Cover photo:
Control room of the Low Emittance Gun test stand, where critical components for XFEL's electron source are being tested.
Table of contents

4 Building on our past to prepare our future
 Foreword from the director

7 PSI-XFEL

17 Research focus and highlights
 18 Synchrotron light
 28 Neutrons and muons
 36 Particle physics and nuclear chemistry
 42 Micro- and nanotechnology
 46 Biomolecular research
 50 Radiopharmacy
 54 Large research facilities
 56 Proton therapy
 60 General energy
 70 CCEM-CH
 72 Nuclear energy and safety
 84 Environment and energy systems analysis

91 User facilities
 92 PSI accelerators
 96 Swiss Light Source SLS
 98 Spallation Neutron Source SINQ
 100 Swiss Muon Source SµS
 101 Ultra-Cold Neutron Source
 102 Tandem accelerator

105 Technology transfer

113 Facts and figures
 114 The year 2008 in numbers
 116 Commission and committees

119 Publications
The year 2008 marked the 20th anniversary of the Paul Scherrer Institute, PSI, and my colleagues seized the opportunity to organise and run several special events during the year, with the ultimate goal of giving the Institute a higher visibility in the neighbourhood, among critical non-scientific stakeholders and within Switzerland in general. At the same time, important scientific and technological results have been obtained, of which you will learn more in this report. Finally, 2008 was also a special year for me, as I was honoured with the Directorship of the Institute.

20 years Paul Scherrer Institute

In 1988, PSI was founded by the merger of the Swiss Institute for Nuclear Research and the Federal Institute for Reactor Research. The cultures of both institutes were very different at that time, making a new, joint beginning quite difficult. However, from today’s point of view, the amalgamation was the right decision: With the focus on the research areas of solid-state research and materials sciences, particle physics, life sciences, energy research and environmental research, a sagacious decision can be judged to have been made. Nowadays, PSI’s concept of focusing on its large-scale facilities – the neutron and muon sources around the proton accelerator and the Swiss Light Source SLS – is considered a success. The Institute focuses, on the one hand, on providing service for external research groups, which receive the support they need as they use the facilities, beamlines and research instruments, whereby it is our strategy to excel in a number of selected disciplines, rather than trying to serve the needs of all users. On the other hand, PSI’s own research concentrates on those research topics where an advantage in terms of international competition can be gained by employing our own in-house large-scale and complex research equipments.

In addition, PSI’s own research on the complex research equipment itself results in the acquisition of experience that can be used to develop our facilities still further, maintaining the latter’s ability to compete internationally.

Three requirements that are essential for success

PSI serves as a successful example of how a research institute can continue to be an internationally acknowledged scientific hub by simply remaining flexible and thus safeguarding its own existence. Three prerequisites are essential for this: Firstly, a well-defined scientific goal and a clear understanding of the Institute’s role in the Swiss research landscape, especially its relationship with the universities; secondly, political decision-makers who understand the importance of basic and applied research for the progress of society, and consequently support us; thirdly, excellent staff. Only with highly qualified, experienced and motivated personnel is success in performing cutting-edge research possible.

Based on these three factors, within the course of the last 20 years PSI has been able on the one hand to generate outstanding fundamental research results and on the other hand to develop key technologies and introduce them successfully to the market. To give you two examples:

Firstly, the development of compact accelerators for the proton therapy of tumours. PSI is a technology leader in this area, and recent developments can be seen on page 56. Several
hospitals have already expressed their intention to establish this technology on their own sites.
And secondly, we have developed detectors that are orders of magnitude more sensitive than those existing previously.
One such example is the MYTHEN X-ray detector, which is presented on page 26. In combination with recent developments at the SLS, MYTHEN is opening up wholly new perspectives for diffraction experiments.
Both products have already been successfully introduced to the market. It should, however, not go unmentioned that both technologies are the belated offspring of the basic research undertaken in the field of particle physics. As such, they are the results of a development phase of more than 20 years. Where else would such a long-term endeavour be possible, if not at a publicly funded research institute?

Interesting and surprising findings

As to our scientific achievements in 2008, let me just highlight a couple, details of which you will find in the individual chapters in this report: Interesting and even surprising findings around superconductivity and magnetism revealed using neutron scattering and muon spin resonance accompanied us throughout the year (p. 28–31); using the high spatial resolution of synchrotron light at the SLS it was possible on the one hand to create new nano-structures (p. 42–45) and on the other hand to reveal microscopic details of the functioning of photo-catalysts (p. 20), fuel cells (p. 68) and bio-molecules (p. 23) with unprecedented accuracy. To complement the work performed at our large-scale facilities, various complementary methods are currently developed in Biology, Energy, or Environmental Sciences. For example, by using selected isotopes it is now possible to date glacier ice with unequaled precision (p. 40), to enhance the NMR sensitivity for potential medical diagnosis (p. 32), to develop efficient SPECT tracers (p. 50), or to assess the long-term safety of radioactive waste repositories (p. 82). On the operational side of the PSI accelerators, two world records were achieved: The proton facility surpassed its own world record, with a new beam power of 1.3 MW, and the SLS operating team announced a significant improvement of beam quality, resulting in a world-record low vertical emittance of 2.5 pm rad.

