitoguido.lambertini@crf.it URL: www.crf.it

LoP2007_NIL005_Double_side_OLED. PDF

Double Side Patterned OLED Process: nanoimprint lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0	Process 1: Substrate preparation		
1.1	wafer selection and preparation	transparent substrate Glass substrate 35x45 mm Thickness 1 mm	
1.2	substrate preparation	Cleaning washing in Micro90 solition diluted (2%); ultrasonic baths cycles (5 min) in water and ethanol	
1.3	adhesive coating	treatment spin coating of MICROPOSIT or AP300 followed by 80°C for 2 min.	
	End of Process 1		
2.0	Process 2: Flexible stamp prepa- ration		
2.1	Layout Nickel mould	Functional structures the stamp consist of: nickel mould squared pattern height 300 nm period 1 μm wafer selection 100 μm sheet PET	
2.2	stamp preparation	Hot embossing JRP recombiner machine: Nickel shim thickness 50 μm; Shim dimensions 30x40 mm; Heating time 0.5 s Cooling time 10 s DC current 80 A Pressure 1.4 tons	

NaPa_L	brary of Processes		
2.3	Process control	SEM	
2.4	antiadhesive coating	silane saturation chamber 1 min	
	End of Process 2		
3.0	Process 3: Double UV imprinting		
3.1	UV resin casting Flexible stamp UV polymer Glass substrate	UV polymers: UV acrylates (bisphenol-A- diglycidyl-ether-diacrylates BGEDA, bi-functional acrylates EBECRYL 210, 270, 600); organic modified alkoxysilanes (ORMOCLAD).	No bubbles formation during flexible stamp positioning.
3.2	UV curing UV light Mask holder Flexible stamp UV polymer Glass substrate Substrate holder	EVG620 mask aligner stack pre-assembled before UV exposition outside the machine. Exposition time 10 s.	
3.3	Demolding Flexible stamp UV polymer Glass substrate	Manual demoldingHEX03 (PSI) demolding manually by peeling the flexible stamps.	
3.4	Replica Glass substrate Re <mark>plica</mark>	Repeat processes form 2.1 to 2.3 to get the second side patterned.	The process can be done in a single UV exposition using a stack composed by 2 flexible stamps.

Г

NaPa_Library of Processes				
	End of Process 3			
4.0	Process 4: OLED fabrication			
4.1	Anode deposition	DC/RF sputtering system Target: Indium-tine oxide 10-90 (Lesker) 2 inches Vacuum 5x10-3 mbarr Current 300 mA	Rotating sample holder to increase homogene- ity; Alternating on/off of plasma to avoid over- heatinh of the polymer layer.	
4.1	Process control	Profilometer Thickness 250 nm UV/Vis spectra Transmittance 75% Multimeter Resistance 100 W/		
4.2	Active layers deposition PEDOT PPV	Spin coating Karl Suss RC8 spin coater Double layer: PEDOT/PSS suspension (Bayer) no vacuum 2500 rpm 5000 rpm/s 20-40 nm PPVs (yellow/orange from Merck) no vacuum 2000-2500 rpm 5000 rpm/s 75-90 nm		
4.3	Cathode deposition	Thermal vacuum evaporation AUTO306 coater Double layer: Ca Vacuum 9x10-6 mbarr 20-40 nm Al (capping layer) Vacuum 9x10-6 mbarr 20-40 nm		
3.4	Packaging	Epoxy resin casting The liquid epoxy resin (UV or ther- mal) is placed directly onto the cath- ode and a thin glass (microscope glass) is used to close the device. The curing is made: Thermal Tamb	The contact of the de- vice with oxygen de- grades the device quickly; the oxygen exposition time has to be reduced as much as possible. The ideal condition is to use a	
NaPa_Lik	brary of Processes			
----------	--	--	------------	
	Thin glass Epoxy	2 hours UV (spot light) : 60 mW/cm2 10 s	glove box.	
4.5	Measurement Power supply Software CLEM Integrated sphere Photodiode Multimeter	Electro-optical analysis I/V curves Efficiency curves (Lm/W) Software CLEM (CRF): power supply HP3432A multimeter HP34401 photodiode/integrated sphere IL1700		
		Characterization devices: four square shapes with different area (4, 16, 36,100 mm2)		
	End of Process 4			
	End of Total Process			

Γ

The architectures of devices with double side nanoimprinted glass substrates showed an increasing of external efficiency in OLED technology is in the range of 65-70%.

3.6 High Resolution Linear Encoder

Fabrication of a high resolution linear encoder

Process: Nanoimprint Lithography	Γ.	D
	<u>Figure:</u> Principle of an optical decoder	Process: Pattern transfer on glass (read head) by lift-off with a double layer NIL process. Pattern transfer on silicon. <u>Application:</u> High resolution optical encoders fabricated by a process compatible with a high throughput.
Keywords: thermal nanoimprint, metrology, optical end	coders	
Project leader: FUNDACIÓN TEKNIKER	Process: Do	uble laver NII
Address: Avda, Otaola, 20, 20600 Fibar, Spain	Responsible	a: Santos Merino
Web-Address: www.tekniker.es	E-mail: sme	erino@tekniker.es

Process description: NIL on large areas (20x20 mm) patterned with gratings of 500 nm periods (300 nm lines and 200 nm spaces). Silicon and glass wafers used. Residual layer etching and lift-off with chromium on glass and pattern transfer on silicon. A bilayer NIL was used for successful ligt-off.

Purpose: To manufacture linear encoders with a pitch below 500 nm. A phase scale and a read head were fabricated by pattern transfer on silicon and glass, respectively. The process developed points out that this technology may be suitable for mass produced encoders with a very high resolution and/or accuracy in the nanoscale range.

Major challenges: Fabrication by double layer NIL of a large grating (20 mm of length) on glass getting a successful lift-off on the whole of the area.

Application and state-of-the-art: All modern high-precision tools that require ultimate accuracy over distances larger than a fraction of a millimeter. The main drawback of encoders today is that commercially available encoder plates are limited in accuracy to worse than 100 nm. The work developed and shown here, is focused on the manufacturing of a linear optical encoder by NIL [2] -scale and read head- on the nanoscale range.

References:

- [1] F.C. Demarest, Meas. Sci. Technol. 9 (1998) 1024.
- [2] S. Merino, A. Retolaza, I. Lizuain. Microelec. Engineering 83 (2006) 897

High Resolution Linear Encoder Process: nanoimprint lithography

	Process	Technical Parameters	Pomarke
	What	how it should work	critical issues
1.0	Process 1: Wafer preparation	How it should work	childan 155acts
1.1	wafer selection and preparation Silicon	standard Si substrate Si substrate, 4", <100>, d=500 μm one side polished	
1.2	Wafer selection and preparartion. Glass	PyrexTM, 4" substrate D=500 um. R _a ~1 nm	
1.3	substrate preparation End of Process 1	oxidation RCA clean. Two steps: NH_4OH, H_2O_2, H_2O HCl, H_2O_2, H_2O	
2.0	Process 2: Stamp preparation		
2.1	Iayout a b i unit cell i i i i i i i i i i i i i i i i i i i i i i unit cell i i unit cell unit cell	Functional structures the stamp consist of unit cells repeated many times through the total surface. Unit cell: linear optical en- coder, a=20mm, b=21.7 mm, c=1 mm, d=3.5 mm. Pitch=500 nm (300 nm lines and 200 nm spaces). Rectan- gles were chosen to surround the lines and protect them from large residual layer variations.	
2.2	stamp preparation	wafer selection The design was drawn on a 7" mask size and the patterns were transferred on 8" silicon wafers with DUV optical lithography (λ =248 nm). Re- sist: UV5 positive resist from Rohm and Haas Company. Stamp depth=200 nm (Cl ₂ , HBr/O ₂ *Stamps were cut into 21x20 mm pieces.	*15 µm top view SEM picture at the encoder corner stamp *The ratio (duty) between silicon surfaces and trenches is esti- mated to be around 320-180 nm
Contact Fundaci Microtec Santos Dpto. de Fundaci Avda. O 20600 E	Contact information:Fundación TeknikerMicrotechnology and Nanotechnology DepartmentSantos MerinoDpto. de Procesos de FabricaciónTfno : 34 943 206744Fundación TeknikerFax : 34 943 202757Avda. Otaola, 20 Apartado 44E-mail: smerino@tekniker.es20600 Eibar, Gipuzkoa Spainhttp://www.tekniker.es		
LoP2007_NIL006_optical encoder. PDF			

NaPa_Li	ibrary of Processes		
3.1	coating of layer 1 (sacrifical layer)	Spin-coating of mr-17030 no priming 210 nm coated at 5500 rpm. Bake: 3 min at 140°C *Substrates were coated into 25x25 mm pieces.	This resist was used for glass and silicon wafers.
3.2	coating of layer 2 (NIL layer)	Spin-coating of LOL1000 from Shipley. Thickness: 60 nm coated at 5500 rpm.	This double layer was used only on glass and this resist was coated before coating the substrate with mr-I7030 re- sist.
3.3	Nanoimprint Lithography	HEX03 (PSI) no vacuum stack preassembled before heating and pressing (order from top to bottom): PDMS (standard) 1mm Stamp (no clamped) substrate with resist, PDMS (standard) 1 mm tempera- ture.(imprinting:140°C pressure(70 bar) temperature.(demold):50°C residual polymer thickness in grooves: 130 nm of mr-17030 on silicon and glass and 60 nm more of LOL resist on glass.	
3.4		demolding Manual demolding.	
3.5	process control	SEM	Residual layer around 130 nm measured.
	End of Process 3		
4.0	Process 4: Pattern Transfer		

NaPa_Li	brary of Processes		
4.1	Residual Layer (Breakthrough) Etching	O2 RIE: O ₂ :50 sccm gas pressure: 50 mtorr RF power: 50 W Etch rate ~ 2 nm/s	Identical process carried out on silicon and glass.
4.2	process control & substrate etch- ing (Pattern transfer on silicon).	SF ₆ /C ₄ F ₈ silicon etching *Gases introduced at the same time by ICP-etching. RF power= 20W ICP power= 220W P=15 mtorr SF ₆ flow=20 sccm C ₄ F ₈ flow=30 sccm Depth etched=180 nm	
4.3	Lift-off on glass	*After residual layer etching, the glass sample was dipped into a solution of developer MF319 from Shipley diluted 1:1 in de-ionised water for 30 seconds and rinsed plentiful water. *The sample was shortly treated with a low-temperature glow-discharge with oxygen before coating it. *50 nm of chromium coated on the substrate by sputtering. *Final lift-off by dipping the sample into an NMP ultra- sonic bath at 50°C for 1 h.	
4.4	Process control (SILICON)	Semic bain at 50°C for 1 h. SEM, AFM	
4.5	process control (GLASS)	SEM, AFM	

Γ

NaPa_L	ibrary of Processes		
		AFM topography and SEM picture after lift-off with chromium.	
4.6	Measurement on silicon	AFM *The mean R _a values of 4.2 nm were obtained from over 50 measurements taken on different points of the encoder length. *Using these parameters and measurements, the loss of CD was reduced up to a duty of 350 to 150 nm (320 to 180 nm on silicon stamp).	The same measurements on the stamps gave mean R _a values of 2.2 nm.
4.7	Measurement on glass	AFM *Using these parameters and measurements, the loss of CD was reduced up to a duty of 340 to 160 nm (320 to 180 nm on silicon stamp).	
	Substrates of 25x25 mm with seven		line of a
	encoders each one on glass and silicon.	Glass scale was tested suc- cessfully by scratch tape tests to check the adherence of chromium on glass.	
	End of Total Process		

*The developing of LOL resist is critical and with a great dependence of temperature. The soft-bake temperature and bake-time of LOL lead to a high variation in the dissolution rate and, therefore, the soft-bake conditions should be strongly controlled to ensure a repetitive process. This is key parameter to ensure a right lift-off process.

NaPa_Library of Processes

*A sample cleaning in vacuum before metal deposition is critical to ensure a good adhesion of metal. In this case, it is even more relevant due to the tight conditions of developing with MF319 previously carried out, which can lead to keep resist debris on the glass surface.

Application and state-of-the-art: All modern high-precision tools that require ultimate accuracy over distances larger than a fraction of a millimetre, such as chip lithography and metrology equipment, coordinate measuring machines or diamond turning machines, depend on a displacement measuring interferometer for measuring motion of the stage that supports the sample or work piece. Commercial interferometers typically have sub-nm resolution [1] but the practical precision and accuracy that can be achieved are usually far worse. The primary errors plaguing interferometers include environmental disturbances such as temperature, pressure and humidity fluctuations, atmospheric turbulence, position-dependent geometric errors and several optical and electronic non-linearities [2], errors that are difficult to eliminate due to the nature of interferometers. Optical encoders have been used for decades as displacement measuring devices. Optical encoder scales are rigidly attached to a metrology frame and consist of grating or grid plates, and a read head, with the same period, which senses displacement relative to the grating scale (figure 1). Highest resolution, as a small fraction of the grating period, is achieved with a variety of diffraction based schemes [3, 4]. The main advantages of optical encoders are the short and constant beam path lengths between gratings and sensors, reducing the effects of the atmosphere by orders of magnitude compared to laser interferometers. However, the main drawback of encoders today is that commercially available encoder plates are limited in accuracy to worse than 100 nm. Since the encoder can only be as accurate as the grating scale, advance in this area crucially depends on the availability of encoder plates with sub-nanometer accuracy over macroscopic distances.

Diverse techniques have been used to manufacture high accuracy optical encoders. Logically, the suitability of each technique is defined by the grating pitch. Thus, for pitches above 2 μ m, UV-Lithography represents a reliable and high throughput manufacturing process and has been jointly used with physical vapour deposition technology to manufacture amplitude and phase scales for decades. However, when pitches below 1 μ m are needed, the manufacturing process is not as clearly defined and very different techniques have been used. They can be mechanically ruled with a diamond tip, which is a very slow, expensive, and difficult to control process, especially for large gratings with fine periods, or the grating pattern can be defined lithographically, typically by interference lithography or electron beam lithography. Interference lithography patterns suffer from stitching errors and take considerable time to write. The latest approach to define pattern gratings uses a patterning method [6] called scanning beam interference lithography (SBIL), which combines the capabilities of laser interferometry with narrow, collimated beams, resulting in a low distortion image grating. However, sophisticated environmental controls to mitigate the effects of disturbances such as acoustics, vibration, air turbulence and variations of temperature, pressure and humidity must be strictly controlled.

The work developed and shown here, is focused on the manufacturing of a linear optical encoder by NIL [7] - scale and read head- on the nanoscale range. A read head and a phase scale are fabricated on glass and silicon respectively. The first one is supposed to work in a transmission mode while the phase scale works by reflection. If the process is tightly controlled, it constitutes an alternative manufacturing process, compatible with high-throughput and with less constrains than the processes based on conventional lithography.

References:

- [1] FC. Demarest, Meas. Sci. Technol. 9 (1998) 1024.
- [2] N. Bobrof, Meas. Sci. Technol. 4 (1993) 907
- [3] Y. Jourlin, Y. Jay, O. Perriaux. Prec. Eng. 26 (2002) 1
- [4] Original title: Digitale Langen –und Winkelmeβtechnik. Dr. Johannes Heidenhain GmbH, Traunreut. Printing and Binding: Ludwig Auer, Donauworth. Third Edition, 1998.
- [5] J. Ferrera, M.L. Schattenburg, H. Smith. J. Vac. Sci. Technol. B. 14, (1996) 4009.
- [6] R.K. Heilmann, C.G. Chen, P.T. Konkola, M.L. Schattenburg. Nanotechnology 15 (2004) S504.
- [7] S. Merino, A. Retolaza, I. Lizuain. Microelec. Engineering 83 (2006) 897

Fabrication of periodical optical structures by Step&Stamp NIL

Process: Nanoimprint lithography F In n

Figure: Imprinted 180nm grating in 300 nm thick mr-I 7030 resist. <u>Process:</u> Thermal SSIL to pattern thermoplastic polymer using Nano imprinting Stepper.

NaPa

Application: Optical grating

Keywords: thermal nanoimprint, Step&Stamp, SSIL

Project leader: VTT Technical Research Centre of Finland	Process: Step&stamp NIL
Address: FI-02044 VTT, Finland	Responsible: Tomi Haatainen
Web-Address: http://www.vtt.fi	E-mail:
Partner: S.E.T. SAS (Smart Equipment Technology)	Process: NPS300 Step&stamp Tool
Address: 74490 Saint Jeoire, France	Responsible: Gilbert Lecarpentier
Web-Address: http://www.set-sas.fr	E-mail: glecarpentier@set-sas.fr

Process description: This document contains a description of a general thermal imprint process for fabrication of periodical structures using sequential imprinting to pattern large areas. the parameters are valid for small stamps (< 5x5 mm²) and submicron scale features.

Purpose: The aim of this process is transfer periodical structures of stamp into thermoplastic polymer which can be used as an etch mask, lift-off or a mold for fabrication of metal templates by electroplating.

Major challenges: Uniformity of residual layer on the large substrates due to waviness and wedging of the stamp in the single imprints.

