PAUL SCHERRER INSTITUT

Elektrochemie, HS2018

08.10.2018

3rd Exercise: Stofftransport im Elektrolyten

Assistant: Christoph Csoklich, ⊠ christoph.csoklich@psi.ch

Cave: a) present the result in the desired units, b) sign and staple all written pages.

1 General Considerations on Mass Transport in Electrolytes

(a) Typically three types of mass transport exist in electrolyte. Describe their mechanisms:

Diffusion

Migration

Convection

- (b) Draw a schematic view of the concentration (c) variation as a function of the distance (x) to the electrode during an electrochemical reaction when only the diffusion occurs as mass transport mechanism. Mark the thickness of the Nernst diffusion layer (δ) .
- (c) Explain why the Nernst diffusion layer is both time and diffusion coefficient dependent, i.e. $\delta = \delta(D,t)$.
- (d) The reaction $H^+ + e^- \rightarrow \frac{1}{2} H_2$ may occur at a Pt catalyst. Consider a Pt electrode with a surface area of $0.8 \,\mathrm{cm} \times 0.8 \,\mathrm{cm}$ in a $1 \,\mathrm{M}^1$ solution of HCl. A steady state current of $0.8 \,\mathrm{mA}$ is observed. Calculate the current density $(j, [\mathrm{A/cm}^2])$ and the flux $(J, [\mathrm{mol/(cm}^2 \,\mathrm{s})])$.

2 Diffusion and Migration

(a) Calculate the diffusion coefficient $(D, [m^2/s])$ for a Li⁺ cation in H₂O at room temperature (ionic mobility $\mu_{\text{Li}^+} = 7.62 \times 10^{-4} \, \text{cm}^2/(\text{s V})$, viscosity $\eta_{\text{H}_2\text{O}} = 1 \times 10^{-3} \, \text{kg/(m s)}$). Then use the Stokes-Einstein equation to calculate the effective hydrodynamic radius $(r, [pm], [\mathring{A}])$.

$$D = \frac{RT}{6N_A\pi\eta r} \qquad \text{Stokes-Einstein equation}$$

- (b) In Table 1 below the ionic mobilities for several ions are listed². Why is there a large difference between H⁺, OH⁻ and the other ions?
- (c) Assume an ideal diluted aqueous electrolyte solution in a very long electrochemical cell. Will a charged particle experience a constant acceleration in the electrolyte due to the electric potential gradient induced by the charged electrodes? And why?

^{1[}M-mol/L

²Bard, Allen J.; Faulkner, Larry R. (2000): Electrochemical methods and applications. 2nd ed. New York, London: Wiley-Interscience.

Table 1: Ionic mobilities at infinite dilution in aqueous solutions at 25°C.

Cation	$\mu[\mathrm{cm}^2/(\mathrm{sV})]$	Anion	$\mu[\mathrm{cm}^2/(\mathrm{sV})]$
H^{+}	3.625×10^{-3}	OH^-	2.05×10^{-3}
Li ⁺	7.619×10^{-4}	Cl^-	7.912×10^{-4}
Na ⁺	5.193×10^{-4}	$3/2 \text{ SO}_4^{2-}$	8.27×10^{-4}
K^+	4.010×10^{-4}	HCO_3^-	4.61×10^{-4}

3 Convection

(a) A rotating disk electrode (RDE) rotates with the angular frequency $\omega = 2\pi \cdot f^3$ in 1 M HCl. With this setup, the Nernst diffusion layer thickness can be expressed as:

$$\delta_N = 1.61 \cdot D^{1/3} \nu^{1/6} \omega^{-1/2}$$

The diffusion limited current density is defined as:

$$j = 0.62 \cdot nFD^{2/3}\nu^{-1/6}\omega^{1/2}c_0$$

where n is the number of electrons involved in the electrode reaction. Consider the reduction of Fe³⁺ to Fe²⁺:

$$Fe^{3+} + e^{-} \longrightarrow Fe^{2+}$$

and calculate the Nernst diffusion layer (δ , [μ m]) and the diffusion limited current density (j, [A/cm²]) for the disk electrode rotating at 100 Hz.

(Use the following electrolyte properties for HCl: $D_{\rm Fe^{3+}}=4.96\times 10^{-6}~\rm cm^2/s,~c_{\rm Fe^{3+}}=2~\rm mmol/L,$ kinematic viscosity $\nu_{\rm H_2O}=1\times 10^{-6}~\rm m^2/s.$

(b) Explain the interest of the rotating disks for electro-analytical application.

4 Multiple Choice Summary

- 1. Which condition(s) has/have to be fulfilled for diffusion limited current?⁴
 - (a) $c_{bulk} = 0$
 - (b) $c_{bulk} = c_{x=0}$
 - (c) $c_{x=0} = 0$
- 2. Consider a 0.1 M aqueous solution of HCl. Which transport mode in the electrolyte (migration (M), diffusion (D) or convection (C)) is affected by the following changes:

 (Multiple answers as well as none of the above are possible.)

(a)	Increasing the potential gradient	\square M \square D \square C
(b)	Increasing the concentration gradient of the reactant	$\square \ M \ \square \ D \ \square \ C$
(c)	Increasing the concentration of the electrolyte from $0.1\mathrm{M}$ to $1\mathrm{M}$ HCl	$\square \ M \ \square \ D \ \square \ C$
(d)	Increasing the temperature	$\square \ M \ \square \ D \ \square \ C$
(e)	Changing the transference number ⁵ of the ion	$\square \ M \ \square \ D \ \square \ C$
(f)	Increasing the radius of the solvated ion	$\square \ M \ \square \ D \ \square \ C$
(g)	Changing the density gradient of the solvent	$\square \ M \ \square \ D \ \square \ C$
(h)	Changing the solvent of the electrolyte	$\square \ M \ \square \ D \ \square \ C$
(i)	Changing the external wires from copper to gold	$\square \ M \ \square \ D \ \square \ C$

 $^{^{3}}$ [rad/s= 2π Hz

 $^{{}^{4}}c_{x=0}$: concentration at the electrode surface; c_{bulk} : bulk concentration

 $^{^5 \}ddot{\mathrm{U}}\mathrm{berf\ddot{u}hrungszahl}$