For the time being, PSI fulfils all the criteria necessary for remaining amongst the world’s top research institutes for the next 20 years. For us, one such criterion is the development and construction of a novel and ambitious large-scale research installation for dynamical studies with femtosecond and atomic resolution: the free electron laser PSI-XFEL, whose commissioning is planned for 2016 (p. 7).

As a good and longstanding tradition, I shall end this foreword with my sincere thanks: Thanks to the PSI staff, who have made everything possible on which we proudly report in this volume, and “Thank you” to our research and development partners in academia and industry worldwide, to our home canton of Aargau for its manifold support, and to the Board of the ETH and the Swiss Federal Government for their continued support.

Joël Mesot, Director
The PSI-XFEL is planned to be the next large-scale facility at the Paul Scherrer Institute and will contribute to the vitality of the laboratory during the coming decades. The project represents a continuation of PSI’s excellence in the field of synchrotron radiation research, established through the outstanding performance of the Swiss Light Source (SLS), which began operation in 2001.

The PSI-XFEL will complement the SLS by being ideally suited for experiments where the combination of atomic spatial resolution and femtosecond temporal resolution is required – detailed images of atoms and molecules in motion will be captured for the first time.

The PSI-XFEL will be one of the first national free-electron laser facilities worldwide that aims to produce coherent light with wavelengths down to 1 Ångström. It will hopefully serve as a model for other national sources, since further projects of this type are a long-term necessity, given the limited number of experiments that can be installed at any one such facility.

With the PSI-XFEL, Swiss and external users will have an excellent scientific instrument with which to perform novel investigations in the fields of chemistry, biochemistry, condensed matter physics and materials science.

New concepts and innovative technical solutions have been incorporated into the facility design to optimize performance and minimize cost. The low-charge concept, combined with an ultra-small electron-beam emittance, is the essence of this design. The higher longitudinal pulse compression required is realized with a newly-developed dual-frequency accelerating cavity. High-gradient and high-voltage acceleration systems are being developed to reduce space charge effects and to guarantee the required electron beam characteristics for the lasing process.
The exciting features of this novel light source will, for example, allow users to unravel the molecular structure of a protein and to effectively take a motion picture of a chemical process on the scale of femtoseconds (fs). X-ray light of unprecedented quality is needed to guarantee the accomplishment of these ambitious goals. This, in turn, requires an electron beam with high performance and sophisticated beam-handling. In the past year, important steps towards the technical realization of the facility were made, and the XFEL concept was further improved.

Project overview

In a Free Electron Laser (FEL), electrons are not bound to an atom, as in a conventional laser, and light is created by transverse acceleration of a relativistic electron beam in an undulator. In a conventional laser, coherence is created by a stimulated transition of the electrons from an excited state of the atom to the ground state, with a corresponding emission of light that forms a narrow bandwidth around a single wavelength (the shortest wavelength possible is in the VUV). In a FEL, coherence arises from the interaction of the emitted electromagnetic wave with the electron beam, and lasing wavelengths can be achieved continuously down to the hard X-ray regime.

The generic elements of a FEL are a linear accelerator, a radiator constructed from several undulators, with beam focusing devices positioned between the undulator sections, and the photon beam distribution lines that house the experiments at their ends.

Acceleration to high energies is necessary for two reasons. Firstly, the resonance wavelength of an undulator for a given (minimum feasible) period length is reduced with the square of the energy, i.e. short wavelengths require higher energies. Secondly, the electrons can only emit in the fundamental radiation mode if the beam size and divergence (expressed by their product, the emittance) are small. Fortunately, the transverse beam size (and emittance) of the electron beam in a linear accelerator decreases with increasing energy (adiabatic damping). However, the latter condition requires high electron energies (and costly, long linear accelerators) for short lasing wavelengths.

In addition to the requirement of a small electron beam cross-section, there is also the pre-condition that many particles are to be involved in the process, i.e. the charge density must be high. This is achieved by compressing the length of the electron bunch in the linear accelerator by a sequence of bunch compressors.

In the PSI-XFEL, the acceleration process starts at the cathode of the electron gun. Two different electron guns are foreseen for the three undulator lines (Figure 1, Athos: 7 nm – 3 nm; Porthos: 3 nm – 0.7 nm; Aramis: 0.7 nm – 0.1 nm). Since the quality requirements are less stringent for the longer wavelengths, a more conventional gun, based on photoemission, can be used here. For the baseline design incorporating the CERN CTF3 gun, an electron pulse (bunch) of 10 ps duration (fwhm) and a peak current of 22 A is extracted from a metallic...
or semiconductor surface by means of a laser beam. The cathode is placed on the axis of a 2½ cell, 3 GHz accelerating cavity, which immediately accelerates the electron bunch after extraction from the cathode. Solenoid and quadrupole magnets in the subsequent structure focus the beam, to minimize the emittance at the exit of the gun complex.