Application and state-of-the-art: Anti-reflection gratings etc.

References:

- T. Haatainen, J. Ahopelto, G. Grueztner, M. Fink, K. Pfeiffer, Step & stamp imprint lithography using a commercial flip chip bonder, Emerging Lithographic Technologies IV, Proceedings of SPIE, Vol. 3997. SPIE-The International Society for Optical Engineering (2000), 874 – 880.
- [2] T. Haatainen; J. Ahopelto, Pattern Transfer using Step&Stamp Imprint Lithography, Physica Scripta. Vol. 67 (2003) No: 4, 357 – 360.

Contact information: VTT Technical Research Centre of Finland Tietotie 3 P.O.Box 1000 FI-02044 VTT, Finland

LoP2007_NIL007_Step and Stamp NIL for optical gratings. PDF

Optical Grating by Step&Stamp NIL Process: nanoimprint lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0	Process 1: Wafer preparation		
1.1	wafer selection and preparation	standard Si substrate Si substrate, 4", <100>, d=525 μm one side polished	Substrates up to 200 mm can be patterned by SSIL using NPS300
1.2	substrate preparation	oxidation RCA clean (Caros Acid)	
	End of Process 1		
2.0	Process 1: Stamp preparation		
2.1	layout	Functional structures the stamp consist of grating structure (linewidth <1µm)	
2.2	stamp preparation	Stamp attachment Stamp is glued to SiC-plate with silicone adhesive	Thermally conductive adhe- sive must be used to ensure the stamp heating
2.3	antiadhesive coating	silane CVD evaporation clean or silane vapour	<i>CVD evaporation preferred if available</i>
	End of Process 2		
3.0	Process 3: Lithography		
3.1	coating of layer 1 (NIL layer)	spincoating no priming mr-I 7000 (microresist) mr-I 7010 (100nm) mr-I 7030 (300nm) @3000 rpm bake	
		3 min at 140 °C (hotplate)	
3.3	Nanoimprint Lithography	SET NPS300 temperature.(stamp)140°C temperature (chuck)70°C pressure(>10MPa) heating time (60-140°C)10s cooling time (140-60°C)60s hold time (140°C)2min overall time20 min temperature.(demold)60- 65°C residual polymer thickness in grooves 10-20 nm	SET is a former branch of the SÜSS company in Annecy, France
3.4	process control	AFM, SEM	Imprint depth measured by AFM
	End of Process 3		
3.0	Process 3: Pattern Transfer		
3.1	Residual Layer (Breakthrough) Etching	O2 RIE: O ₂ 40 sccm gas pressure 125 mtorr power 150 W time 5 sec	Plasmalab 80Plus RIE

NaPa	Librar	v of	Processes
	_		

6			
		temperature 300 K	
3.2	process control	AFM	Before substrate etching residual removal confirmed by AFM
3.3	substrate etching	CF4+Ar RIE CF420 sccm Ar5 sccm gas pressure20 mTorr power100 W time temperature300K	Plasmalab 80Plus RIE Selectivity Si:Resist(1:1.6) Etch rate (Si)=40 nm/min
3.4	process control	optical microscope 100 x	
3.5	process control	Ellipsometer	Resist thickness check
3.6	measurement	AFM,SEM	
3.6	measurement	SEM LION video prints No.	
	End of Process 3		
	End of Total Process		

Figures: NPS Step and Stamp machine for thermal and UV NIL used for these experiments (until 2007 SET was part of SÜSS Microtec), installed at VTT (left side), and example (right side) of a 237 consecutive thermal imprints into a 300 nm thick mr-I 7030 film on a 100mm Silicon wafer. Stamp size 4x4mm², micrometer features with sizes of down to 2 mm and height of ~ 200nm. Stamp Temperature:140 °C, substrate temperature 70 °C, cycle time ~ 3 minutes (without collimation and arm movements).

NaPa

Fabrication of nanoimprinted photonic crystals for light extraction enhancement via surface plasmons

Process: nanoimprint lithograph	ıy	
	Figure: a/ Scanning electron mi- crograph of a nanoimprinted two- dimensional PhC with a 380 nm lattice constant honeycomb array of holes (holes depth 350 nm), b/ cross-section schematic of the studied system.	<u>Process:</u> A thermal NIL process is used to replicate the 2D periodic Si stamp in a dye-doped polymer. The dye-doped polymer is composed of rhodamine 6G directly dissolved in a printable polymer. The metallic substrates used have 50 nm thick layers of gold, aluminium and silver deposited by thermal evaporation on quartz substrates. <u>Application:</u> Light extraction applications (LEDs, OLEDs)
Nevworus , mermal hanolindrint, dho	tome crystal, surface diasmon, light	CAUACHON

Project leader: Tyndall National Institute	Process: Thermal nanoimprint
Address: Lee Maltings, Prospect Row, Cork, Ireland	Responsible: C.M. Sotomayor Torres
Web-Address: http://www.tyndall.ie	E-mail: clivia.sotomayor@tyndall.ie

Process description: A process is described for two-dimensional nanoimprinted polymer photonic crystal coupled to surface plasmons. A stamp with different lattice constant PhCs was fabricated in a silicon wafer by using electron-beam lithography and dry etching. A thermal NIL process is used to replicate these 2D periodic patterns in a dye-doped polymer.

Purpose: The aim of this process is to provide a method to enhance the photoluminescence of dye chromophores-loaded by coupling the emission to surface plasmons in nanoimprinted photonic crystals.

Major challenges: The major challenge in this process is to control clusters formation on the metallic film to allow the matching of the surface plasmon resonance wavelength with the emission wavelength of the dyes

Application and state-of-the-art: Tthe combination of surface plasmons and nanoimprinted structures in an active layer can lead to a new class of cost effective and high efficiency OLEDs. Furthermore, the metallic surface could be used as an electrical contact.

References:

[1] V. Reboud, N. Kehagias, M. Zelsmann, M. Fink, F. Reuther, G. Gruetzner and C. M. Sotomayor Torres, *Photoluminescence enhancement in nanoimprinted photonic crystals and coupled surface plasmons*, Optics Express, 15, 12, 7190, 2007.

Contact information: Prof Dr Clivia M Sotomayor Torres Tyndall National Institute University College Cork Lee Maltings, Cork, Ireland Phone: +353 21 490 4056 Fax: +353 21 490 4435 email: clivia.sotomayor@tyndall.ie

LoP2007_NIL008_photonic crystals. PDF

Photonic Crystals for Enhanced Light Extraction Process: nanoimprint lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0	Process 1: Wafer preparation		
1.1	wafer selection and preparation	Standard glass or Pyrex substrate	
1.2	substrate preparation Dye-doped polymer Metal (Al, Ag, Au or none) Glass substrate	no pre-treatment of the sub- strate Evaporation of metal films deposited using NFC 2000 Temescal 6 kW electron beam guns with a deposi- tion rate of 10 Angstroms per second. A 400 nm thick layer of this modified polymer is spun on subrates.	
1.3	Process control	Figure: a/ Normalized ex- tinction spectra of the dif- ferent used substrates, presenting the surface plasmon wavelength tunability. b/ right upper image: AFM images (5 x 5 μ m ²) of a 50 nm thick Ag evaporated on quartz sub- strate, (black inset: the depth profile along the white line). To determine the plasmon resonance frequencies of the different substrates, normalized extinction spec- tra were measured.	The second advantage in using silver islands films apart from the tunability of the SP resonance wave- length is that the non- negligible surface rough- ness scatters the SP modes to radiated light.
2.0	End of Process 1		
2.1	layout	Functional structures The stamp consists of 10 arrays of pillars (350 nm height) on an area of $100 \times 100 \text{ mm}^2$ with a 100 mm pitch between arrays. The size of the Si is $2x2 \text{ cm}^2$.	
2.2	stamp preparation	wafer selection The stamp was fabricated in a silicon wafer by using electron-beam lithography and dry etching (for details, see introduction of this process).	

NaPa_Library of Processes

2.3	Anti-adhesive coating	The silicon stamp is treated with a self-assembled anti- adhesive monolayer (tride- cafluoro-1, 1, 2, 2- tetrahydrooctyl trichlorosi- lane deposited in vapour phase).	
	End of Process 2		
3.0	Process 3: Nanoimprint Lithogra- phy		
3.1	Process control : SEM top-view of the nanoim- printed photonic crystals	The stamp and the coated substrates are pressed together in a 2.5 inch <i>Obducat</i> nanoimprinter at 60 bar for 5 min at 90 °C. The pressure is sustained during the cooling phase until the temperature fell below 35 °C.	
2.2	Measurement: Optical characterization	Figure: a/ Photolumines- cence spectra of a nanoim- printed unpatterned dye- doped polymer film on a quartz substrate (black line), of a 2D photonic crys- tal with a 380 nm lattice constant (blue line), with a 500 nm lattice (green line) and with a 700 nm lattice (red line), b/ photoluminescence spectra of a flat surface imprinted on a quartz sub- strate (black line), of a 2D photonic crystal with a 700 nm lattice constant im- printed on a 50 nm Ag quartz substrate (blue line), of a 2D photonic crystal with a 700 nm lattice con- stant imprinted on a quartz substrate (red line) of a	

NaPa_Library of Processes		
	nanoimprinted unpatterned dye-doped polymer film on a 50 nm Ag quartz sub- strate (green line).	
End of Process 3		
End of Total Process		

Process description: A process is described for two-dimensional nanoimprinted polymer photonic crystal coupled to surface plasmons. A stamp with different lattice constant PhCs was fabricated in a silicon wafer by using electron-beam lithography and dry etching. The electron-beam exposure was carried out on a Jeol 6000 equipment with a dose of 130 µC/cm² under a beam current of 100 pA on single layer of a ZEP 520 resist (positive tone resist from Zeon Corporation). Development is carried out during 30 sec in a solution of ZED N50 (Zeon Corporation). The silicon stamp is then etched to a depth of 350 nm by inductively coupled plasma etching and treated with a self-assembled antiadhesive monolayer (tridecafluoro-1, 1, 2, 2-tetrahydrooctyl trichlorosilane deposited in vapour phase). A thermal NIL process is used to replicate these 2D periodic patterns in a dye-doped polymer. The dye-doped polymer is composed of rhodamine 6G (from Sigma Aldrich) directly dissolved with a concentration of 5x10⁻⁴ mol/L in a printable polymer (mr-NIL 6000 from *micro resist technology*), which is optically transparent in the visible range. A 400 nm thick layer of this modified polymer is spun on a guartz wafer and on metal-coated guartz wafers and baked at 60 °C for 10 min before the NIL process. The stamp and the coated substrates are pressed together in a 2.5 inch Obducat nanoimprinter at 60 bar for 5 min at 90 °C. The pressure is sustained during the cooling phase until the temperature fell below 35 °C. The metal films were deposited using NFC 2000 Temescal 6 kW electron beam guns with a deposition rate of 10 Angstroms per second. The control of the deposition rate allows the tuning of the surface plasmon frequency of the film throughout the visible.

Purpose: The aim of this process is to provide a method to enhance the photoluminescence of dye chromophores-loaded by coupling the emission to surface plasmons in nanoimprinted photonic crystals. Two critical research issues in organic optoelectronics are to reduce the cost of organic LEDs and to improve their external efficiency. One approach to improve the extraction efficiency is to use two-dimensional (2D) photonic crystals (PhCs). A PhC structure enhances the light emitted from the active layer by slowing the propagation speed of the photons, thus increasing the coupling to the out-of-plane radiative modes. Another approach is to increase the spontaneous recombination rate of the emitters. This can be based on the energy transfer between light emitters and surface plasmons (SPs).

Major challenges: The major challenge in this process is to control clusters formation on the metallic film to allow the matching of the surface plasmon resonance wavelength with the emission wavelength of the dyes

Application and state-of-the-art: The two approaches mentioned above have been combined to enhance the light-emission efficiency of organic thin films. An active polymer film deposited on a metal surface is patterned by NIL and the SP energy is matched to that of the emitter in the PhC, reaching up to a x 27 enhancement. Our results indicate that nanoimprint lithography is a well suited process to fabricate these challenging photonic structures and that the combination of surface plasmons and nanoimprinted structures in an active layer can lead to a new class of cost effective and high efficiency OLEDs. Furthermore, the metallic surface could be used as an electrical contact.

3.9 Refractive Microlenses

Fabrication of microlenses and complex refractive surfaces

Process: nanoimprint lithography					
	Figure:	Process:			
	Arrays of microlenses with t	wo Isotropic wet etching of glass with			
	different radii of curvature h	ot patterned chromium mask. Hot em-			
\sim	embossed in PMMA (above) and bossing or polymer casting.			
	arrays of microlenses with di	ffer-			
	ent apertures (same radii of	cur- <u>Application:</u>			
	vature) by polymer casting a	nd Spherical or cylindrical microlens			
	UV exposure of SU8 resist.	The arrays with full control on radii of			
	unit bars correspond to 10 µ1	n. curvature and diameter			
Keywords: Isotropic wet etching, glass template, hot embossing, polymer casting					
Project leader: TASC Laboratory	/	Process: Isotropic wet etching/ NIL			
Address: SS 14km 163 5. 3401	2 Basovizza (Trieste It-	Pesnonsible: Massimo Tormon			

Address: S.S.14km 163,5; 34012 Basovizza (Trieste, It-	Responsible: Massimo Tormen
aly) Web-Address: www.tasc-infm.it	F-mail : tormen@tasc infm it

Process description: A process is described for the fabrication of polymeric arrays of microlenses or more complex systems of lenses (lenses on curved surfacecs, arrays of lenses with multiple radii of curvature) by means of a proceessof wet etching of glass and hot embossing or polymer casting.

Purpose: The aim of this process is to produce large arrays of microlenses with a high control of geometrical parameters of the elements.

Major challenges: Accurate pattern definition in a chromium layer on glass with high etching resistance to concentrated hydrofluoric acid.

Application and state-of-the-art: Research process, light concentrators for CCD's elements or photovoltaic cells,

References:

- [1] Massimo Tormen, Alessandro Carpentiero, Enrico Ferrari, Dan Cojoc and Enzo Di Fabrizio, Novel fabrication method for three-dimensional nanostructuring: an application to micro-optics, Nanotechnology 18, 385301 (2007).
- [2] Massimo Tormen, Alessandro Carpentiero, Lisa Vaccari, Matteo Altissimo, Enrico Ferrari, Dan Cojoc, Enzo Di Fabrizio, *Fabrication of three-dimensional stamps for embossing techniques by lithographically controlled isotropic wet etching.* Journal of Vacuum Science and Technology B 23, 2920 (2005).