For the second gun, several options are possible. The decision on which will be based on the success of ongoing R&D work. It will either be a newly-developed photo-electron gun or an alternative gun based on field emission arrays, where electrons are extracted from a surface by means of high electric field gradients (~ 5 V/m). Such high gradients can be easily achieved if the field is applied to micro- or nano-structured surfaces where the field is strongly enhanced around tips with small apex radii. In order to mitigate space charge effects, the energy of the beam is rapidly increased by passing the beam through a high-voltage and high-gradient diode configuration, before entering the first RF accelerating structure. A newly-developed high voltage pulser is currently being tested and further developed. Different surface materials are being explored, to discover those which can sustain high surface gradients without breakdown. Since this concept relies on a longer initial pulse (60 ps fwhm with 5.5 A peak current), a higher compression is required to reach a sufficiently high peak current at the entrance to the undulator. This compression starts in the first accelerating cavity, which is fed by two frequencies (1.5 GHz and 4.5 GHz). In this way, the longitudinal energy distribution in the beam can be suitably shaped to reach a very effective velocity compression. In the low relativistic regime, particles with different energies still have a notable difference in velocities. If they are arranged properly in energy along the bunch, they move towards the bunch centre, and the length is reduced.

After the gun complex, the bunch can be directed into a diagnostic line for complete characterization. A more conventional accelerating structure follows the gun and comprises four S-band structures of 4 m length, surrounded by focusing solenoids. The maximum accelerating gradient is 20 MV/m. In the test setup for this injector presently under construction, a bunch compressor will be placed at the end (250 MeV) for test purposes. In the final layout, an additional accelerating section will be added (Linac 1) in front of the bunch compressor, boosting the energy to 450 MeV. The higher energy will alleviate the risk of emittance dilution due to space charge effects in the bunch compressor. Linac 1 comprises two FODO cells, each of 10 m length, with two accelerating structures of 2 m length between adjacent quadrupoles. One cell will provide an energy increase of 120 MeV on crest, corresponding to an accelerating gradient of 30 MV/m.

During the acceleration process prior to the bunch compressor, an energy chirp will be introduced in the beam. Particles with higher energies will be arranged at the tail of the bunch and particles with lower energies at the head of the bunch. Due to the nonlinearity of the 3 GHz accelerating field, the energy chirp is slightly too large in the head of the bunch and too small in the tail. Therefore an X-band (12 GHz) cavity is introduced before the bunch compressor to compensate for these deviations.

The bunch compressor (BC1) consists of a sequence of four bending magnets, which create an orbit bump around the straight motion path in the linac. Since particles with higher energies are subject to a smaller deflection in the magnets, their orbit lengths are shortened. They are consequently moved from the tail towards the centre of the bunch. Similarly, the lower-energy particles at the head of the bunch experience larger deflections that result in a lengthening of the orbit and a transition towards the bunch centre. The net effect after BC1 is that the length of the bunch is reduced from 10 ps (for the 200 pC mode) to 450 fs.

The subsequent Linac 2 (with the same cell structure as Linac 1) raises the energy to 2.1 GeV. At this point, the second magnetic bunch compressor (BC2) is introduced, which reduces the bunch duration to 30 fs, with a corresponding increase of the peak current to 2.7 kA. For the succeeding Linac 3, the transverse beam dimensions are already considerably smaller, due to the increased beam energy, permitting the distance between the focusing quadrupoles to be increased. One cell here is constructed from four two-metre-long accelerating sections between two adjacent quadrupoles, and has a total length of 19 m.

After Linac 3, the electron beam is extracted for the longer-wavelength FEL lines Athos and Porthos. The nominal energy at this point is 3.4 GeV, but will be reduced to 2.1 GeV for Athos by not powering Linac 3. It remains to be verified by simulations whether the focusing lattice can remain unchanged, since the quadrupole strengths are matched to a higher energy, otherwise a second extraction point after Linac 2 will need to be inserted.

Only for the 1 Ångstrom wavelength of Aramis is an additional boost to 5.8 GeV required, provided by Linac 4, which uses the same cell structure as Linac 3.

The electron beam quality is now sufficient for the lasing process as the beam enters the undulators. The emittance is reduced by adiabatic damping, and the beam is longitudinally compressed. In principle, an electron transversally accelerated in a magnetic field emits a broad spectrum of radiation. However, in an undulator the only wavelengths not to be eliminated by interference effects are those for which the electron beam lags behind the photon beam by one wavelength (or an odd integer multiple). Due to the long undulator structure, the intensity of the radiation steadily increases and becomes sufficiently
strong to act back on the electron bunch. The transverse electric field of the emitted wave causes acceleration and deceleration of particles within the transversally moving electron bunch in the undulator, which imprints a micro-bunch structure onto the whole. The more this structure is enhanced, the more coherent the radiation becomes. At saturation, the waves emitted from the different micro-bunches are summed up in phase, leading to a tremendous increase in intensity of the transversally, fully coherent light.

At the end of the undulator, a photon beam with 2.9 GW power is extracted from Aramis, with a pulse duration of 40 fs at 1 Ångström wavelength. The photon beam is then distributed to the various experiments. At the exit of the undulator, no material can withstand the high power density, necessitating long expansion lines before optical elements can be positioned in regions of acceptable heat load. Since X-ray mirrors have useful reflectivity only at very small grazing angles, long optical lines with refocusing are required to guide the photon beam to the experiments.

Project progress

The PSI-XFEL project is being executed in three parallel developments. Major emphasis is given to the realization of a low-emittance gun by exploring the ultimate limits of conventional photo-cathodes and investigating new options based on field-emission from needles and field-emitter arrays (FEA). Simultaneously, the injector of the XFEL facility is being built, which will integrate the major critical R&D elements of the project and allow their verification and optimization at an early stage. Finally, the configuration of the final XFEL facility is being developed and the civil engineering requirements are being specified.

High-brightness electron beams

Operation of the PSI-XFEL will start with a conventional photo-gun for the electron source. Simulations have confirmed satisfactory performance for both the hard and soft X-ray undulator beamlines. Eventually, after successful completion of the R&D, the driver system for the hard X-ray line will be equipped with a cathode based on field-emission from a needle or an FEA, embedded in a diode configuration for high-gradient and high-voltage acceleration. For the needle cathode, two independent emittance measurement methods have confirmed the target value of 0.2 µm. Further work is needed to reach the required charge and emission current. A major step forward was made for FEAs by controlling the tip apex for homogeneous emission, and a production process for double-gated arrays (Figure 2) has been developed [1]. It could be demonstrated that the focusing gate has little effect on the emitted current, compared to the single-gated array. So far, the current is limited by the available accelerating voltage. A new test setup is being installed to overcome this limitation.

XFEL injector

Construction of the 250 MeV injector for the FEL facility will allow the testing of critical technical developments, and the verification and optimization of their performance, at an early stage. For optimum performance, two complementary electron guns will feed the linear accelerator. Both gun concepts can be tested in the 250 MeV injector facility. Operation will start with the “CTF” photo gun (Figure 3) [2]. Emission from the cathode is driven by a Ti-Sapphire laser system, which allows longitudinal pulse-shaping and wavelength-tuning for the generation of minimum emittance.
Construction of the 250 MeV injector is currently in progress and the procurement of magnets, accelerating structures, klystrons, modulators and laser systems has begun. Building construction is well underway (Figure 4) and will be completed early in 2010.

XFEL facility

Extensive start-to-end simulations have been performed in order to consolidate the basic parameters and the configuration of the XFEL facility. Figure 5 shows the simulation results for Self Amplified Spontaneous Emission (SASE) at 1 Ångström wavelength.

![Spectrum at saturation for SASE operation.](image)

The three XFEL beamlines have been re-optimized to allow independent operation. For the soft X-ray undulator line, seeded operation is foreseen, possibly based on high-harmonic generation from a Ti-Sapphire laser [3]. This will enhance the longitudinal coherence of the XFEL pulse, even at wavelengths down to 1 nm, and render the XFEL operation more stable in both frequency and time. Provisions for short-pulse operation have been made, based on either laser-slicing or low-charge, “single spike” operation (Figure 6).

![“Single spike” spectrum at saturation for 2 pC operation.](image)

The consolidation of the XFEL configuration has allowed the preparation of a conceptual design of the building with experimental hall and technical infrastructure. The orientation of the building has been slightly modified to increase the available space (Figure 7).

The accelerator and the experimental hall will be completely below ground, with an underground supply area on top of the accelerator tunnel (Figure 8).

![Design study of the XFEL tunnel, with accelerator and technical gallery.](image)

For further information see: http://fel.web.psi.ch

References

[1] S. Tsujino et al., to be published.

Novel science at the PSI-XFEL

Scientific strengths of the PSI-XFEL

The photon energies of the PSI X-ray Free Electron Laser (XFEL) [1] will allow a wide range of investigations of matter at the molecular and atomic level (see Figure 1). Furthermore, the extremely short X-ray pulses (<20 fs = 2 × 10⁻¹⁴ s) and high peak flux (10¹¹ photons/pulse) will permit the study of ultra-fast dynamics, either as equilibrium fluctuations or in “pump-probe” experiments. XFEL-radiation has 100% transverse coherence, allowing “lensless imaging” of nanostructures, down to atomic resolution. Although a focused XFEL pulse will locally destroy the sample, the short pulse duration will ensure that the scattered photons reaching the detector arise from undamaged material. Variable-polarization undulators at the PSI-XFEL will allow observation of magnetization dynamics, using the magnetic contrast of the L absorption features of, for example, Fe, Co and Ni. Interesting magnetic processes may be efficiently initiated at the PSI-XFEL with picosecond, half-cycle pulses of intense terahertz (THz) radiation, produced by a dedicated source, synchronized with the XFEL. The same THz source may also initiate surface catalytic reactions. It is also planned that the PSI-XFEL will deliver highly uniform, “transform-limited” X-ray pulses, suitable for novel “quantum optics” techniques, such as heterodyne spectroscopy. Finally, the maximum photon energy of the PSI-XFEL may be sufficiently high to reach the ultra-narrow (10⁻⁸ eV) “Mössbauer resonance” of the ⁵⁷Fe nucleus, yielding the ultimate in high-coherence X-rays. In what follows, we briefly present three proposed XFEL experiments of particular interest to PSI research divisions.

Nanoscale magnetic processes

Very stable “magnetic vortices” in planar magnetic nanostructures may in the future be used for high-density information storage. Field-induced switching of the core of such a vortex is predicted to occur on the nm and ps length and time scales [2](see Figure 2). With the high transverse coherence and the circular polarization of the PSI-XFEL beam, and at photon energies close to the magnetically-sensitive L₂ and L₃ edges of, for example, cobalt (at 793 and 778 eV, respectively), it...
will be possible to take “snapshots” of the instantaneous magnetization distribution in thin-film nanostructures, and hence to follow this process in detail.