Contact information: Dr. Massimo Tormen Beamline scientist CNR - Istituto Nazionale per la Fisica della Materia Laboratorio Nazionale TASC Area Science Park - Basovizza S.S.14 - km163,5 34012 Bassowizza - Italy

LoP2007_NIL009_ Microlenses with spherical molds. PDF

Refractive Microlenses Process: nanoimprint lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0a	Process 1: Stamp preparation First option (a)		
1.1a	Stamp substrate preparation	Sputter coating soda-lime glass with 100 nm chromium film.	Quality of the deposited chromium film, that should not have pin-holes
1.2a	Layout	Functional structures the pattern to be defined con- sists of dots or lines, corre- sponding to the centers of curvature of the spherical or cylindrical lenses in the plane of the glass surface.	
1.3a	Pattern definition by lithography	Standard electron beam or UV lithography can be used to define the pattern in a positive tone resist. For instance: Spin-coating 200 nm PMMA, expose ex- posed to a 30 kV electron beam 200 μ C/cm ² dose and develop developed in MIBK:IPA(1:3). Alterna- tively, UV lithography can be used for defining the center of curvature of microlenses lar- ger than 5-10 um	
1.4a	Chromium etching i)	Open holes or trenches in the chromium layer by etching in aqueous solution of ammo- nium cerium (IV) nitrate (0.6 M) and acetic acid (1 M) for 1 min. The resist is stripped in solvents (e.g. ace- tone)	Loss of resolution due to wet etching of Chromium. The alternative is to use dry etch- ing techniques
1.5a	Wet etching of glass ii)	Isotropic etching of quartz is performed in aqueous HF (48 wt.%) at room temperature, with an etching rate of ~1 μ m/min. The etching time is adjusted at each etching step in order to produce the re- quired etching depth (=radius of curvature) in the glass sub- strate. For the etching of struc- tures with fine details, more diluted HF solution (15 wt.%) is used to lower the etching rate to tens of nm/min.	Etching of holes through pin- holes in chromium lead to undesired spherical cavities .
1.6a	Chromium stripping	Stripping the chromium film by etching in aqueous solution of ammonium cerium (IV)	

NaPa_L	brary of Processes		NaPa Emerging Nanopatterning Methods
	Ri iii)	nitrate (0.6 M) and acetic acid (1 M) for 1 min.	
1.7a	Second step of wet etching of glass	Simple geometrical construc- tions show that for an etching time t_2 after the stripping of the mask, the surface results in a spherical cap with a diame- ter $D = 2v\sqrt{t_1^2 + 2t_1t_2}$ and radius of curvature $R = v(t_1 + t_2)$, where v is	
1.0b	Process 1: Stamp preparation Second option (b)	the etching rate.	
1.1b	Process 1: Stamp substrate preparation	Clean soda-lime glass surface is required as initial substrate.	
1.2b	Focused ion beam h ₁ ¹ h ₂ h ₃ i)	Hholes are milled at different depths in a quartz substrate by focused ion (Ga+) beam at 30 KeV. Centers of curvature can be located atdifferent coordi- nates (x,y,z), below the glass surface.	
1.3b	Wet etching of glass $h_1 < vt$ $h_2 = vt$ $h_3 < vt$ b)	Different diameter (same radius of curvature) are ob- tained as a function of the height of the milled holes.	
1.8a and 1.4b	Process control: SEM, AFM	рит/div 0.16 2.0 µm/div 2.0 µm/div	
2.0	Process 2: Coating for antiad- heasion		
2.1	Coating with a hydrophobic monolayer of dodecyltrichlorosilane	The glass stamp is immersed for 10min in freshly prepared solution of $H_2O_2:H_2SO_4$ (1:4). Dodecyltrichlorosilane 1-5 mM in toluene is prepared in glovebox under nitrtogen atmosphere. The stamp is dip for 1-2 hours in the solution. Rinse in toluene before taking into air atmosphere	Safety precaution: pour H_2SO_4 into a beaker with H_2O_2 , not vice-versa.
3.0	Process 3: Embossing or polymer casting		

Г

NaPa_Li	ibrary of Processes		
3.1	Different option for producing plastic microlenses.	Glass templates fabricated according to the processes outlined above can be used to	Possible trapping of air in the cavities, leading to defects in hot embossed microlenses
	nanoimprinting hot embossing polymer casting	microstructure a large selec- tion of materials with various processes such as nanoim- print, hot embossing or casting	Vacuum is helpful in remov- ing defects created by air inclusion.
	Nanoimprinting in PMMA	processes with different poly- mers. Nanoimprinting of relatively thick (>5 µm) polymethyl- metacrylate (PMMA) films on silicon can be carried out at 210 °C at a pressure of 5 MPa.	
		Hot embossing of pellets of the polyolefin ZEONEX (Zeon Chemicals) can done at 160-190 °C at a pressure of 2- 10 MPa, to produce 50-100 µm thick polymer sheets with one or both patterned surfaces.	
	Hot embossing into Zeonex (see reference [1] and [2] for more de- tails).	PDMS precursor can be cast on the template and baked can Examples of optics produced with these methods are shown in figure on the left.	
	End of Process 3		
	End of Total Process		

3.10 Fast Isothermal Imprint

Fast isothermal imprint for full wafers						
Process: nanoimprint lithograph	Process: nanoimprint lithography					
Keywords: thermal nanoimprint, throw	Figure: Photograph of a 200 mm wafe imprinted using a 2 min proce	Process: A 200 mm wafer is imprinted uni- formly in a 2 minutes process with features sizes down to 250 nm or 50 nm. Application: Large scale imprint applications				
Project leader: LTM Process: Fast isothermal imprint						
Address: 17 R. Martyrs, 38 054 0	Grenoble, France	Responsible: Cécile Gourgon				
Web-Address: http://www.ltm-cn	rs.fr/	E-mail: cecile.gourgon@cea.fr				
Partner: CEA-LETI Address: 17 R. Martyrs, F- 38 05 Web-Address:	4 Grenoble	Process: Fast isothermal imprint Responsible: Stefan Landis E-mail: Stefan.landis@cea.fr				

Process description: The fast imprint process is based on a constant temperature of the equipment. The spin-coated wafer is introduced directly on the heated chuck, and its temperature uniformity is obtained very fast thanks to the equipment design. The resist is fluid enough to induce a very fast imprint as soon as the pressure is applied on the mold, and the demolding is performed outside of the machine. The mold/wafer stack is removed from the heated chuck at high temperature. The adhesion forces between the mold and the imprinted patterns guarantee a stability of the features when the pressure is stopped, until the external cooling. The demonstration is made in this library with 250 nm dense lines. It has also been proved that the same result can be obtained with 50 nm features, but the patterns are not covering the complete surface since a mold fully covered with such high resolution structures is still a challenge.

Purpose: The aim of this process is the increase of the NIL throughput on large surfaces. It was demonstrated that a process can be performed in 2 minutes. This value could be decreased by a up-grade of the equipment with a faster chamber pumping and a automatic loading.

Major challenges: The polymer film has to be heated as fast as possible with a good uniformity. This is a limitation for the fast imprint of very thick polymers. The mold cavities have to be filled very quickly and this is more difficult to achieve for very deep structures. But this fast process is really optimized for the production of nanostructures on large surfaces.

References:

- [1] C. Gourgon, N. Chaix, S. Landis, M. Zelsmann, J. Boussey, C. Perret, *The impact of the cycle time on the pattern filling and uniformity in thermal Nanoimprint lithography*, NanoImprint and Nanoprint Technology Conference, San Francisco, December 2006
- [2] C. Gourgon, N. Chaix, H. Schift, M. Tormen, S. Landis, C.M. Sotomayor-Torres, A. Kristensen, R.H. Pedersen, M.B. Christiansen, I. Fernandez-Cuesta, D. Mendels, L. Montelius, T. Haatainen, *Benchmarking of 50 nm features in thermal Nanoimprint*, J. Vac. Sci. Technol. B 25(6)(2007) 2373-2378

Contact information:

Cécile Gourgon Laboratoire des Technologies de la Microélectronique LTM 17 Rue des Martyrs (c/o CEA Grenoble) F- 38 054 Grenoble Cedex 9 cecile.gourgon@cea.fr

LoP2007_NIL010_Fast isothermal imprint. PDF

Fast Isothermal Imprint Process: nanoimprint lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0	Process 1: chamber and wafers preparation		
1.1	Pre-heating of the equipment	EVG[®]520HE Heating up to T _{imprint} 5 min waiting time to stabilize the temperature	
1.2	Mold/wafer assembly teflon chuck	200 mm Si wafers Thin film of resist spin-coated on the Si substrate Mold coated with a standard anti-sticking layer Teflon sheet to improve the printing uniformity	The resist thickness has to be in the range of few 10 nm to few 100 nm. A micrometer thick film could result in a limited temperature uniform- ity
2.0	End of Process 1		
2.0	Process 2: imprint process		x · · . 11 .1 · · · · · ·
2.1	Pumping and temperature uni- formization	Pressure down to 100 mbars in 30 seconds	Limited by the pumping speed
2.1	imprint () $()$ $()$ $()$ $()$ $()$ $()$ $()$	Applied force: 40 kN During 1 minute In the case of NEB22 resist and mr-I7000 polymers, the viscosity is low enough to induce to fast filling at a mod- erate temperature of 120°C	The filling is uniform after less than 1 minute only if the mold depth is limited to ~200 nm and if the pattern size is in the few 100 nm range
2.3	decrease of the force and chamber venting	T = T imprint	
2.0	End OI Process 2		
3.0	rrocess 5: demoiding	The mold/water steels is mut	
5.1	Unioading of the stack	on a plate cold with water to fasten the cooling Waiting time: 2 minutes	
3.2	Demolding	Manual demolding with a razor blade	
3.3	process control	SEM 250 nm dense lines covering the 200 mm wafer	

NaPa_Library of Processes

۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	
End of Process 3	
End of Total Process	

General remarks:

3.11 Pattern Transfer Optimization

Pattern transfer optimization for full wafer NIL

Process: development of anisotropic transfer processes				
	Figure: Photograph of a 200 mm wafer imprinted and etched using an anisotropic process	<u>Process:</u> Plasma etching processes are opti- mized to anisotropic pattern transfer, allowing the transfer of various densities of structures <u>Application:</u>		
Keywords: plasma etching, critical d	imension, residual layer	Si devices with various patterns size and densities		

Project leader: LTM	Process: anisotropic pattern transfer
Address: 17 R. Martyrs, 38 054 Grenoble, France	Responsible: Cécile Gourgon
Web-Address: http://www.ltm-cnrs.fr/	E-mail: cecile.gourgon@cea.fr

Process description: Large surfaces require a high imprint uniformity, which is easier to achieve with residual layers in the 50-100 nm range. A anisotropic plasma etching process is developed to remove this residual polymer film. The anisotropy allows a high quality transfer into patterns with various densities, with a good fidelity of the pattern size. This process uses a $O_2/Cl_2/Ar$ plasma chemistry in a ICP reactor.

Purpose: The aim of this process is the development of etching processes which allow a high quality transfer in patterns with different densities or sizes, and therefore with different residual layer thickness.

Major challenges: A challenge of this process is the reduction of the resist budget which limits the Si depth that can be achieved finally. Indeed a high difference of the residual thickness implies longer etching processes. The fidelity of all the patterns is guaranteed by the anisotropy, but the polymer is still vertically etched in the features whose residual layer is opened first. The resist mask for the following Si etching is therefore reduced.

References:

- [1] N. Chaix, C. Gourgon, C. Perret, S. Landis, T. Leveder, NIL processes on 200 mm Si wafer for optical applications : residual thickness etching anisotropy, J. Vac. Sci. Technol. B 25 (6) (2007) 2346-2351
- [2] N. Chaix, S. Landis, C. Gourgon, S. Merino, V.G. Lambertini, G. Durand, C. Perret, Nanoimprinting lithography on 200 mm wafers for optical applications, Microelectronic Engineering 84 (2007) 880-884

Contact information: Cécile Gourgon Laboratoire des Technologies de la Microélectronique LTM 17 Rue des Martyrs (c/o CEA Grenoble) F- 38 054 Grenoble Cedex 9 cecile.gourgon@cea.fr

LoP2007_NIL011_Pattern Transfer Optimization. PDF

Pattern Transfer Optimization Process: nanoimprint lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0	Process 1: imprint		
1.1	Wafers preparation teflon chuck	200 mm Si wafers Thin film of resist spin-coated on the Si substrate Mold coated with a standard anti-sticking layer Teflon sheet to improve the printing uniformity	
1.2	Imprint process	EVG[®]520HE 40 kN, 120°C, 5 minutes	
	End of Process 1		
2.0	Process 2: residual thickness (hr) measurement		
2.1	Ellipsometry for scatterometry	Spectroscopic ellipsometer 300 – 800 nm Spot size 40 μm Mapping on the 8'' surface	
2.2	Fit of the ellipsometry spectra $5 \frac{1}{1000} \frac{1}{400} \frac{1}{500} \frac{1}{600} \frac{1}{700} \frac{1}{800} \frac{1}{1000} \frac$	Calculation time determined by the pattern geometries: few seconds for 200 nm dense lines, but few hours for 3D structures	A high accuracy measure- ment of $n(\lambda)$ and $k(\lambda)$ has to be performed before. Limitation : homogeneous pattern gratings with stan- dard geometries
2.3	SEM characterization	Top-down SEM for pattern quality and homogeneity con- trol, or cross-section SEM Line width: 209 nm	test wafer needed if cross- section measurement
2.0	End of Process 2		
3.0	Process 3: hr etching	Distation 5200 from a line	
3.1	Loading of the imprinted water	Materials, DPS ICP reactor	
3.2	Etching process dielectric Plasma Polarisation RF source Wafer chuck Polarisation RF Bias	O ₂ /Cl ₂ /Ar plasma O ₂ : 30 sccm, Cl ₂ : 40sccm, Ar:30sccm Pressure 10 mTorr Source power: 500 W Bias power: 60 W for NEB22 resist	The anisotropy is mostly dependent on the bias power. Some resists, which are less resistant, require lower bias, and this limits the anisotropy control.
3.3	process control	SEM and scatterometry to measure the pattern size after	

NaPa_Library of Processes		
xse.ék čédérán	the hr etching and compare it to the imprinted one Line width: 202 nm	
End of Process 3		
End of Total Process		

3.12 Biodegradable Polymer Scaffold

Fabrication of a biodegradable micro- and nano-structured polymer scaffold for tissue engineering

Process: Nanoimprint, hot embo	ossing	
Keywords: thermal nanoimprint, PDN	Figure: Photograph of a 200 mm wafer imprinted and etched using an anisotropic process	Process: Plasma etching processes are opti- mized to anisotropic pattern transfer, allowing the transfer of various densities of structures <u>Application</u> : Si devices with various patterns size and densities

Project leader: Glasgow University	Process: Nanoimprint Lithography
Address: Glasgow University	Responsible: M. Riehle
Web-Address: www.gla.ac.uk/centres/cellengineering	E-mail: m.riehle@bio.gla.ac.uk

Process description: Large surfaces require a high imprint uniformity, which is easier to achieve with residual layers in the 50-100 nm range. A anisotropic plasma etching process is developed to remove this residual polymer film. The anisotropy allows a high quality transfer into patterns with various densities, with a good fidelity of the pattern size. This process uses a O₂/Cl₂/Ar plasma chemistry in a ICP reactor.

Purpose: The aim of this process is the development of etching processes which allow a high quality transfer in patterns with different densities or sizes, and therefore with different residual layer thickness.

Major challenges: A challenge of this process is the reduction of the resist budget which limits the Si depth that can be achieved finally. Indeed a high difference of the residual thickness implies longer etching processes. The fidelity of all the patterns is guaranteed by the anisotropy, but the polymer is still vertically etched in the features whose residual layer is opened first. The resist mask for the following Si etching is therefore reduced.

References:

- N Gadegaard, S Thoms, D S Macintyre et al. Microelectronic Engineering 162 (2003) 67-68. [1] [2]
 - N. Gadegaard, E Martines, M.O.Riehle et al. Microelectronic Engineering 83 (2006) 1577-1581.
- [3] K. Seunarine, N. Gadegaard, M. Tormen et al. Nanomed. 1 (2006) 281-296.

Contact information: Dr. Mathis Riehle Centre for Cell Engineering University of Glasgow Glasgow G12 8QQ - UK

LoP2007 NIL012 Biodegradable polymer scaffold. PDF

Biodegradable Polymer Scaffold Process: nanoimprint lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0	Process 1: Micro master fabrica- tion	Micrograting: 6 µm pitch, 6 µm deep	
1.1	Wafer selection	standard Si substrate Si substrate, 4", <100>, d=525 μm one side polished	
1.2	Resist coating	spin coat resist Primer at 5 krpm for 5 s S1818 @ 4 krpm for 60 s Bake 10 minutes @ 90°C (hot plate)	
1.3	Photolithography	Suss MA6 Expose (i-line) for 5 s Develop in 1:1 Microposit concen- trate:RO water for 70 s Dry in N ₂ stream	
1.4	Dry etch - micro grooves	C_4F_8, SF_6 50 sccm, 40 sccmCoil power600 WPlaten10 W powerPressure10 mTEtch rate825 nm/min6 μ m deep	
1.5	Spacers	SU8 2050 @ 3 krpm (75 μm) 30 min at 95°C MA6, 20 seconds PEB 95°C for 7 minutes Develop in EC solvent for 7-10 minutes Rinse in IPA and dry in N ₂ stream	Low thermal cycling to prevent SU-8 cracking
1.6	Anti-sticking layer	Ash in a O_2 plasma (60W, 3 min) Immerse stamp in mixture of heptane with small drop of perfluoro silane ($C_8H_4Cl_3F_{13}Si$) from Gelest for 5-10 minutes.	

NaPa_			
		Rinse in heptane and dry in N ₂ stream	
1.7	PDMS micro stamp	Cast 4:1 (pre-polymer:curing agent) Sylgard 184 to make inverse replica of stamp	
	End of Process 1		
2.0	Process 2: Nano master fabrication		
2.1	Wafer selection	standard Si substrate Si substrate, 4", <100>, d=525 μm one side polished	
2.2	Resist coating	spin coat resist 60% ZEP520A @ 4 krpm for 60 s Bake 60 minutes @ 180°C (oven)	
2.3	e-beam lithography	50 kV accelerating voltage 80 nm beam spot size 300 nm beam step size $42 \ \mu C/cm^2$ exposure dose for an array of $10^9 \ spots/cm^2$ Develop O-xylene 60 s Rinse in IPA and dry in N ₂ stream	See[1]
2.4	Dry etch	C4F8, SF6 120 sccm, 40 sccm Coil 18 W power 10 mT Pressure 10 mT Etch rate 100 nm/minute 100 nm deep	
2.5	Anti-sticking layer	Strip resist in Piranha etch (7:1) sul- phuric acid:hydrogen peroxide Immerse stamp in mixture of heptane with small drop of perfluoro silane (C ₈ H ₄ Cl ₃ F ₁₃ Si) from Gelest for 5-10	Piranha etch also oxidizes silicon prior to fluorination Warning – Piranha is a highly oxidizing

NaPa_	Library of Processes		NaPa Emerging Nenopatterning Methods
		minutes. Rinse in heptane and dry in N ₂ stream	solution
2.6	PDMS nano stamp	Cast 4:1 (pre-polymer:curing agent) Sylgard 184 to make inverse replica of stamp	
	End of Process 2		
3.0	Process 3: Polymer membrane fabrication and embossing		
3.1	Solvent casting	Cast polymer mixture 1.25 g of PCL (Sigma, Poole, UK) dissolved completely in 25 ml of chlo- roform (Fisher scientific Inc., UK) left at room temperature for 2 hrs with frequent agitation 20 ml of PCL solution is deposited on a fluorinated 4" silicon wafer in a pet- ridish. The solvent is evaporated overnight before the PCL film is demoulded. Average film thickness produced is between 60-80µm.	
3.2	Melt embossing	PCL film cut, aligned and sandwiched between the PDMS micro and nano- stamps. Melt embossed (80°C) at a low pres- sure and allowed to cool.	
4.0	End of Process 3		
4.0	Process 4: Rolling		1

Г

NaPa_	Library of Processes	NaPa Emerging Nanopatterning Methods	
4.1		Custom built rolling jig Double side embossed film is trimmed into a manageable shape, the length of the film determines the subsequent number of layers that the scaffold will possess. The jig is a split pin configuration that clamps the edge of the film. The film is laid flat on a special 'runway' that is weighted by a special lid – this ensure that tension is exerted while the film is rolled providing a tight roll. The roll is secured either by surgical suture thread or by the use of a bio- compatible superglue, 2-Octyl Cyanoacrylate. After rolling and securing the pin clamps are loosened and removed. Excess film is trimmed and the scaffold is ready for use.	
	End of Process 4		
	End of Total Process		

3.13 Fluidic Channels by Roll to Roll NIL

Fabrication for fluidics channels by using Roll to Roll NIL

Process: nanoimprint lithography, roll to roll printing, lithography				
Laminating film with glue Cellulose acetate	Figure: Optical micrograph of a fluidics channels in 95 μm thick cellu-	<u>Process:</u> Thermal roll to roll nanoimprint of a polymer film. Channels imprinted		
LAMINATE CILAMINATE CILAMINATE	loseacetate sealed with ca. 90μ m thick laminate foil. Fluidisc channel is 50 μ m high and 150 μ m width.	and sealed using custom made roll to roll device. <u>Application:</u> Microfluidic devices in high volume applications. Continuous processing.		
Keywords: thermal nanoimprint roll embossing roll to roll NIL				

Project leader: VTT Technical Research Centre of Finland	Process: Roll-to-roll NIL	
Address: FI-02044 VTT, Finland	Responsible: Tapio Mäkelä	
Web-Address: http://www.vtt.fi	E-mail: Tapio.Makela@vtt.fi	

Process description: A process is based on continuous roll to roll manufacturing of fluidistic channels by using custom made manufacturing tool. Printing instrument consist two sequential units; thermal imprint and lamination. In continuous manufacturing process; fluidics channels were imprinted on cellulose acetate web and sealed with an laminate foil during the same printing cycle. In roll to roll NIL process a softening temperature of wed is higher than in a laminate film.

Purpose: The aim of this process is to demonstrate a high volume continuous roll to roll nanoimprinting process. In this process we show possibilitity to manufacture fludics channels with continuous process. A specific reguirements of sequential process were shown.

Major challenges: In this novel process a many challanges can be listed: Manufacturing methods for imprint master (on a roll) and optimal parameters for pressure, temperature and time. Suitable plastic materials on web is needed, since in roll to roll manufacturing typical imprint time is 1 s or shorter. This process is developed by optimizing parameters suitable for cellulose acetate but PMMA, TOPAS, PS and other materials where softening or glasstransition temperature are below 200 C are possible to use. Aspect ratio in roll to roll process can not exceed much above 1:1 in rectangular chapes.

Application and state-of-the-art: Research process

References:

- [1] T. Mäkelä, T. Haatainen, P. Majander and J. Ahopelto, MNE07 (2007).
- [2] T. Mäkelä, T. Haatainen, P. Majander and J. Ahopelto, Microelectr. Eng. 84 (2007) 877-879.
- [3] T. Mäkelä et al. Unpublished data

 [4] H. Schift, Roll embossing and roller imprint, Chapter (5) in "Science and new technology in nanoimprint". Volume editor Y. Hirai. Frontier Publishing Co., Ltd., Japan, ISBN4-902410-09-5, June 2006, 281 pp., English 74-89, Japanese translation (extract) 90-93 (2006).

Contact information: Ph.Lic. Tapio Mäkelä VTT Technical Research Centre of Finland Tietotie 3, Espoo P.O.Box 1000, FI-02044 VTT Finland

LoP2007_NIL013_RtoR for fluidics channels. PDF

Fluidic Channels by Roll to Roll NIL Process: nanoimprint lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0	Process 1: Master fabrication		
1.1	Metallic cylinder	Metal roll and engraved channel structure on roll roll size 66 x 60 mm (diameter x width)	
1.2	Substrate preparation	Substrates Plastic roll: 50 mm width , 95 um cellulose acetate , no pre- treatment Laminate roll: 50 mm width , 90 um thick laminate with meltable glue	
2.0	End of Frocess 1		
2.0	Process 2: Stamp preparation	E	1 1
2.1	150 Um width 500 Um width	Engraving of roll The stamp consist of 150 µm width and 500 µm depth grooves.	engraved grooves are rela- tively good but edges not clean
2.2	process control	optical microscope 100 x	
2.0	End of Process 2		
5.0	nrinting		
3.1	Roll to roll imprint Unvinder Polymer film Imprint Laminating	Thermal roll to roll imprint Pressure 8 MPa Temperature 105 C Speed 0.2 – 8 meter/minute 5 mm contact area between printing and backing rolls	Tg of cellulose acetate 120 C
3.2	Cooling/demolding	Cooling at room atmosphere (no blow) 30 cm distance between units	
3.3	process control	Optical microscope	

NaPa_L			
	End of Process 3		
4.0	Process 3: Cover		
4.1	Laminated cover for fluidics	Thermal roll to roll laminat- ing Pressure < 0.1 MPa Temperature 80 C Speed 0.2 – 8 meter/minute 1 mm contact area between printing and backing rolls	
4.2	process control	optical microscope cross section 100 x	
4.3	process control	Channel test tested with water (+ dye)	
	End of Process 4		
	End of Total Process		

Г

Fabrication of V-groove waveguides for plasmon confinement by Nanoimprint Lithography

NaPa

Keywords: thermal nanoimprint, v-groove, plasmon confinement.

Project leader: <i>MIC-DTU</i>	Process: Design and fabrication
Address: DTU building 345E, 2800 Lyngby, Denmark	Responsible: Anders Kristensen
Web-Address: <i>www.mic.dtu.dk/ak</i>	E-mail: ak@mic.dtu.dk
Partner: CNM-Barcelona	Process: Sample fabrication
Address: Campus de la UAB, 08193 Bellaterra, Spain	Responsible: Irene Fernandez Cuesta
Web-Address: www.cnm.es	E-mail: irene.fernandez@cnm.es

Process description: A process is described for wafer scale fabrication of integrated devices, based on v-groove cavities for plasmon confinement. The process includes a double replication, thus, the final structures are equal to those fabricated in the initial stamp (silicon), but made in different materials. This goal is achieved by combining nanoimprint lithography, metallization and casting of a UV curable polymer onto the imprinted structures, and finally dissolving the imprinted polymer. The stamp is fabricated in two steps: photolithography and wet etching in KOH, and photolithography and Deep RIE.

Purpose: The aim of this process is to fabricate cavities with V shape and smooth sidewalls (in gold onto a transparent and flexible substrate), and simultaneously two deep channels, integrated with the groove, where optical fibers can fit, to facilitate light coupling in the groove and measure the output signal.

Major challenges: stamp fabrication: to achieve smooth and vertical sidewalls in the D-RIE step. Gold deposition is critical. Due to thermal expansion problems, the gold layer appears cracked sometimes.

Application and state-of-the-art: Research process, used for the fabrication of V-grooves, to study the confinement of plasmons in the bottom of the V-grooves.

References:

- [1] S.I. Bozhevolnyi, et al. Nature, 2006. 440(7083): p. 508-511
- [2] I.Fernandez-Cuesta, R. B. Nielsen, A. Boltasseva, et. Al., J. Vac. Sci. Technol. B 25(6), p. 2649 (2007).

Contact information:

Anders Kristensen MIC-Department of micro and nanotechnology Technical University of Denmark, DTU Building 345E, DK-2800 Kgs. Lyngby, Denmark Email: <u>ak@mic.dtu.dk</u> URL: www.mic.dtu.dk/ak

LoP2007_NIL014_V-Groove Waveguides. PDF

V-grooves for Plasmon Confinement Process: nanoimprint lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0	Process 1: Stamp fabrication		
1.1	wafer selection	standard Si (100) substrate 4", d=500 μm double side polished	
1.2	substrate preparation	Wet oxidation at 1100°C (ox- ide thickness ~200nm)	
1.3	Photolithography 1	Spin coating of UV resist (1.5µm of AZ5214B), UV exposure, and development.	
1.4	RIE	RIE of 200 nm of SiO2. Stripping of the photoresist (acetone)	
1.5	KOH to define de V	Anisotropic wet etching in KOH (wt 30%), at 80°C, dur- ing 1h.	
1.6	Oxide removing	HF 50%, 1 minute.	
1.7	Photolithography 2	Spin coating of UV resist (1.5µm of AZ5214B), UV exposure, and development.	
1.8	D-RIE to define the channels	Deep RIE of silicon, to define the channels (300 µm deep).	Vertical and smooth side- walls should be obtained, otherwise demolding would be difficult.
1.9	Resist stripping	Acetone and ultrasounds, to remove the resist.	
1.9 b	Process control	SEM	
1.10	Optional: improvement of the sharpness of the V.	Wet oxidation, 6h at 1150°C.	For each size of the grooves, the oxidation time can be optimized (by simulations), to achieve the sharpest angle in the bottom.

NaPa_Library of Processes				
1.11	Optional: improvement of the thickness of the stamp	Anodic bonding of another silicon wafer to the bottom of the stamp.	After etching 300um to create the deep channels, in a 500um thick wafer, it be- comes very fragile.	
1.12	Antisticking coating	FDTS-layer (1H,1H,2H,2H- perflourodecyltrichlorosilane) using a MVD system (Applied Microstructures Inc.)		
	End of Process 1			
2.0	Process 2: NIL			
2.1	Substrate preparation	PMMA sheet, 5mm thick. Dehydrated in an oven, at 90°C, 8hours.		
2.2		Imprint with EVG: 180°C, 10min, at 20kN. Demolding at 80°C.		
3.0	Process 3: pattern replication in Ormocomp and gold			
3.1	Gold deposition	Evaporation of 200 nm of gold onto the imprinted face of the PMMA.	A silicon wafer has to be stuck to the backside of the PMMA sheet, to avoid ther- mal gradients and bubbles formation.	
3.2	Ormocomp deposition	Casting of Ormocomp (r) onto the gold layer. The sample is left for 10min. UV curing: 4 cycles of 30seconds.	The Ormocomp has to be cured in short cycles, other- wise, internal stress appears and bends the structures.	
3.3	Releasing of the structures	The sample is rinsed in ace- tone some hours, and cleaned afterwards in an O2 plasma.		
3.3b	process control	SEM		
	End of Process 3			
	End of Total Process			

Г

E-mail: ivan.maximov@ftf.lth.se

3.15 NEMS Device

Web-Address: www.nano.ftf.lth.se

UV nanoimprint lithography for making NEMS devices

Process: UV Nanoimprint lithog	jraphy	
Keywords: UV nanoimprint	Figure: Optical micrograph of UV nance imprinted patterns on double lay resists with the features at both 200 nm and several millimeters	 <u>Process:</u> UV nanoimprint of a UV cure resist or top of a soluble resist (LOR). Pattern transfer by using RIE and wet etching. <u>Application:</u> NEMS devices fabrication (alternative to any pattern transfer processes)
Project leader: Lund University Address: Solid State Physics, Lund, S-221 00, Sweden		ocess: UV-NIL esponsible: Ivan Maximov

Process description: A process is described for UV nanoimprint lithography. It is based on a doublelayer resist system with a sacrificial layer (LOR) below a UV cured resist (UV-cur 06). Because the two polymer layers have different sensitivities to solvents, the LOR can be selectively dissolved through the UV cured resist.

Purpose: The aim of this process is not the fabrication of a specific device, but to demonstrate a processing method for pattern transfer, which is able to transfer the pattern with the features of both nanometers and millimeters on the whole wafer.

Major challenges: The UV nanoimprint lithography is making the monomers cross-linked, which can not be dissolved by the solvent. For pattern transfer, it will make it difficult for the lift-off process. Sacrificial layer (LOR) is used to solve this problem. The imprinted residue layer thickness of UV cured resist, the dry etching rate of UV cured resist and the wet etching rate of LOR are the crucial factors for this process.

Application and state-of-the-art: Research process for pattern transfer of the NEMS device fabrication, it could also be widely used for any pattern fabricating processes.

References:

- Carlberg P, Graczyk M, Sarwe E L, Maximov I, Beck M and Montelius L, Lift-off process for nanoimprint lithography Microelectron, Eng. 67/68, 203 (2003).
- [2] Luo G, Maximov I, Adolph D, Graczyk M, Carlberg P, Ghatnekar-Nilsson S, Hessman D, Zhu T, Liu Z.F., Xu H. Q and Montelius L, Nanoimprint lithography for the fabrication of interdigitated cantilever arrays, Nanotechnology, 17, 1906–1910 (2006).

Contact information: Division of Solid State Physics Lund University Box 118, S-221 00 Lund, Sweden

LoP2007_NIL015_NEMS Device. PDF

NEMS Device

Process: UV-nanoimprint lithography

	Process	Technical Parameters	Remarks
	What	How it should work	Critical issues
1.0a	Process 1: Wafer preparation		
1.1	Substrate preparation	Cleaning of quartz wafer prior to spin-coating of resist layers. Rinsing in acetone, IPA and water for 2 min with ultra- sonic agitation. Nitrogen blow dry.	
	End of Process 1a		
1.0b	Process 1: Stamp preparation		
1.1	Spin-coating PMMA → ZEP 520 → Quartz	 Sping-coating of ZEP- 520A7 resist at 9000 rpm for 60 s, baking at 160 °C at hot plate for 10 min. Spin-coating of PMMA 950 K at 6000 rpm for 60 s, baking at 160 °C for 15 min. 	
1.2	Evaporation of Cr layer Cr layer	Evaporation of 10 nm thick Cr layer to dissipate charge in EBL exposure step.	
1.3	EBL exposure E-beam writing Quartz	Exposure of the structure in EBL system (Raith 150) at 20 keV energy and exposure dose of 66 μ C/cm ² .	
1.4	Development and Cr deposition Resist development and Cr deposition Quartz	 Removal of Cr layer in a Cr etching solution Development of the PMMA layer in MIBK:IPA 1:3 solution for 60 s Development of the ZEP 520A7 resist in o-xylene for 2 min Evaporation of 30 nm Cr layer for lift-off 	
1.5	Lift-off process Lift-off Quartz	Lift-off process in Remover S- 1165 at 80 °C for 10 min.	

NaPa_Li	brary of Processes		NaPa Emerging Nenopatterning Methods
1.6	Reactive Ion Etching SiO ₂ Etching Quartz	Reactive Ion Etching con ditions: 1. CHF ₃ flow 65 secem 2. P=35 mbar 3. RF-power is 75 W 4. Etching time 6 min 5. Etch rate 30-35 nm/min	
1.7	Stamp image (Cr is still present)	 Removal of Cr after RIE Anti-sticking treatment using a vapor of CF₃(CF₂)₅(CH₂)₂SiCl₃ at 250 °C in N₂ glove box for 2 hours 	
	End of Process 1b		
2.0	Process 2: Lithography		
2.1	UV-Cur06 Spin-coating LOR SiO ₂ Si	 Sping-coating of LOR 0.7A resist at 3000 rpm for 60 s, baking at 200 °C in oven for 30 min. Spin-coating of UV- Cur06 resist (Micro Resist Technology GmbH) at 3000 rpm for 60 s, baking at 80 °C for 60 s at hot plate. 	• Control of the resist thick- ness is important
2.2	UV-NIL SiO ₂ Si	 UV-NIL process using Obducat 6" Nanoimprinter: Pressure 20 bar Room temperature Imprint time 3 min Exposure time 10 s 	• Cleanliness of the stamp and substrate is crucial
2.3	Oxygen plasma ashing O ₂ Plasma SiO ₂ Si	 Oxygen plasma ashing in PlasmaPreen system P=5 mbar Ashing time 20-30 s Full power (600 W) 	• Ashing time is important

Г

General remarks:

Subsequent transfer of the imprinted lift-off mask into the substrate can be performed using reactive ion etching.