Unstable intermediates in surface catalysis

Surface catalytic reactions play a central role in many industrial chemical processes, in clean energy production and in eliminating environmental pollutants. A typical reaction is shown schematically in Figure 3. In the presence of a heated substrate, reactant species go through a series of short-lived intermediate states, finally emerging as the desired product. Figure 3 illustrates a possible “THz pump / X-ray absorption spectroscopy probe” XFEL measurement, which will elucidate the chemical nature of intermediate states on a ps-ns timescale [3].

Protein structure from 2D-crystals

Protein structure determines the function of the building blocks of life, and its knowledge permits the intelligent design of drugs to treat genetic diseases. Many clinically relevant proteins are membrane bound. Their 3D crystallization is difficult and requires tedious optimization to yield well-diffracting crystals. With the PSI-XFEL, it should be possible to extract high-resolution structural data from diffraction experiments on two-dimensional crystals (see Figure 4), complementing the techniques of electron diffraction/microscopy [4]. Although each XFEL shot will locally destroy the sample, with a focus spot size of 100 nm and the 100 Hz repetition rate of the PSI-XFEL, it will be possible to reposition the sample between shots.

References

The PSI-LEG test stand

The PSI-LEG test stand is PSI’s test bed for the development of an ultra-bright electron gun based on a high-voltage pulser configuration. This is one of several promising candidate designs for the electron source to be used at the PSI X-ray Free-Electron Laser. Since the start of operation at the end of 2007, the test stand has provided important information on relevant materials and geometries. The facility was recently upgraded with the addition of a radio-frequency cavity to accelerate electrons up to 4 MeV.

Introduction

Operating an X-ray free electron laser at relatively low electron energy requires an electron beam of unprecedented brightness: the electrons must be as densely packed as possible yet still propagate on highly parallel trajectories. Since any irregularities in the electron beam from the source cannot be corrected further downstream, the quality of the electron source is of paramount importance. To explore and evaluate new concepts for the generation of ultra-bright electron beams, such as field-emitter arrays or needle cathodes, PSI initiated the Low Emittance Gun (LEG) project. (The emittance of a beam is a measure for how well it can be focused – the lower the emittance, the brighter the beam.) The centre-piece of this effort is the PSI-LEG test stand, located in the OBLA building. The installation was implemented in two phases, with electrons reaching energies of 500 keV and 4 MeV, respectively.

Phase I: From 0 to 500 keV in 50 ps

In its initial form, the PSI-LEG test stand consisted of a high-voltage pulser followed by a short diagnostic beamline. In this configuration, the test stand was in operation from December 2007 until October 2008. The pulser generates a “diode” electric field between two metal electrodes (typically copper or stainless steel) separated by a variable gap of several millimetres. The electric field can reach up to 120 MV/m for the duration of about 250 ns. It accelerates electrons emitted at the cathode to a kinetic energy of approximately 500 keV in a few tens of picoseconds. At this energy, the influence of repulsive space-charge forces...
The broadening of the electron distribution emerging from each hole is a direct measure of the local, uncorrelated divergence of the beam (Figure 2).

Operation of the test stand during Phase I resulted in a wealth of information important to the further development of the programme. In particular, a wide range of cathode materials was investigated with regard to quantum efficiency and highest field gradient achievable with and without laser irradiation. Electrodes made from diamond-like carbon were shown to withstand up to 240 MV/m without, and 100 MV/m with, laser irradiation. The maximum extracted charge was 200 pC, when using a powerful Nd:YAG laser of 262 nm wavelength. The setup also allowed an accurate measurement of the so-called thermal emittance of the electron beam emerging from a metal cathode. This is the residual emittance arising from the thermal motion of the electrons inside the cathode prior to emission.

Phase II: Surfing to 4 MeV

To increase the beam energy into the MeV range, a radiofrequency cavity was added to the test stand during a major upgrade (Figure 4). The beamline now measures some five metres in length and includes a dispersive branch for momentum measurements (Figure 3). Installation was completed in December 2008, and first beam was observed in early January 2009. The new setup will give valuable insights as to how the emittance of the generated electrons can be preserved up to higher energy.

An entirely re-designed laser system will provide laser pulses of tuneable wavelength, thus allowing the study of beam emittance as a function of photon energy. Last but not least, the experience gained by operating the PSI-LEG will be of great value for the commissioning of the much larger future facilities that are planned in the context of the PSI-XFEL project.
Examples from PSI’s research portfolio in 2008 are presented on the following pages, but this is only a very small sample of the cutting-edge research being performed at the Institute.

A large number of results in various fields of science have been obtained at PSI’s large-scale facilities; for example, research at SLS provided insights into the structures of novel nanomaterials, the inner workings of photocatalysts and processes in biomolecules. The fascinating interactions between superconductivity and magnetism were among the topics investigated with muons and neutrons.

The development of a new process for turning wet biomass into methane, and thus making the solar energy stored in these materials available for use in households and vehicles, is but one example of PSI’s activities towards a sustainable energy supply. In the field of nuclear energy and safety, current research projects include the investigation of the geological conditions required for the storage of nuclear waste and the development of methods for monitoring material fatigue in nuclear power plants.

In environmental research, information gained from an ice core drilled in the Siberian Altai Mountains showed the influence of solar activity and greenhouse gases on the local climate, and a new method developed by researchers from PSI and ETHZ will allow even more precise dating of ice cores in the future.