4. Soft Lithography - Microcontact Lithography

Contributions to this section of the library are from

IBM ZRL - Zürich/Switzerland Dr. Heiko Wolf

CNRS - LAAS, Toulouse, France Prof. Dr. Christophe Vieu

4.1 Alkanthiol Printing

Microcontact Printing of Alkanethiols on Gold

Process: microcontact printing lithography

Figure: Casting PDMS (silicone) precursor onto a structured template in a Petri dish. <u>Process:</u> Casting PDMS (silicone) precursor (elastomer base and curing agent) onto a structured template in a Petri dish. Curing (hardening) by heat (60°C, 12-24 h). <u>Application:</u> Microfluidic devices Photonic crystals pottomice, PDMS

Keywords: microcontact lithography, soft lithography, protein patterning, PDMS

 Project leader:
 IBM Research Laboratory
 Process:
 microcontact lithography

 Address:
 CH-8803 Rueschlikon / Switzerland
 Responsible:
 Heiko Wolf

 Web-Address:
 http://www.zurich.ibm.com/
 E-mail:
 E-mail:

Process description: Microcontact printing (µCP, mCP) of alkanethiols on gold

Purpose: A process is described for transferring a pattern from a silicon master via an elastomeric stamp onto a solid substrate.

Major advantages: In comparison to standard photolithography, microcontact printing is a low-cost, large-area, high-resolution patterning process.

References:

- [1] Libioulle, L.; Bietsch, A.; Schmid, H.; Michel, B.; Delamarche, E. Langmuir 1999, 15, 300-304.
- [2] Larsen, N. B.; Biebuyck, H.; Delamarche, E.; Michel, B. Journal of the American Chemical Society **1997**, *119*, 3017-3026.
- [3] Geissler, M.; Wolf, H.; Stutz, R.; Delamarche, E.; Grummt, U.-W.; Michel, B.; Bietsch, A. Langmuir 2003, 19, 6301-6311.

Contact address:

IBM Research Laboratory Saeumerstrasse 4 CH-8803 Rueschlikon / Switzerland http://www.zurich.ibm.com/

LoP2007_mCP001_microcontact printing alkalethiols. PDF

Alkanethiol Printing

Process: microcontact printing lithography

	Process Technical Parameters		Remarks	
	What	how it should work	critical issues	
1.	Stamp			
1.1	Master fabrication	Fabricate patterned silicon master by photo- or E-beam lithography	ideal with smooth bottom surfaces and smooth vertical sidewalls	
1.2	Master preparation	Coat master with fluorinated sepa- ration layer	hydro-phobic surface treatment to facilitate stamp separation	
1.3	Mixing of PDMS	Mix precursor SYLGARD 184 elastomer base with curing agent 10:1	good mixing required for catalytic reaction,	
1.4	Degasing	Degas mixture to avoid air bubbles in stamp	premixed aliquots can be stored at -20 °C for 1-3 months	
1.5	Stamp curing	Pour liquid prepolymer onto mas- ter inside of petri dish and cure at 60 °C for 12-24 hours.		
1.6	Stamp work-up	Cut and peel stamp off master. Rinse stamp three times with EtOH and dry under a flow of N_2 for 30 s.		
2	Ink [1]			
2.1	Alkanethiols as ink	Chose an alkanethiol, e.g. do- decanethiol (DDT), hexadec- anethiol (HDT) octadecanethiol (ODT) or eicosanethiol (ECT)	higher molecular weight thiols de- crease ink diffusion, but increase dis- order of monolayer and tend to crys- tallize at the stamp surface	
2.2	Purification (op- tional)	Purify by chromatography using silica gel (20:1 hexane-ethyl ace- tate on Silica Gel 60, ~200 g per 0.5 mL of thiols), and degas by successive freeze-pump-thaw cy- cles at a pressure of <100 mTorr for 24 h.	purification removes low-molecular- weight thiols	
2.3	Ink solution	Prepare diluted thiol solution in ethanol, e.g. 0.1 mM	changing the concentration allows to control the amount of ink transferred to the stamp	
2.4	Storage	Store purified ink solution at 4 °C in the dark for up to one week.		
3	Substrate [1]			
3.1	Surface preparation	Evaporate ~1 nm Ti onto a Si/SiO ₂ wafer, e.g. with an e-beam evapo- rator at ~2x10 ⁻⁷ Torr and a rate of ~0.5 nm s ⁻¹ .		
3.2	Au deposition	Immediately following, evaporate 15 nm gold (same evaporation parameters)		
4	Inking			
4a	Immersion inking [2]	Inking by placing a drop of ink solution onto the stamp.	only the average amount of ink trans- ferred can be controlled.	
4a.1	Inking	Place two drops (~0.2 mL) of the freshly prepared (<1 h) ink solu- tion on top of the stamp. After 30 s remove liquid quickly (<0.5 s) under a stream of N_2 .	make sure there's enough liquid to cover the surface.	

NaPa_	NaPa_Library of Processes			
4a.2	Drying	Continue the flow of N_2 for 30 s after evident disappearance of the bulk drop to evaporate residual EtOH, use within 15 s.		
4b	Contact inking [1]	Inking with an ink pad selectively directs the ink where it is needed.	quality of monolayer is less dependent on pattern geometry, diffusion is mini- mized.	
4b.1	Ink pad fabrication	Prepare small blocks (~2 cm ² and 4mm thick) of cured PDMS as ink pads.		
4b.2	Impregnation	Immerse the ink pad in the thiol- solution for at least 12 h.		
4b.3	Drying and storage	Withdraw from the solution, dry in a stream of N_2 for 10 s and store in a small glass flask.		
4b.4	Inking	Place the patterned stamp on the ink pad without applying pressure for 40s.	conformal contact allows transfer of thiols. Inking times control amount of thiols transferred.	
5	Printing			
5.1	Making Contact	Place stamp onto gold substrate, monitor formation of conformal contact optically.	conformal contact is made by the stamps own weight.	
5.2	Detaching	Remove the stamp after 10-20 s.	the longer the printing time, the fewer the defects in the printed monolayer, but the higher the ink diffusion.	
6	Etching [3]			
6.1	Preparation of etch bath	Prepare a ferric nitrate etch bath (20 mM Fe(NO ₃) ₃ •9H ₂ O and 30 mM thiourea in DI water, adjusted to pH 2.0 using HCL)	the concentration of the ferric and thiourea in solution determine the etch rate	
6.2	Etching	The bath should be operated at 23- 25 °C with moderate stirring and has an etch rate of $\sim 10 \text{ nm min}^{-1}$.	the granularity of the gold substrate limits the edge resolution to the size of the gold grains (15-30 nm).	

4.2 Protein Patterning

Fabrication of high resolution protein patterns

Process: microcontact printing lithography Figure:

Casting PDMS (silicone) precursor onto a structured template in a Petri dish. Process:

Casting PDMS (silicone) precursor (elastomer base and curing agent) onto a structured template in a Petri dish. Curing (hardening) by heat (60°C, 12-24 h). <u>Application:</u> Microfluidic devices Photonic crystals patterning. PDMS

Keywords: microcontact lithography, soft lithography, protein patterning, PDMS

 Project leader:
 IBM Research Laboratory
 Process: microcontact lithography

 Address:
 CH-8803 Rueschlikon / Switzerland
 Responsible: Heiko Wolf

 Web-Address:
 http://www.zurich.ibm.com/
 E-mail:

Process description: Subtractive Printing of High Resolution Protein Nanopatterns

Purpose: The Ink-Subtract-Print strategy is described in which an inked elastomer is patterned by subtracting proteins from the surface using a nanotemplate followed by printing from the elastomer to a final substrate.

Major advantages: This technique is designed to produce high resolution patterns of single or multiple proteins with intrinsic alignment. Other advantages include: easy to use, high throughput pattern production, large area patterns, and no stamp collapse.

General:

References:

- [1] S. R. Coyer, A. J. García, E. Delamarche, Angew. Chem. Int. Ed. 2007, 46, 6837-6840.
- [2] J. L. Tan, J. Tien, C. S. Chen, *Langmuir* **2002**, *18*, 519-523.
- [3] A. Bernard *et al.*, *Langmuir* **1998**, *14*, 2225-2229.

Contact information:

IBM Research Laboratory Saeumerstrasse 4 CH-8803 Rueschlikon / Switzerland http://www.zurich.ibm.com/

LoP2007_mCP002_Protein Patterning. PDF

Protein Patterning Process: microcontact printing lithography

	Process	Technical Parameters	Remarks
1.	Nanotemplate		
1.1	Fabrication	Fabricate patterned silicon nanotemplate using a system capa- ble of nanoscale features (E-beam lithography, nanoimprint, nanopar- ticle patterning)	The nanotemplate material must be more hydrophilic than the elastomer material.
2.	Elastomer		
2.1	Mixing of elastomer	Polydimethylsiloxane (PDMS) prepolymer prepared using SYLGARD® 184 (elastomer base to curing agent 10:1)	Good mixing required for catalytic reaction. Premixed aliquots can be stored at -20 °C for 1-3 months
2.2	Degasing	Degas mixture to remove air bub- bles in stamp. This can be com- pleted by leaving the poured dishes at room temperature for ~20 mins. or by placing the dishes in a vac- uum.	
2.3	Elastomer curing	Pour liquid prepolymer onto flat polystyrene petri dish and cure at 60 °C for 24 hours	
2.4	Stamp work-up	Cut elastomer into desired stamp size. Mark the surface of the stamp that is not in contact with the petri dish. Peel stamp off petri dish. Ultrasound stamp in isopropa- nol/DI H_2O (20/80) solution for 5 mins. Rinse stamp in Millipore H_2O . Rinse stamp with EtOH. Dry under a flow of N_2 for 30 s.	
3	Ink		
3.1	Protein as ink	Chose a protein, e.g. anti-IgG, streptavidin. Available protein labels include fluorophores and gold conjugates.	Protein must meet the requirement of adsorbing to hydrophobic surfaces from solution.
3.2	Ink solution	Prepare dilute protein solution in phosphate buffered saline (PBS). Desired concentration ranges from 0.05 to 0.5 mg/mL	Concentration is an important factor for producing patterns with complete protein coverage and high edge defini- tion. Optimal concentration varies depending on the protein.
3.3	Storage	Use fresh protein solution when available. If necessary, store solu- tion at 4 °C for up to one week.	
4	Substrate		
4.1	Substrate selection	For atomic force microscopy (AFM), silicon is used for its low surface roughness. For fluores- cence, glass is used because it does not quench the fluorophore.	The substrate must be more hydro- philic than the elastomer material.
4.2	Cleaning	Place substrate in isopropanol/DI H_2O (20/80) solution. Ultrasound 5 mins. Rinse substrate in Millipore H_2O . Rinse stamp with EtOH. Dry under a flow of N_2 for 30 s	

NaPa_l	ibrary of Processes		NaPa Emerging Nanopatterning Methods
4.3	Plasma treatment	Treat cleaned substrate with O ₂ plasma for 1 min.	Plasma treatment increases the hydro- philicity of the surface.
5	Inking		
	Elastomer		
5.1	Immersion inking	Place ink solution on surface of stamp that was in contact with the petri dish. Coat the entire surface with a droplet of solution.	For $5 \times 5 \text{ mm}^2$ elastomer surface, use ~0.1 mL protein solution.
5.2	Incubation	Incubate protein solution on stamp for 1 hour.	
6	Elastomer U U HATTAN Nanotemplate		
6.1	Plasma treatment	Treat nanotemplate with O ₂ plasma for 1 min.	Plasma treatment increases the hydro- philicity of the surface. Complete this step shortly before subtraction.
6.2	Rinsing	Wash ink solution off of stamp using hand pipette. PBS 3 × 1mL. Millipore 1 × 1mL.	
6.3	Drying	Dry stamp in N_2 flow for 15 s.	Under or over drying the protein monolayer on the stamp will affect the printed pattern quality.
6.4	Contact	Bring inked surface of stamp into contact with nanotemplate for 15 s.	Light pressure can be applied to as- sure conformal contact between stamp and nanotemplate.
6.5	Release	Release stamp from nanotemplate.	
7	Printing Elastomer Substrate		
7.1	Contact	Place stamp onto substrate for 30s.	Light pressure can be applied to as- sure conformal contact between stamp and nanotemplate.
7.2	Release	Release stamp from substrate.	
8	Repeat Ink-Subtract- Print		
8.1	Additional steps	Patterns of multiple proteins can be produced by repeating the ink- subtract-print steps. Also, the indi- vidual steps can be rearranged to produce a variety of protein pat- terns. The steps ink-subtract-ink- subtract-print using two different protein inks allows printing of multiple proteins at the same time with intrinsic alignment.	

٦.

General remarks:

Γ

4.3 Polar Ink Printing

Web-Address: http:// http://mnf.tnw.utwente.nl/ l/

Surface Modification of PDMS Stamps for Microcontact Printing of Polar Inks

Process: microcontact printing lithography				
	Figure: Casting PDMS (silicone) precursor onto a structured template in a Petri dish.	Process: Casting PDMS (silicone) precursor (elastomer base and curing agent) onto a structured tem- plate in a Petri dish. Curing (hardening) by heat (60°C, 12-24 h). <u>Application:</u> Microfluidic devices Photonic crystals		
Keywords: microcontact lithography, soft lithography, protein patterning, PDMS				
Project leader: MESA+ University of Twente Process: microcontact lithography				
Address: 7500 AE Enschede	e / The Netherlands	Responsible: Jurriaan Husken		

Process description: Plasma polymerization of allylamine; a process for surface modification.

Purpose: A process is described for surface modification of polydimethylsiloxane (PDMS) stamps and transferring a hydrophilic ink pattern from the modified stamp to various substrates with different chemistry of inks and substrates.

E-mail:

Major Advantages: In comparison to general oxygen plasma method to treat the stamp surface, plasma polymerization process is efficient, stable and substrate independent, high density of functional groups on the surface, versatile chemical structures, and suitable for further surface modification based on reactive amine groups.

References:

- [1] Sadhu, V. B.; Perl, A.; Péter, M.; Rozkiewicz, D. I.; Engbers, G.; Ravoo, B. J.; Reinhoudt, D. N.; Huskens, J. *Langmuir* **2007**, *23*, 6850-6855.
- [2] Perl, A.; Péter, M.; Ravoo, B. J.; Reinhoudt, D. N.; Huskens, J. Langmuir 2006, 22, 7568-7573.
- [3] Mulder, A.; Auletta, T.; Sartori, A.; Del Ciotto, S.; Casnati, A.; Ungano, R.; Huskens, J.; Reinhoudt, D. N. J. Am. Chem. Soc. 2004, 126, 6627-6636.
- [4] Onclin, S.; Mulder, A.; Huskens, J.; Ravoo. B. J.; Reinhoudt, D. N. Langmuir 2004, 20, 5460-5466.
- [5] Maury, P.; Onclin Péter, M.; Crespo-Biel, O.; Ling, X. Y.; Reinhoudt, D. N.; Huskens, J. Nanotechnology 2007, 18, 1-9.

Contact information: MESA+ University of Twente P.O. Box 217 7500 AE Enschede The Netherlands

LoP2007_mCP003_polar ink printing. PDF

Polar Ink Printing

Process: microcontact printing lithography

	Process	Technical Parameters Remarks	
	What	how it should work	critical issues
1.	Stamp		
1.1	Master fabrication	Fabricate patterned silicon master by photo- or E-beam lithography.	Ideal with smooth bottom surfaces and smooth vertical sidewalls.
1.2	Master preparation	Coat master with fluorinated anti- sticking layer.	Hydro-phobic surface treatment to facilitate stamp separation.
1.3	Mixing of PDMS	Mix precursor SYLGARD 184 elastomer base with curing agent 10:1 by volume.	Good mixing required for catalytic reaction.
1.4	Degasing	Degas mixture to avoid air bubbles in stamp	Premixed aliquots can be stored at -20 °C for 1-3 months.
1.5	Stamp curing	Pour liquid prepolymer onto mas- ter inside of petri dish and cure at 60 °C for 12-24 hours.	
1.6	Stamp work-up	Cut and peel off the stamp from master. Rinse stamp three times with EtOH and dry under a flow of N_2 for 30 s.	
2.0	Plasma Deposition of Allylamine [1]		
2.1	Chamber cleaning	Plasma coating system (CCR, Rheinbreitbach, Germany). clean- ing chamber with air plasma (30 min, 300 W). After plasma deposi- tion chamber was brought to at- mospheric pressure with argon.	Cleaning removes all impurities in the chamber
2.2	Plasma deposition	samples were positioned on the base plate at the same distance from the center of the reactor. Deposition of allylamine for 1 min at 300 W.	Optimized conditions. No physical damage of the surface. Stable and high density of functional groups can be achieved.
2.3	Stamps storage	Samples were transferred to stor- age container, sealed in an alumi- num foil pouch under a nitrogen atmosphere at reduced (30 %) pressure and stored at -20 °C.	This way modified surfaces are stable for longer periods (more than a year).
3.0	Inks [1]		
3.1	G2-S Dendritic ink [2]	A second generation of dendritic ink having 8 dialkyl sulfide end groups as positive ink on gold substrate yield positive gold pat- terns by positive microcontact printing (µCP).	Low diffusion ink with polar end groups. This could be used to create positive patterns of Si master.
3.2	Ink solution	Prepare diluted G2-S ethanol, e.g. $c = 2 \times 10^{-5} M.$	Optimized ink concentration.
3.3	ODT ink [2]	Octadecanethiol ink in ethanol as backfilling ink for positive μ CP. c = 10 ⁻⁴ M	Increasing the concentration causes to replace printed G2-S molecules and distorted patterns.
3.4	Divalent Guest ink [3]	Divalent guest bearing two ada- mantyl units and labeled with lis- samine rhodamine dye. Substrate: β-cyclodextrin termi- nated plass	

NaPa_Li	Pa_Library of Processes		
3.5	Ink solution	Prepare diluted solution of divalent guest in water, e.g. 10 μ M	Low concentration is good enough to transfer monolayers from the stamp.
4	Substrates [1]		
4.1	Gold substrates	Evaporate \sim 2 nm Ti onto a Si/SiO ₂ wafer. Immediately following, evaporate 20 nm gold.	Used gold substrates are commercially available by Ssens B.V., Hengelo, Netherlands.
4.2	β-Cyclodextrin glass [4,5]	β-cyclodextrin terminated glass substrates are fabricated in 3 steps starting from amine terminated glass.	Please see ref. [4,5] for fabrication of β -cyclodextrin terminated substrates.
5	Inking		<u> </u>
5.1	Immersion inking	Inking by placing a drop of ink solution onto the stamp.	
5.2	Inking	Place two drops (~0.2 mL) of the freshly prepared (<1 h) ink solution on top of the stamp. After 60 s remove liquid quickly (<0.5 s) under a stream of N_2 .	Make sure there's enough liquid to cover the surface.
5.3	Drying	Continue the flow of N_2 for 30 s after evident disappearance of the bulk drop to evaporate residual EtOH or water, use within 15 s.	
6	Printing		
6.1	Making Contact	Place stamp onto gold or glass substrate, monitor formation of conformal contact.	Conformal contact is made by the stamps own weight. If needed apply slight pressure with tweezers.
6.2	Detaching	Remove the stamp after 60 s.	The longer the printing time, the fewer the defects in the printed monolayer.
7	Case Studies ^a		
7a	μCP of G2-S	G2-S dendrimer is printed on a gold surface with modified PDMS stamp. After printing, non-printed areas is backfilled with ODT for 10 s. Then the gold is etched away in etching bath.	ODT backfilling time is optimized. If backfilling time is increased printed G2-S replaces by ODT.
7a.1	Preparation of etch bath	Prepare an acidic solution of 10 mM Fe(NO ₃) ₃ , 15 mM thiourea and 1.2 % HCl. etch at 45 °C for 2.2 min.	<i>The concentration of the ferric and thiourea in solution determine the etch rate.</i>
7a.2	Etching & SEM image	Use scanning electron microscopy (SEM) or optical microscopy to analyze gold patterns after gold etches.	Positive gold patterns are clearly visible in the SEM image.
7b	µCP of Divalent Guest	Divalent guest labeled with lissa- mine rhodamine dye is printed on cyclodextrin terminated glass. Ink should bind on substrate via host- guest supramolecular interactions.	

NaPa_L	ibrary of Processes		
7b.1	Fluorescence Mi- croscopy Analysis	Use fluorescence microscopy to analyze fluorescent patterns which obtains from binding guest mole- cules on glass via supramolecualr interactions during printing.	Fluorescent pattern clearly indicates supramolecular binding of ink.

Г

5. Soft Lithography – UV-Nanoimprint Lithography

Contributions to this section of the library are from

AMO GmbH, Aachen, Germany Dr. Ulrich Plachetka LPN-CNRS - Marcoussis /France Prof. Dr. Yong Chen

5.1 Optical Resonators

Fabrication of Optical Resonators by Soft UV-NIL

Figure: SEM-image of an imprinted microring resonator. Process: A polymeric imprint template is cast moulded from a master pattern and replicated by imprinting into a UV-curable resist. Afterwards the device is etched into the appropriate substrate.

Application: Large scale patterning

Keywords: soft UV-NIL, PDMS stamps

Partner: AMO GmbH	Process: Soft UV-NIL
Address: 52074 Aachen Germany	Responsible: Ulrich Plachetka
Web-Address: www.amo.de	E-mail: plachetka@amo.de

Process description: An imprint template is fabricated via cast moulding of from a pre-structured form and used during an imprint process. During the imprinting, first a thin layer of a low viscosity resist is spin coated onto the desired substrate followed by pressing the flexible imprint template into the liquid layer. Then the resist is polymerized by UV exposure, the template is removed and may be used for numerous other replications via Soft UV-NIL. Etching may be performed using standard RIE equipment

Purpose: This imprinting process can be used to pattern on large area scale with resolutions down to the 20nm regime. Due to the elastomeric properties of the imprint template patterning can also be performed on non-flat substrates, with very low imprint pressures and at room temperature. The major purpose for the development of this process is cost reduction.

Major challenges: The major challenge when using soft template materials is the adaptation of the youngs modulous.

Application and state-of-the-art: Products and prototypes that rely on large area nano-patterning at high resolutions at cheap costs. In this library it is used to fabricate photonic structures in silicom waveguide technology.

References:

 U. Plachetka, M. Bender, A. Fuchs, T. Wahlbrink, T. Glinsner and H. Kurz; Comparison of multilayer stamp concepts in UV-NIL, Microelectronic Engineering 83 (2006) 944-947
 M. Bender, A. Fuchs, U. Plachetka and H. Kurz; Status and Prospects of UV-Nanoimprint Technology, Microelectronic Engineering 83 (2006) 827-830

Contact information: AMO GmbH Otto-Blumenthal-Str. 25 52074 Aachen, Germany

U. Plachetka +49-(0)241-8867202

LoP2007_SoftNIL001_Resonators by SoftNIL. PDF

Optical Resonators

Process: soft lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0a	Process 1: Master preparation		
1.1	Master fabrication:	Si substrate, 6", <100>, one side polished, standard ebeam, followed by RIE (other substrates may also be used, i.e. metals, resist, etc.)	
1.2	Deposition of anti-adhesion layer:	Whatever the chosen master material is, an antiadhesion layer needs to be deposited onto its surface by plasma deposition (i.e. in an etching chamber); CxFx-plasmas works (standard passivation settings for your tool)	
	End of Process 1		
1.0b	Process 2: Stamp preparation		
1.1	Elastomeric template material:	A 10:1 (base:curing agent) mixture of Sylgard 184 (Dow Corning) is prepared and de- gassed in a vacuum	
1.1	Cast moulding of imprint tem- plate:	The mixture is poured onto the master, degassed in a vacuum and afterwards cured on a hotplate (110°C@30min)	
1.2	Detachment	The template is then cut an detached from the silicon master.	
2.0	Process 3: Lithography		
2.1	Spin -coating Soft imprint template Resist SOI	spincoating of UV-curable resist onto an SOI-substrate (depending on the application other substrates amy be used freely) imprint resist: AMONIL MMS4 (3000rpm@30sec)	
2.2	Soft imprinting with flexible tem- plate	The flexible imprint template is pressed into the liquid resist at an imprint pressure of 50mbar; the template adjusts to the non-flat parts of a sub- strate The used tool may be a EV620 custom modified mask aligner	
2.3	UV-exposure	The AMONIL resist is cured directly through the flexible	

NaPa

ses		NaPa Emerging Nenopatterning Methods
	imprint template by UV- exposure in the EV620 im- print tool	
emplate	After completely curing the resist the imprint template is removed from the polymer- ized imprint resist; the moulded flexible imprint tem- plate can be used for other imprints	
n Transfor		
Breakthrough)	BCl ₃ –RIE (The plasma is used to open the SOI substrate)	
	HBr-RIE (This plasma will stop per- fectly on the BOX of an SOI- wafer)	
	ses	Ses imprint template by UV-exposure in the EV620 imprint tool emplate After completely curing the resist the imprint template is removed from the polymerized imprint resist; the moulded flexible imprint template can be used for other imprints rn Transfer BCl3 – RIE (The plasma is used to open the SOI substrate) Image: Set the imprint template is removed from the polymerized imprint template can be used for other imprints Image: Set the imprint template can be used for other imprints Image: Set the imprint template can be used for other imprints Image: Set the imprint template can be used for other imprints Image: Set the imprint template can be used for other imprints Image: Set the imprint template can be used for other imprints Image: Set the imprint template can be used for other imprints Image: Set the imprint template can be used for other imprints Image: Set the imprint template can be used for other imprints Image: Set the imprint template can be used for other imprints Image: Set the imprint template can be used for other imprintemplate can be used for other imprint template can be used for oth

General remarks:

Г

Soft UV nanoimprint and optical lithography based mix-andmatch technique

NaPa

Process: soft lithography, optical lithography Figure: Process: Soft UV nanoimprint lithography Cross microfluidic channels with P3 A2 two integrated nanopillar arrays Application: (A1 and A2) obtained using a The mix and match approach can be P1 mix-and-match approach based applied for any type of micro and on i) soft UV nanoimprint lithognanostructures patterning as well as raphy, ii) standard photolithogratheir device integration. In the case of phy and iii) reactive ion etch microfluidics, the nanopillar are used as sieving gels for DNA molecule techniques Acc.V Spot Magn WD → 30.0 kV 3.0 33x 14.3 CN separation **Keywords:** soft UV nanoimprint lithography Project leader: LPN Process: soft UV nanoimprint Address: CNRS-LPN, F-91460 Marcoussis, France Responsible: Yong Chen Web-Address: www.lpn.cnrs.fr E-mail: yong.chen@lpn.cnrs.fr

Partner: ENS	Process: soft UV nanoimprint
Address: Ecole Normale Supérieure, F-75231 Paris	Responsible: Yong Chen
Web-Address: www.ens.fr	E-mail: yong.chen@ens.fr

Process description: Soft UV NIL is used to pattern only high density nanostructures. Then, after liftoff, the mould pattern is defined on the substrate with alignment markers. A standard photolithography is applied to define patterns with large size features, followed by the second lift-off. Afterwards, both micro and nanoscale features are etched into the substrate by reactive ion etch. Finally, the pattern structures are coved by a PDMS layer, forming a microfluidic device with integrated high density nanopillars arrays. Such a mix-and-match process is highly parallel which can be used for large scale manufacturing of many other types of nano-devices.

Purpose: To integrate high density nanostructures into micro-devices. A particular example is given for the fabrication of microfluidic chips for large size DNA molecule separation but other types of micro-devices can also be obtained in a similar way.

Major challenges: Integration of high density nanostructures into functioning microfluidic devices with parallel process

Application and state-of-the-art: The proposed process has been validated by demonstration of microfluidic device with integrated high density nano-pillars arrays for large size DNA molecule separation. The same device has already been fabricated by electron beam lithography based techniques but this is the first demonstration of highly parallel process for such microfluidic devices.

References:

[1] J. Shi, A. P. Fang, L. Malaquin, A. Pépin, and D. Decanini, J. L. Viovy and Y. Chen, *Highly parallel mix-and-match fabrication of nanopillar arrays integrated in microfluidic channels for long DNA molecule separation*, Appl. Phys. Lett. **91**, 153114 (2007)

Contact information:

Yong Chen Department of Chemistry Ecole Normale Supérieure 24 rue Lhomond 75231 Paris, France Phone : +33 1 4432 2402 Fax : +33 1 4432 2402

LoP2007_SoftNIL002_NIL Mix&Match. PDF

NaPa_Library of Processes

Mix- and Match of Soft NIL and OL Process: soft lithography

	Process	Technical Parameters	Remarks
1.0	Process 1: Master fabrication		Remarks
1.1	Pattern definition of by electron	Standard EBL	Including only nanostruc-
	beam lithography	Silicon substrate	tures and alignment markers
		PMMA resist	
1.2	Pattern transfer	40nm Nickel evaporation	
		Lift off	
		Reactive ion etch with SF_6 gas	
1.3	Surface treatment	Evaporation of anti-sticking	
		reagent	
	End of Process 1	III TWC5 vapour during 1 mm	
2.0	Process 2: Soft stamp prepara-		
2.0	tion		
2.1	Thin layer PDMS deposition	Spin coating	
		Approximately 10µm thickness	
2.2	Soft PDMS layer deposition	Casting and curing	
		5-10mm thick and baked at	
		80°C for 30min	
2.3	PDMS stamp separation	Manual	
2.4	Surface treatment	Evaporation of anti-sticking	
		reagent	
		In TMCS vapour during 1 min	
	End of process 2		
3.0	Process 3: Photolithography		
	mask	~	× 1. 11 1
	Mask design and fabrication	Standard photolithography	Including all large size fea-
			tures and alignment markers
4.0	Soft UV nanoimprint		
	Soft UV NIL		
	PDMS mold		
	Resist		
	Fused silica		
4.1	Spin coating of layer 1 (sacrificial	Spin-coating of PMMA	A thin quartz plate can be
	layer)	300 nm thickness	used for facilitating optical
			imaging of DNA migration.
4.2	Spin coating of layer 2 (UV-NIL	Spin coating of AMONIL	
	layer)	100 nm thickness	
1.2	C. P. TIST N	× •	NY () where we have
4.5	Soft UV Nanoimprint	Imprint at low pressure	Nanostructures alone can be
		UV expose (1 mm)	process latitude
4.4	<u> </u>	De-moulding	
4.5	Residual Layer (Breakthrough)	Reactive ion etch	
	Etching	O ₂ plasma	
-	End of Process 4		
5.0	Process 5: First litt-ott		
	Lift-off Nickle		

NaPa_	Library of Processes		
5.1	Lift-off	Ni thin film E-beam evaporation (40nm) Dissolution of AZ resist	
	End of Process 5		
6.0	Process 6: Photolithography Photolithography Optical mask Photoresist		
6.1	Resist deposition	Spin coating AZ 5215E Resist pre-bake at 125°C for 1min	
6.2	UV exposure	UV exposure 1min with a standard aligner	With alignment
	End of Process 6		
7.0	Process 7: Second lift-off		
7.1	Lift-off	Ni thin film E-beam evaporation (40nm) Dissolution of AZ resist	
	End of Process 7		
8.0	Process 8: Pattern transfer Reactive ion etch		
8.1	Etch of micro and nanostructure into the substrate	Reactive ion etch SF ₆ plasma	Both micro and nanostruc- tures are etched simultane- ously.
8.2	Nickel mask removal	Chemical etch HNO ₃ for 1min	
	End of Process 8		
9.0	Process 9: Device assembling Bonding PDMS cover		
9.1	Preparation of PDMS cover slide	PDMS coasting (1:10) Over a flat silicon wafer	Other materials can also be used as cover layer
9.2	Access hole drilling	Manuel	
9.3	Surface activation	Plasma treatment 1 min in a plasma cleaner for both PDMS and etched sample	
9.4	Device assembling	Thermal bonding In an oven of 70°C for 30min	
	End of process 9		

General remarks:

Since only nanoscale features are replicated by nanoimprint lithography, the fabrication process latitude can be largely enhanced. In addition, both lift-off and reactive ion etch steps can be replaced by other pattern transfer techniques. Therefore, the above mix-and-match process is highly parallel and versatile not only for microfluidic device fabrication but also for manufacturing of other types of nano-devices at low cost and high throughput.

6. Stencil Lithography

Contributions to this section of the library are from

EPFL-IMM - Lausanne/Switzerland Prof. Dr. Jürgen Brugger / Dr. Marc A. F. van den Boogaart

CNM - Barcelona/Spain Prof. Dr. Francesc Pérez-Murano / Julien Arcamone **CRF Fiat - Orbassano/Italy** Dr. Vito Lambertini

MESA+ - Enschede/The Netherlands Dr. Jurriaan Huskens / Dr. Veera B. Sadhu

6.1 Surface Structures

Fabrication of surface structures via Stencil Lithography

Process: Stencil Lithography (STEN) A surface structure 100 mm Si wafer 100 mm Si wafer Stencil membrans stencil membrans micro/mane-stencil M substrate with the resulting surface patterns. Figure: A full wafer scale stencil and a substrate with the resulting surface patterns.

Process:

Placing the stencil onto a substrate and simply depositing the wanted material through the stencil apertures onto the substrate.

Application:

Life science, nano electronics, material science, flexible electronics, etc.

Keywords: Stencil Lithography, Shadow Mask, Stenciling, Stencil Deposition

Project leader: EPFL, Lausanne, Switzerland	Process: Stencil Lithography
Address: 1015 Lausanne, Switzerland	Responsible: Marc van den Boogaart
Web-Address: http://lmis1.epfl.ch/	E-mail: nanostencil@epfl.ch

Process description: Resistless patterning of micro and nano structures on any type of substrate.

Purpose: The standard stencil lithography process is described in which a large range of materials can be directly structured via the use of a stencil. The process is applicable to any type of substrate and any type of stencil (i.e. chip or full wafer sized, standard or stabilized stencils, etc.)

Major challenges: Pattern resolution is dependent on the geometrical conditions present during stencil lithography. Stencil lifetime is dependent on minimum resolution.

Major advantages: Stencil Lithography is a direct deposition technique where a controlled amount of material is deposited only where needed. No cyclic process steps are needed as seen in photolithography, which drastically increases its ease of use and lowers the risk of contamination associated with resist processing and material removal (i.e. etching).