Activities in the medical field covered a very broad range, from fundamental research into the origins of various diseases to the treatment of actual patients at the proton therapy facility. The year 2008 was the first year of continuous patient treatment at Gantry 1, as well as a year of considerable progress in the development of future facilities and technologies for proton therapy at PSI.
The physical properties of the isoelectronic, two-dimensional structures of graphene and hexagonal boron-nitride are complementary and may also in combination become technologically useful. On solid supports, both deviate from a perfectly flat honeycomb structure and provide the possibility to functionalize them as templates for nanoscaled arrays among other applications. Structural and electronic studies of these systems performed at the Swiss Light Source have provided new insights for their potential use in areas as diverse as molecular recognition, nanoarrays, and novel electronic device fabrication.

Graphene and hexagonal boron-nitride (h-BN) are honeycomb structures that can be grown as single layers, or “sheets”, on crystalline substrates. The bonding between these sp²-hybridised, two-dimensional structures and the substrate varies periodically, due to a moiré-like interference caused by differences in their respective in-plane lattice constants. As a consequence, the atomic sheets become corrugated, resulting in features with periods of a few tens of Ångströms. They are characterised by pronounced and separated triangular elevations on a hexagonal network in the case of graphene, but in h-BN the elevations are more hexagonal with wire-like connected rings, and is thus referred to as a “nanomesh”. Their future use as nanotemplates for molecular arrays and in recognition of macromolecules is a tantalizing prospect that can be better assessed only by a deeper understanding of their structures and electronic properties. With this in mind, studies of these systems have been performed at the Surface Diffraction Station and Surface and Interface Spectroscopy Beamline of the Swiss Light Source.

Graphene on Ruthenium

Initial studies of graphene on Ru(0001) (g/Ru) using techniques such as scanning tunneling microscopy and low-energy electron-diffraction produced mutually contradictory results: two different structures were proposed – one in which (12×12) graphene hexagons lie on (11×11) Ru unit cells (denoted henceforth as 12-on-11) [1], and another suggesting an 11-on-10 structure [2]. None of these studies, however, had the necessary spatial sensitivity to unambiguously resolve this inconsistency. Only surface X-ray diffraction (SXRD) has the necessary resolution (approximately two parts in ten-thousand of an in-plane reciprocal lattice unit), and hence SXRD studies were performed on g/Ru at the Materials Science beamline of the SLS. Surprisingly, in-plane SXRD measurements showed that the moiré structure agrees with neither of those previously proposed, but is in fact unambiguously 25-on-23, having a pe-
Riordicity of over 60 Å [3]. This superstructure comprises four translationally inequivalent (but nonetheless nearly identical) subunits [see Figure 1(a)] with chemistries very similar to that of the initially proposed 12-on-11 structure. Out-of-plane measurements along superstructure rods showed pronounced oscillations and indicated both strong out-of-plane corrugation of the graphene with an amplitude of 1.4 Å, and also a weaker corrugation of the Ru. More recent analysis of the data using a parametric approach implemented in GenX, which uses a genetic algorithm [4], shows that the corrugation of the Ru is 180° out of phase with that of the graphene [Figure 1(b) and [5]].

Dipole rings in the h-BN nanomesh

h-BN nanomeshes on Rh(111) and on Ru(0001) were also studied using SXRD and showed registries of 13-on-12 [6] and 14-on-13, respectively [7]. Strong modulations of the superstructure rods also indicate significant modulations of the h-BN and substrate. This corresponds well to STM studies of h-BN on Rh, where a clear corrugation of the surface was observed [8].

In contrast to graphene, the h-BN nanomesh is not a metal [9] and a difference in the electronic and electrostatic landscape between the regions close to the substrate (holes) and those further away (wires) is expected. These differences can be measured by angle-resolved photoemission-spectroscopy (ARPES). The difference in electronic structure between the holes and wires is reflected in a splitting of the σ bands [Figure 2(a)], but because of the absence of any states at the Fermi level this has no immediate effect on the lateral electrical resistance. However, this splitting reflects the different electrostatic potentials in the holes and on the wires. This difference in the local work function can also be probed through the adsorption of a closed shell species such as xenon, as is visible from the different core-level lines for adsorbed Xe in the holes and on the wires [H and W in Figure 2(a)].

The difference of 300 meV in electrostatic energy at the Xe atom sites indicates a lateral local electrostatic field on the rims of the holes. This dipole field locally enhances the bonding of atoms or molecules that may be polarized. In order to test this hypothesis, we performed thermal-desorption spectroscopy measurements on adsorbed Xe. Detailed analysis of the respective Xe core-level intensities on the holes and wires as a function of temperature [Figure 2(a)] indicates that the Xe bond energy on the holes and the wires is almost the same, except for the last 12 Xe atoms in every hole. These Xe atoms form a ring at the rim of the holes, where the dipole field is strongest, and are trapped there up to significantly higher temperatures [10].

These results indicate that every hole of the nanomesh has a dipole ring which significantly enhances its trapping potential. This is further illustrated by the ability to trap Cu-phthalocyanine (Cu-Pc) molecules at room temperature, as shown in Figure 2(b). As on most other substrates, the molecules can move within the holes, resulting in the diffuse shapes. However, they cannot cross the dipole ring once they are trapped. Similar trapping mechanisms are expected for all molecules and atoms, where the maximum trapping temperature depends on their size and polarizability.