Application and state-of-the-art: in-situ device fabrication (e.g. single electron transistors, organic electronics) compatible with large scale processing (e.g. CMOS).

References:

- van den Boogaart, M. A. F. (2006). Stencil Lithography: An ancient technique for advanced micro- and nanopatterning. Konstanz, Hartung-Gorre Verslag. ISBN:3-86628-110-2
- [2] A. Arbouet, M. Carrada, F. Demangeot, V. Paillard, G. BenAssayag, C. Bonafos, A. Claverie, S. Schamm, C. Dumas, J. Grisolia, M.A.F. van den Boogaart, J. Brugger and L. Doeswijk, Photoluminescence characterization of few-nanocrystals electronic devices, Journal of Luminescence, 121 (2006) 340–343.
- [3] E.A. Speets, P. te Riele, M.A.F. van den Boogaart, L.M. Doeswijk, B.J. Ravoo, G. Rijnders, J. Brugger, D.N. Reinhoudt and D.H.A. Blank, Formation of Metal Nano- and Micro-patterns on Self-Assembled Monolayers Using Pulsed Laser Deposition through Nanostencils and Electroless Deposition, Advanced Functional Materials, 16 (2006) 1337-1342.
- [4] M.A.F. van den Boogaart, M. Lishchynska, L.M. Doeswijk, J.C. Greer and J. Brugger, Corrugated membranes for improved pattern definition with micro/nanostencil lithography, Sensors and Actuators A, 130-131 (2006) 568-574.
- [5] N. Takano, L.M. Doeswijk, M.A.F. van den Boogaart, J. Auerswald, H.F. Knapp, O. Dubochet, T. Hessler and J. Brugger, Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems, Journal of Micromechanics and Microengineering, 16 (2006) 1606-1613.

Contact information:

Prof. Dr. Jürgen Brugger Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Microsystèmes, EPFL – STI – IMM – LMIS1, BM 3.106 Station 17 CH-1015 Lausanne, Switzerland. http://lmis1.epfl.ch/

LoP2007_STEN001_Stencil Lithography. PDF

NaPa_L	NaPa_Library of Processes			
1.0a	Process 1. Wafer preparation			
1.1	wafer selection and preparation	Any substrate can be used	Topographic features on substrate will influence the minimum pattern resolution.	
	End of Process 1a			
1.0b	Process 1: Stencil Fabrication			
1.1	Membrane material definition	Deposition of Low Stressed SiN on Si wafer		
1.1	Aperture definition	Pattern the membrane aper- tures into the SiN via lithogra- phy and etching. Then open large windows on the back side using lithography and etching. The windows on the backside will define the mem- brane size.		
1.2	Wafer through etching	Etch all the way through the wafer to release the membrane form the bulk Si.	SiN is an excellent etch mask for KOH etching.	
	End of process 1b			
2.0	Process 2: Stencil Lithography			
2.1	Place stencil on substrate	Place and fix the stencil with the membrane side on the substrate		
2.2a	Deposition of material • evaporation • substrate	Place the stencil/substrate into deposition equipment and deposit a controlled amount of material.	Geometrical conditions will determine the minimum reso- lution of the deposited struc- tures. In general a minimum gap between stencil and sub- strate is favorable	
2.2b	Etching of material	Stencil can be used as a mask to etch material (dry etch).	Etch rate of SiN is too high to effectively use it directly as an etch mask. Deposited a thin Al layer as a hard mask layer on the stencil.	
2.2c	Ion implantation	Stencil can be used for di- rected ion implantation	Check ion energy	
2.3	Remove stencil from substrate Substrate	Remove the stencil from the substrate		
	End of process 2			

General remarks:

Examples:

Г

Figure 1: Deposition process using a stencil. (a): The stencil is placed in contact or in close proximity to the substrate and a material is evaporated from a distant source and deposited through the apertures in the membrane onto the substrate; (b): The stencil is removed from the substrate; (c) and (e): The SEM-images show a stencil mask with a gap to a substrate after evaporation. The membrane in Fig. 1c has a gap of approx. 5 μ m, whereas a gap of approximately 1 μ m is observed in Fig 1e; (d) and (f): The SEM-images show the corresponding Al pattern from Fig. 1c and 1e.

6.2 Alignment

Alignment process for Stencil Lithography

Figure: A full wafer scale stencil and the a substrate with the resulting surface patterns after alignment and deposition.

Process:

Placing the stencil onto a substrate and simple deposited the wanted material through the stencil apertures onto the substrate.

Application:

Life science, nano electronics, material science, flexible electronics, etc.

Keywords: Stencil Lithography, Shadow Mask, Stenciling, Stencil Deposition

Project leader: EPFL, Lausanne, Switzerland	Process: Stencil Lithography
Address: 1015 Lausanne, Switzerland	Responsible: Marc van den Boogaart
Web-Address: http://lmis1.epfl.ch/	E-mail: nanostencil@epfl.ch

Process description: Resistless patterning of micro and nano structures on and aligned to any type of substrate.

Purpose: A standard Alignment process for stencil lithography is described in which a full wafer (100mm) stencil is aligned to prefabricated structures on any type of substrate (100mm). The process can be applied to any bond alignment equipment.

Major challenges: A stencil membrane needs to be used as an alignment marker. If the stencil has already been used a couple of times the membrane might be stressed which will cause a loss of alignment resolution. The trick is to make a membrane that is not sensitive to deformation due to thin film stresses. After alignment the stencil/substrate need to stay in its aligned position which can be achieved by placing the whole alignment chuck into the deposition equipment.

Major advantages: Stencil Lithography is direct deposition technique where a controlled amount of material is deposited only where needed. No cyclic process steps are needed as seen in photolithography which drastically increased its ease of use and lowers the risk of contamination associated with resist processing and material removal (i.e. etching).

Application and state-of-the-art: in-situ device fabrication (e.g. single electron transistors, organic electronics) compatible with large scale processing (e.g. CMOS).

References:

- van den Boogaart, M. A. F. (2006). Stencil Lithography: An ancient technique for advanced micro- and nanopatterning. Konstanz, Hartung-Gorre Verslag. ISBN:3-86628-110-2
- [2] J. Arcamone, B. Misischi, F. Serra-Graells, M.A.F. van den Boogaart, J. Brugger, F. Torres, G. Abadal, N. Barniol and F. Pérez-Murano, A Compact and Low-Power CMOS Circuit for Fully-Integrated NEMS Resonators, IEEE Transactions on Circuits and Systems II, 54 (2007) 377-381.

Contact information:

Prof. Dr. Jürgen Brugger Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Microsystèmes, EPFL – STI – IMM – LMIS1, BM 3.106 Station 17 CH-1015 Lausanne, Switzerland. http://lmis1.epfl.ch/

LoP2007_STEN002_Stencil Alignment. PDF

Alignment

Process: stencil lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0a	Process 1: Wafer preparation		
1.1	wafer selection and preparation	Any substrate can be used compatible with bond- aligner. A set of alignment markers need to be present on substrate to which the stencil will be aligned.	Topographic features on substrate will influence the minimum pattern resolution. Full wafer (100mm)
	End of Process 1a		
1.0b	Process 1: Stencil Preparation		
1.1	Fabricate stencil	Include a set of alignment markers in a membrane which will be used during alignment process	Full wafer stencil (100mm)
	End of process 1b		
2.0	Process 2: Alignment of Stencil to Substrate		
2.1	Place stencil on substrate	Place the stencil with the membranes facing down (fac- ing substrate) and load into bond aligner. Stencil will be fixed to clamping chuck. Place the substrate with alignment features facing upwards. Use a magnification and alignment gap so not to dam- age the stencil membranes and have both markers in the same focal plane.	Depending on your bond aligner and if you're using a top side alignment (TSA) or back side alignment (BSA). With TSA, stencil first. With BSA, substrate first. Due to wafer curvature and warping use a alignment gap larger than 50 µm (wafer characteristic dependant)
2.2	Alignment	Simply align the stencil to the substrate. Usually start by an angular correction then trans- lation. Mechanically clamp the sub substrate to the stencil and verify the alignment.	

2.3	Remove clamping chuck from bond-aligner	Gently remove clamping chuck from the bond aligner and place in a protective box.	The protective box is used to ensure that there is no depo- sition on the clamping chuck. The box houses the clamping chuck and has a single hole the size of a wafer to facili- tate material transport.
2.4	Aligned Stencil Lithography	Place the protective box with the aligned stencil/Substrate into an deposition equipment and deposited an controlled amount of material	For best pattern resolution and uniformity place the stencil/Substrate centered and as far away as possible from the source.
	Separate stencil from substrate	Simply remove the substrate form the stencil.	

.

General remarks:

NaPa_Library of Processes

Examples:

Figure 1: Alignment markers of stencil and CMOS substrate. (a): optical image of a membrane containing alignment apertures aligned to the corresponding marker on CMOS substrate, (b): SEM image of alignment feature after Stencil Lithography, image shows a miss-alignment of +0.55 and $-2.2 \mu m$, and (c): optical image showing an example of a membrane aligned to CMOS circuit.

Figure 2: Optical images of an aligned nanostructure to a CMOS substrate.

Web-Address: http://lmis1.epfl.ch/

6.3 Cleaning

Cleaning of stencils for Stencil Lithography

Process: Stencil Lithography (S	STEN)	
Initial aperture	Figure:	Process:
Membrane	Schematic illustration of a stencil	Cleaning the stencil after stencil
Substrate	being clogged during stencil Li- thography	lithography.
Reduced aperture		Application:
after evaporation		Life science, nano electronics, mate-
Aluminum SiN Membrane		rial science, flexible electronics, etc.
Substrate		
Keywords: Stencil Lithography, Sl	hadow Mask, Stenciling, Stencil D	eposition
Project leader: EPFL, Lausanne	Switzerland Pro	cess: Stencil Lithography
Address: 1015 Lausanne. Switze	erland Res	ponsible: Marc van den Boogaart

Process description: Cleaning of stencils after resistless patterning of micro and nano structures on and aligned to any type of substrate.

E-mail: nanostencil@epfl.ch

Purpose: A cleaning process is described to enable the reuse of stencils after they get clogged.

Major challenges: Clogging is caused during stencil lithography when the deposited material is not only deposited through the stencil apertures but also on and in the stencil apertures. Eventually this might lead to a complete closure of the stencil apertures. Clogging will also cause a loss of pattern resolution and is especially evident at the nano scale.

Major advantages: Stencil Lithography is direct deposition technique where a controlled amount of material is deposited only where needed. No cyclic process steps are needed as seen in photolithography which drastically increased its ease of use and lowers the risk of contamination associated with resist processing and material removal (i.e. etching).

Application and state-of-the-art: in-situ device fabrication (e.g. single electron transistors, organic electronics) compatible with large scale processing (e.g. CMOS).

References:

[1] van den Boogaart, M. A. F. (2006). Stencil Lithography: An ancient technique for advanced micro- and nanopatterning. Konstanz, Hartung-Gorre Verslag. ISBN:3-86628-110-2

[2] O. Vázquez-Men, G. Villanuev, M.A.F. van den Boogaart, V. Savu and J. Brugger, Reusability of nanostencils for the patterning of Aluminum nanostructures by selective wet etching, Microelectronic Engineering Journal, (2007). Accepted

Contact information: Prof. Dr. Jürgen Brugger Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Microsystèmes, EPFL – STI – IMM – LMIS1, BM 3.106 Station 17 CH-1015 Lausanne, Switzerland. http://lmis1.epfl.ch/

LoP2007_STEN003_Stencil Cleaning. PDF

Cleaning Process: stencil lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0	Process 1: Stencil Clogging		
1.1	Stencil Clogging	During stencil lithography a controlled amount of material is deposited through but also on the membrane. The accumulated material will gradually clog the membrane apertures.	The speed at which a mem- brane aperture is clogged depends on the material which is deposited. For Al: membrane aperture size reduction is proportional to the deposited thickness with a factor of 1:1. For Ag: membrane aperture size reduction is proportional to the deposited thickness with a factor of 1:5.
	End of Process 1		
2.0	Process 2: Stencil Cleaning		
2.1	Prepare etch solution	Prepare etch solution for the material that is clogging the membrane aperture. Example: for Al an etch solu- tion of CH ₃ COOH (100%), HNO ₃ (70%) and H ₃ PO ₄ (85%) in proportions 5:3:75 at 35°C can be used.	Verify that chosen etch solu- tion does not attack the mem- brane itself, i.e. chose an etch solution with a high selectiv- ity towards the membrane material.
2.2	Clean Stencils 60 nm wide After cleaning 200 nm	Place the clogged stencil into the etch solution and remove all the unwanted material.	Material inside a nano aper- ture require additional etch time because of the restricted access of the etch solution (e.g. air bubbles).
	End of process 2		

General remarks:

NaPa_Library of Processes

Examples:

Figure 1: Stencil Lithography, clogging and Cleaning. A stencil aperture after FIB milling is shown in Fig 1a and the corresponding deposited structure in shown in Fig 1b. After three evaporations (75 nm Al) the stencil gets clogged and the aperture is almost closed as shown in Fig 1c. The deposited structure through the clogged stencil is incomplete (Fig 1d). Then the stencil is cleaned using the "stencil cleaning" procedure. Fig 1e shows the stencil aperture after this process. As it is observed, the aperture does not suffer any damage or modification and more important, the stencil aperture recovers the original size after FIB milling. This cleaned stencil was used for the deposition of 25 nm of Al and the deposited structure (Fig 1f) also recovers the size from the first deposition with the stencil (Fig 1b)

6.4 Double Angle Evaporation

Double-Angle Evaporation using Stencil Lithography

Figure: An Al/AlOx/Al tunnel junction fabricated by double angle evaporation through a stencil.

Process:

A first layer is deposited through the stencil from one material source. In situ, a second layer is deposited through the stencil from a second material source.

Application:

Nano electronics, material science, flexible electronics, etc.

Keywords: Stencil Lithography, Shadow Mask, Double Angle, Stencil Deposition

Project leader: EPFL, Lausanne, Switzerland	Process: Stencil Lithography
Address: 1015 Lausanne, Switzerland	Responsible: Marc van den Boogaart
Web-Address: http://lmis1.epfl.ch/	E-mail: nanostencil@epfl.ch

Process description: Double angle evaporation of materials through stencils.

Purpose: In-situ deposition of multiple layers laterally offset by a controlled distance.

Major challenges: The offset between the two layers depends on the geometrical conditions during the deposition. For example, the substrate-stencil gap using a standard stencil exhibits a larger variation at full wafer scale than at the chip level (maximum of around 30 microns vs. 6 microns).

Major advantages:

The material overlaps obtained this way can be an order of magnitude and more smaller than the stencil apertures

Being an in situ process, it insures the cleanest interface between the deposited materials

Application and state-of-the-art: in-situ device fabrication (e.g. single electron transistors, tunnel junctions) compatible with large scale processing (e.g. CMOS).

Contact information: Prof. Dr. Jürgen Brugger Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Microsystèmes, EPFL – STI – IMM – LMIS1, BM 3.106 Station 17 CH-1015 Lausanne, Switzerland. http://lmis1.epfl.ch/

LoP2007_STEN004_DoubleAngle. PDF

Double Angle Evaporation Process: stencil lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0a	Process 1: Wafer preparation		
1.1	wafer selection and preparation	Any substrate can be used	Topographic features on substrate will influence the minimum pattern resolution.
1.01	End of Process 1a	 	
1.00	Process 1: Stencil Fabrication	D time of the Stars of	
1.1		SiN on Si wafer	
1.1	Aperture definition	Pattern the membrane aper- tures into the SiN via lithogra- phy and etching. Then open large windows on the back side using lithography and etching. The windows on the backside will define the mem- brane size.	
1.2	Wafer through etching	Etch all the way through the wafer to release the membrane form the bulk Si.	SiN is an excellent etch mask for KOH etching.
	End of process 1b		
2.0	Process 2: Double Angle Deposi- tion through Stencil		
2.1	Place stencil on substrate	Place and fix the stencil with the membrane side on the substrate	
2.2a	1 st deposition of material (top view) 	Place the stencil/substrate into deposition equipment and deposit a controlled amount of material from the 1 st source.	Geometrical conditions will determine the minimum reso- lution of the deposited struc- tures. A gap between stencil and substrate is necessary for double-angle depositions with non-zero offset between the two materials.
2.2b	2 nd deposition of material	Deposit from the 2 nd material source.	An intermediate oxidation step can for example be used in between the two deposi- tions.
2.3	Remove stencil from substrate	Remove the stencil from the substrate and characterize your devices.	
	End of process 2		

NaPa_Library of Processes

General remarks: The shift of the transferred pattern with respect to the openings depends on the evaporation angle α (with respect to the vertical of the substrate) and on the gap between the bridge and the substrate G (Fig. 2a). The evaporation angle can be computed from the distance between the (x,y) planes of the bridge and that of the evaporation source D, and the position of the source and the bridge in the (x,y) plane x,y with respect to the center (Fig. 2b). The junction width, a1+a2, can be computed as follows:

$$\tan \alpha 1 = \frac{a^2}{G} = \frac{s^2 - x}{D} \Rightarrow a^2 = G \frac{s^2 - x}{D},$$
$$\tan \alpha 2 = \frac{a^{1+A}}{G} = \frac{s^{1+x-A}}{D} \Rightarrow a^1 = G \frac{s^{1+x-A}}{D} - A$$
$$a^1 + a^2 = \frac{G}{D}(s^1 + s^2) - A$$

Figure 2. Geometrical schematic of the double-angle evaporation through a stencil: a) zoomed-out picture, and b) zoomed-in picture.

Figure 1: SEM images of structures obtained by double-angle deposition through a stencil. (a) An Al/AlOx/Al tunnel junction, where an intermediate in-situ oxidation step was introduced between the two Aluminum depositions; (b) An isolated single electron transistor (SET), containing two nano Al/AlOx/Al tunnel junctions fabricated using the same procedure as the micron junctions from Fig. 1a.

6.5 Dynamic Stencil

Fabrication of custom surface structures via (Quasi) Dynamic Stencil Lithography

Process: Stencil Lithography (STEN)					
	Figure: Full wafer stencil (Quasi) Dy- namic Stencil Lithography system (QDSLS).	<u>Process:</u> The (Quasi) Dynamic Utilization of stencils during Stencil Lithography will allow the creation of multi- material, custom surface structures.			
	- den Mark Starsting Starstin	<u>Application:</u> Life science, nano electronics, mate- rial science, flexible electronics, etc.			
Keywords: Stencil Lithography, Shadow Mask, Stenciling, Stencil Deposition					

 Project leader: EPFL, Lausanne, Switzerland
 Process: Stencil Lithography

 Address: 1015 Lausanne, Switzerland
 Responsible: Marc van den Boogaart

 Web-Address: http://lmis1.epfl.ch/
 E-mail: nanostencil@epfl.ch

Process description: Resistless patterning of custom micro and nano structures on any type of substrate using dynamic utilization of stencils.

Purpose: A process described in which a stencils is moved during or in-between depositions. This enables in-situ structuring of custom surface structures using simple stencil apertures. This process will also allow for tapered thin-film structures, stitched structures and closed loop structures such as a donut shape.

Major challenges: Pattern resolution is dependent on the geometrical conditions present during stencil lithography. Maintaining a constant gap over the full translation length is crucial to pattern size uniformity. Stencil aperture clogging is linked to the nominal thickness deposited while in dynamic stencil lithography deposited surface structure thickness is related to the scan speed, aperture size and deposition rate.

Major advantages: Stencil Lithography is a direct deposition technique where a controlled amount of material is deposited only where needed. No cyclic process steps are needed as seen in photolithography, which drastically increases its ease of use and lowers the risk of contamination associated with resist processing and material removal (i.e. etching). Dynamic Stencil Lithography will allow for insitu, multi material and custom surface structures/devices while only using a simple stencil aperture.

Application and state-of-the-art: in-situ device fabrication (e.g. single electron transistors, organic electronics) compatible with large scale processing (e.g. CMOS).

References:

- van den Boogaart, M. A. F. (2006). Stencil Lithography: An ancient technique for advanced micro- and nanopatterning. Konstanz, Hartung-Gorre Verslag. ISBN:3-86628-110-2
- [2] H. Guo, D. Martrou, T. Zambelli, J. Polesel-Maris, A. Piednoir, E. Dujardin, S. Gauthier, M.A.F. van den Boogaart, L.M. Doeswijk and J. Brugger, Nanostenciling for combinatorial fabrications and interconnections of nanopatterns and microelectrodes, Applied Physics Letters, 90 (2007) 093113 (3 pages).

Contact information:

Prof. Dr. Jürgen Brugger Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Microsystèmes, EPFL – STI – IMM – LMIS1, BM 3.106 Station 17 CH-1015 Lausanne, Switzerland. http://lmis1.epfl.ch/

LoP2007_STEN005_Dynamic Stencil Lithography.PDF

Process: stencil lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0a	Process 1: Wafer preparation		
1.1	wafer selection and preparation	Any substrate can be used (100mm)	Topographic features on substrate will influence the minimum pattern resolution. Substrate (100mm) needs to be cut to a width of 60mm in current experimental set-up of EPFL-LMIS1.
	End of Process 1a		
1.0b	Process 1: Stencil Preparation		
1.1	Membrane material definition	Any stencil can be used (100mm) Place individual structures at known relative distances (e.g. horizontal and vertical lines)	Stencil (100mm) needs to be cut to a width of 60mm in current experimental set-up of EPFL-LMIS1.
	End of process 1b		
2.0	Process 2: (Quasi) Dynamic Sten- cil Lithography		
2.1	Place stencil and substrate into QDSLS	Place the stencil on the stencil holder. The stencil holder is mounted on a XYZ stage. Place and fix the substrate. Substrate does not move and remains static during structur- ing.	
2.3	Determine gap between stencil and substrate	Nove the stencil and substrate towards each other and posi- tion them at a parallel and known gap.	Due to wafer curvature and bowing the gap needs to be greater than approx. 30 µm during dynamic applications.
2.4a	Step and repeat Stencil Lithogra- phy (Quasi Dynamic)	Move to first position using XY actuators. Bring stencil in contact and deposited a con- trolled amount of material. Then, retract stencil to save distance (e.g. 50 µm). Move to second position and deposit second layer etc. etc.	Nominal deposited thickness is nominal deposited struc- ture height.

NaPa

General remarks:

Examples:

Figure 1: Surface structures made via vacuum deposition through QDSLS. (a): Surface structure made via step and Repeat Stencil Lithography. Image shows three successive depositions of one horizontal line and one vertical line shaped slit. The largest displacement to place the vertical line above a horizontal line was 900 μ m. (b) Surface structure made via Dynamic Stencil Lithography. An array of 2 μ m holes was moved during deposition forming a custom surface structure. The image shows a micro house made of two materials (Ag and Au).

E-mail: vitoguido.Lambertini@crf.it

6.6 OLED Device

Web-Address: http://www.crf.it

Fabrication of OLED device by nanostencil method

Process: stencil lithography (STEN)					
Keywords: OLED, nanostencil	Figure: Organic light emitting device nanopatterned surfaces (resolut 1 μm and height 300 nm).	Process: OLED device fabrication by nanos- tion tencil method. <u>Application:</u> Lighting systems and displays.			
Project leader: Centro Ricerche	Fiat P	Process: OLED fabrication			
Address: Strada Torino 50, 10043, Orbassano (TO)		Responsible: Vito Lambertini			

Process description: A process is described to fabricate a light emitting devices based on organic materials deposited by HUV deposition and spin coating method.

Purpose: The aim of this process is demonstrate the increasing of efficiency more than 20% enhancing the light extraction.

Major challenges: deposition of charge injection layer trough nanometer stencils.

Application and state-of-the-art: the structuring of OLED device has been proposed in several work mainly based on microstructuring. Only in the last 2 years the introduction of sub-wavelenght patterns has been proposed.

References:

- [1] Improvement of the external extraction efficiency of OLED by using a pyramid array, Stanley Electric Co., Ltd. (Japan)
- [2] Nanohole OLEDs embedded in the 2D periodic SiO2 nanohole array. Yoon-Chang Kim R&DCenter, Samsung SDI Co. Ltd., Young Rag Do Dep. of Chemistry, Kookmin Un., Seoul, 2005 Optical Society of America.

Contact information: Vito Lambertini CENTRO RICERCHE FIAT Micro and Nanotechnologies department Strada Torino 50, Orbassano (TO) - ITALY

LoP2007_STEN006_nanostencil_OLED. PDF

OLED - Device

Process: stencil lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0	Process 1: Substrate preparation		
1.1	wafer selection and preparation	transparent substrate with transparent conductive oxide layer (ITO) Glass substrate 35x45 mm Thickness 1 mm	
1.2	substrate preparation	Cleaning washing in Micro90 solition di- luted (2%); ultrasonic baths cycles (5 min) in water and ethanol	
1.3	ITO patterning	UV-photolithography spin coating of UV-resist 2500 rpm soft bake 80°C for 1 min UV exposure for 20sec hard bake 120°C for 30 min KOH wet etching	
	End of Process 1		
2.0	Process 1: Stencil characterization and		
	selection		
2.1	Pattern selection	Different pitches, shapes and hole dimensions are chosen for nanos- tencil masks to obtain a regular arrangement of nanometer dots after physical depositions.	

NaPa Library of Processes			
2.2		SEM/FIB/AFM characterization	Micrometer stencil with linking holes at nano- meter scale is to hard to fabricate.
3.0	Process 3: OLED fabrication		
3.1	Charge-injection layers evaporation trough nanostencil	Thermal vacuum evaporation Evaporation of charge incjection layer -NN' Diphenyl-NN' bis(1Naphyl-4n Diamino) –1 Bi- phenil]). AUTO306 coater Vacuum 9x10-6 mbarr Thickness 20-40 nm Evaporation rate 0.5 nm/min	Several evaporations through the nanostencil carry out clogging of nanostencil holes. Wet chemical cleaning is requested after 10-20 evaporation steps.
3.1a	Process control	Profilometer Thickness 20-30 nm Optical microscope	
3.2	Charge-injection layers deposition PEDOT ITO glass DIAMINO dots	Spin coating Karl Suss RC8 spin coater Double layer: PEDOT/PSS suspension (Bayer) no vacuum 2500 rpm 5000 rpm/s 20-40 nm	
3.2	Active layers deposition	Spin coating Karl Suss RC8 spin coater Double layer: PPVs (yellow/orange from Merck) no vacuum 2000-2500 rpm 5000 rpm/s 75-90 nm	
3.3	Cathode deposition	Thermal vacuum evaporation AUTO306 coater	

Γ

NaPa_Li	aPa_Library of Processes Remerging Nanopastering Methods			
	DIAMINO dots	Al (capping layer) Vacuum 9x10-6 mbarr 120 nm		
3.4	Packaging	Epoxy resin casting The liquid epoxy resin (UV or thermal) is placed directly onto the cathode and a thin glass (micro- scope glass) is used to close the device. The curing is made: Thermal Tamb 2 hours UV (spot light) : 60 mW/cm2 10 s	The contact of the de- vice with oxygen de- grades the device quickly; the oxygen exposition time has to be reduced as much as possible. The ideal condition is to use a glove box.	
3.5	Measurement	Electrical analysis I/V curves Home made software by Labview K2425 power supply		
	Mitro QLBD-dention and QLBpanel dention 0006 0006 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0006 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 0007 007 0007 007			
3.5a	Measurement 	Electro-Optical analysis Efficiency curves (Lm/W) for light emission at 0° (normal to the emis- sion surface) Coupling of Horiba-Jobin Yvon spectroradiometer and optical microscope by UV-VIS optical fiber Optical fiber range 200-800nm Home made software by Labview : K2425 power supply	Focus of emissive area trough optical micro- scope lens onto optical fiber is hard.	

Г

Patterned vs flat OLED (power supply 3volt)	

General remarks:

The architectures of devices with patterned electrode showed an increasing of external efficiency (at 0° degree in view) in OLED technology is in the range of 25-30%.

6.7 Integration of NEMS with CMOS

Direct integration of NEMS with CMOS using Stencil Litho

Figure: Stencil alignment to CMOS substrate <u>Process:</u> Placing the stencil onto a substrate and simple deposited the wanted material through the stencil apertures onto the substrate. <u>Application:</u> Nanosensors for life science, nanoelectronics, material science, flexible electronics. etc.

Keywords: Stencil Lithography, Shadow Mask, Stenciling, Stencil Deposition, NEMS, CMOS

Project leader: EPFL, Lausanne, Switzerland	Process: Stencil Lithography
Address: 1015 Lausanne, Switzerland	Responsible: Marc van den Boogaart
Web-Address: http://lmis1.epfl.ch/	E-mail: nanostencil@epfl.ch
Partner: Centro Nacional de Microlelectronica (CNM- CSIC)	Process: CMOS post processing
Address: UAB Campus, 08193-Bellaterra, Spain	Responsible: Julien Arcamone
Web-Address: http://www.cnm.es/	E-mail: nano@cnm.es

Process description: Resistless patterning of micro and nano-structures [1] on- and aligned to any type of substrate. In this example of process, the substrate is a pre-fabricated CMOS substrate.

Purpose: Full-wafer (100mm) stencil alignment to prefabricated CMOS substrates and structures.

Major challenges: A stencil aperture needs to be used as an alignment marker. If the stencil has already been used a couple of times, the membrane might be stressed which will cause a loss of alignment resolution. The trick is to make a membrane that is not sensitive to deformation due to thin film stresses. After alignment, stencil and substrate need to stay in their aligned position which can be achieved by placing the whole alignment chuck into the deposition equipment. After the deposition, the Al stenciled patterns are blurred. Therefore, a short corrective dry etch [2] is applied to them so that they recover nominal dimensions. Then, they need to be transferred into the active mechanical layer which is a given CMOS layer.

Major advantages: With Stencil Lithography a controlled amount of material is deposited only where needed. No cyclic process steps are needed unlike e-beam lithography which has demonstrated to cause perturbations in the CMOS circuitry operation.

Application and state-of-the-art: in-situ device fabrication (e.g. single electron transistors, organic electronics, tunable mechanical resonators [3]) compatible with large-scale processing (e.g. CMOS).

References:

- van den Boogaart, M. A. F. (2006). Stencil Lithography: An ancient technique for advanced micro- and nanopatterning. Konstanz, Hartung-Gorre Verslag. ISBN:3-86628-110-2
- [2] J. Arcamone, A. Sánchez-Amores, J. Montserrat, M. A. F. van den Boogaart, J. Brugger, and F. Pérez-Murano Dry etching for the correction of gap-induced blurring and improved pattern resolution in nanostencil lithography J. Micro/Nanolith. MEMS MOEMS 6, 013005 (2007)
- [3] J. Arcamone, B. Misischi, F. Serra-Graells, M.A.F. van den Boogaart, J. Brugger, F. Torres, G. Abadal, N. Barniol and F. Pérez-Murano, A Compact and Low-Power CMOS Circuit for Fully-Integrated NEMS Resonators, IEEE Transactions on Circuits and Systems II, 54 (2007) 377-381.

Contact information:

Prof. Dr. Jürgen Brugger Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Microsystèmes, EPFL – STI – IMM – LMIS1, BM 3.106 Station 17 CH-1015 Lausanne, Switzerland.

LoP2007_STEN007_Integration of NEMS with CMOS.PDF

Direct integration of NEMS with CMOS using Stencil Litho Process: Stencil lithography

	Process	Technical Parameters	Remarks
	What	how it should work	critical issues
1.0a	Process 1: CMOS preparation		
1.1	CMOS substrate.	CMOS circuitry with a dedicated surface area (<i>inte-</i> <i>gration area</i>) for the me- chanical resonators. A set of alignment markers need to be present on substrate to which the stencil will be aligned.	Topographic features on CMOS substrate will influ- ence the minimum pattern resolution. Full wafer (100mm)
	End of Process 1a		
1.0b	Process 1: Stencil Preparation		
1.1	Fabricate stencil	Include a set of alignment markers in a membrane which will be used during alignment process	Full wafer stencil (100mm)
	End of process 1b		
2.0	Process 2: Fabrication of nano mechanical resonators integrated into a CMOS substrate		
2.1	Perform a stencil alignment	Simply align the stencil to the	See Stencil Alignment proc-
	alignment mark on	CMOS substrate using stencil membrane and surface align- ment markers present in the CMOS substrate.	ess sheet.
2.2	Aligned Stencil Lithography	Place the aligned stencil-	The Al layer will serve as an
	A/ material flux AANGSTENCIL membrane Gap Gap n-well n° implantations Resulting A/ patterns Si-p bulk	CMOS combination into an evaporator and evaporate a 80nm thick Al layer.	hard etch mask during pat- tern transfer into the active layer designated in the CMOS. See Stencil Lithography Process sheet.
2.3	Transfer Stencil pattern into CMOS layer by RIE	Place the CMOS substrate into an etching chamber and use an appropriate etch recipe to etch into the structural layer. In this example fluorine chem- istry was used.	Before the transfer, pattern blurring can be removed by a short corrective dry etch to recover nominal dimensions [1,2].
2.4	Releasing the resonators	Remove the Al etch mask and	Protect the rest of the cir-
	Free-standing structure n-well Si-p buik	release the resonators via a local selective etch. In this example a HF solution was used	cuitry during the release by using e.g. a thick photo resist layer.
	End of process 2		

Examples:

Figure 1: Full-wafer (100 mm) fabrication of diverse types of nanoresonators (~2000/wafer) patterned by nanostencil lithography and monolithically interconnected with CMOS circuitry for signal interfacing.

Nanopatterning and Applications

First edition with results of the NaPa-project, March 2008

Printed by micro resist technology GmbH Berlin, Germany URL: http://www.microresist.com

Please reference the NaPa LoP as:

NaPa Library of Processes, ed. H. Schift, published by the NaPa-consortium represented by J. Ahopelto, first edition (2008), ISBN 978-3-00-024396-7; URL: http://www.NAPAIP.org