The h-BN nanomesh is robust in air and even water, thus with the regular spacing of the dipole rings and the relatively easy preparation of large-scale samples the technological relevance of more than 10^{11} molecular traps per square mm is self-evident.

References

X-ray absorption spectroscopy (XAS) has long been established as a precise method of measuring local structure in disordered systems such as molecular systems in solution. This technique has recently been introduced into the domain of ultrafast science where the electronic and nuclear dynamics of molecules and crystals are examined on the time scales of atomic motion [1, 2]. In the present investigation, ultrafast XAS has been used to examine the photocatalytic excited state of the \(\text{[Pt}_2\text{(P}_2\text{O}_5\text{H}_2)_4]^{4–} \) (PtPOP) anion (see Figure 1) dissolved in ethanol.

Time-resolved X-ray absorption spectroscopy

An X-ray absorption spectrum is obtained by measuring either the transmission or total fluorescence of a sample as a function of incident X-ray photon energy. A typical measurement allows the reconstruction of atomic distances on the scale of <0.01 Å. Using this technique, the structure of the ground state of PtPOP was measured for the molecule in solution, indicating a Pt-Pt distance of 2.876(28) Å and a Pt-P bond length of 2.32(4) Å [3]. These values are in agreement with previous spectroscopically derived values as well as DFT calculations [4], and represent a small difference from those measured using crystallographic techniques. In the ground electronic state, this molecule has two electrons in the Pt-Pt \(\sigma^* \) (dz\(^2\)) antibonding molecular orbital. Upon excitation with 350–390 nm ultraviolet light, PtPOP can be excited into the \(\sigma(p_x) \) bonding orbital, resulting in the formation of a transient Pt-Pt bond and a predicted decrease in the Pt-Pt distance.

Exciting heavy metal retrieving structures in photocatalysis

Photocatalysts play an important role in a broad range of applications, from photochemical conversion of light energy into chemical energy to initiating novel chemical reactions. One family of compounds that has attracted much attention are the dinuclear d\(^8\)-d\(^8\) platinum, rhodium and iridium complexes that have a highly reactive electronic excited state. When photo-excited with light, these systems have been shown to abstract H-atoms from a variety of substrates and initiate electron transfer processes. In this work, the structure of the triplet excited state of a diplatinum member of this photocatalyst family is examined.

Figure 1: Structure of the \(\text{[Pt}_2\text{(P}_2\text{O}_5\text{H}_2)_4]^{4–} \) (PtPOP) anion.
Measurements were performed at the MicroXAS beamline at the Swiss Light Source by exciting a 10 mM PtPOP solution in ethanol with 100 fs laser pulses at 390 nm and probing at the Pt L₃ absorption edge (11.56 keV). The transient XAS spectrum (excited minus unexcited), shown in Figure 2a, directly reflects the electronic and structural changes that occur 150 ns after excitation. In this study, the EXAFS region of the XAS spectrum has been exploited to determine the excited-state structure of PtPOP.

Retrieving excited-state structures

The ability to retrieve photoinduced structural changes with high accuracy is based on a rigorous model-based fitting approach. By including prior knowledge in the form of physically reasonable distortion models, the number of free fitting parameters can be reduced considerably, allowing the introduction of additional parameters, such as the photoexcited population and the energy shift between excited and ground-state XAS spectra, which are typical for time-resolved XAS analyses and often difficult to obtain by independent methods. The general procedure followed is to first obtain accurate structural values for the ground state of the system, then to use these values as a starting point for the excited-state structure. By making physically reasonable changes to the ground state structure according to a specific distortion model, then simulating the EXAFS spectrum for the new structures, the resulting transient EXAFS spectra can be calculated by subtracting the ground-state fit. For each excited-state structure, the difference between the experimental and simulated transient spectra can be minimized by introducing fitting parameters such as the energy shift and the photoexcited population. This procedure can then be repeated with various realistic structural distortion models that all involve a contraction along the Pt-Pt axis, allowing the result to converge to the smallest difference between experiment and calculation.

In this way, the best fit was obtained for a Pt-Pt contraction of 0.31(6) Å and a Pt-ligand elongation of 0.013(5) Å (see Figure 2) [5]. The latter is larger than just resulting from the Pt-Pt contraction, which indicates that the coordination bonds are weakened upon the Pt-Pt bond formation in the excited state. This small Pt-P elongation has been predicted by DFT calculations [4], but this represents the first experimental confirmation of such a structural change and illustrates the sensitivity of both time-resolved XAS as a technique to resolve excited-state structures and the analysis procedure used. Remarkably, the bridging P-O-P ligands do not follow the Pt atoms in the contraction movement, which supports the weakening of the Pt-P bonds and the rigidity of these bidentate ligands. In addition, the analysis indicates an excitation population of 7% and a zero energy shift. Both of these conclusions seem accurate: optical measurements indicate an excited-state contribution of approximately 8%, and no energy shift of the excited-state X-ray absorption spectrum is expected as the photoexcitation does not affect the charge density on the Pt atoms.

It should be emphasized that the present transient EXAFS analysis goes beyond the simple determination of nearest-neighbour distances. By using a model-based fitting approach, a more global picture of the excited molecule can be obtained. Application of this analysis technique to other photocatalytic systems should provide a wealth of information not directly available through other methods.

References

Transfer of information is a basic property of biological systems, with common examples including the transfer of genetic information or nerve impulses. The transmission of signals occurs at an even more fundamental level and is mediated by signaling molecules, which bear a phosphate or a sulfate group. Since these processes are of supreme importance, they have been extensively studied and a number of mechanisms and related protein structures have been revealed. ASST is unusual amongst sulfuryl transfer enzymes in that it exhibits a previously unknown three-dimensional structure. This novel topography was revealed by X-ray crystallography at the SLS [1].

The crystal structure of ASST, at 2 Ångström resolution, revealed that ASST contains an extremely unusual disulfide bond. In ASST, this bond is characterised by an extremely short distance between the two linked cysteine residues and a high steric strain, which we believe can only be efficiently formed by the action of the disulfide bond formation machinery genetically associated with ASST [2]. This disulfide bridge is a prerequisite for proper folding of this protein and could also play a role in regulating its catalytic activity. More striking than this unusual disulfide bond geometry, however, was the overall structure of ASST. This consisted of two equal propeller-like parts which contain active sites in the central funnel formed by the beta-sheet ‘blades’ of each of the propellers. Such a fold has never before been observed for a sulfotransferase, leading to fundamental questions regarding the structure-function relationship of ASST.

In order to answer these questions, two complementary approaches were adopted: we replaced individual amino acids and probed the biophysical properties of these mutant forms of ASST, while concomitantly treating the native form of ASST with molecules acting as sulfuryl-donors and solving the crystal structure of these native intermediates. Mutations of ASST showed five nitrogen-containing amino-acids to be essential for function. These residues build a reaction cage which accommodates both the donor and the acceptor of the sulfuryl group. Furthermore, during sulfotransfer, the sulfuryl group is directly (covalently) bound to a histidine side chain of ASST. Thus, the signal is first transferred from the donor to ASST and subsequently from ASST to the acceptor. Such a ping-pong mechanism is unique in the processes of sulfuryl transfer.

As a number of histidine residues surround the active site of ASST, in order to clarify the catalytic role of each residue,
Electrospray ionization mass spectrometry was performed on both the native and sulfurylated forms of the enzyme. Together with the crystal structure of native ASST, results from these experiments clearly demonstrated that His-436 is the residue that undergoes transient covalent sulfurylation during catalysis. Structural analysis of the two intermediate forms of ASST showed, for the first time, this high-energy sulfuryl-histidine intermediate state, confirming the proposed ping-pong reaction pathway.

The experiments summarised here provide a basis for understanding sulfuryl transfer in a manner independent of the universal sulfuryl donor (adenosine 3'-phosphate-5'-phosphosulfate, PAPS) in mammals, opening up medically interesting perspectives. ASST is a promising target for antibacterial drugs, and together the crystal structures and biochemical data provide a basis for drug design targeting this virulence factor.

It is also interesting to note that these insights were only made possible by combining crystallographic, spectroscopic [3], and other biochemical methods. An advanced form of mass spectrometry, combined with multiple crystallographic models enabled us to understand the architecture of the active site and thus elucidate the catalytic pathway of the enzyme. The complete account of the work described here can be found in reference [1].

References
During lung development, the airways and an extensive gas exchange area have to be formed. The development usually starts with the appearance of two lung buds. At the terminal ends of the buds, a repetitive process starts where elongation of the future airways alternates with branching. After approx. 20 rounds of outgrowth and branching, the ducts and parts of the respiratory airways are formed. During alveolarization, the gas exchange area is further enlarged by a subdivision of the terminal air spaces by the formation of new septa. One leaflet of the double-layered capillary network inside the existing septa folds up and gives rise to a new double-layered capillary network within the newly forming septa (Figure 1, A–C). Later, during microvascular maturation, the double-layered capillary network of the alveolar septa is reduced to a single-layered one (Figure 1D). Currently, it is believed that after this phase the lifting off of new septa from preexisting ones is excluded due to the missing second capillary layer. Consequently, after microvascular maturation is completed, the enlargement of the gas exchange area will be achieved by lung growth and not by addition of new alveolar septa. By the same token, a mature alveolar septum, once lost, will most likely not be reformed. Therefore, a noteworthy amount of lung regeneration is excluded, according to this view. The time when alveolarization in humans stops is not well-defined and has been discussed for decades. Currently, many agree on an age of 2–3 yr[1] whereas older data suggested that the formation of new alveoli ceases at ca. 8 yr or even at 16–18 yr of age[2]. Nevertheless, one question remained open: how may new alveoli be formed at a later time point? It has been proposed that (i) late alveolarization may take place in subpleural areas where a double-layered capillary network is not required or (ii) late alveolarization may follow a different, unknown mechanism. So far, alveolarization after the phase of microvascular maturation is on debate, and the question on how any form of “late” alveolarization may take place remains open.

The large clinical relevance of late alveolarization inspired us to follow two directions. First, we applied a stereological method by estimating the length density of the alveolar entrance rings and developed a novel approach to follow the formation of new alveolar septa throughout lung development and growth. Second, we were wondering how the requirement...
of a double-layered capillary network inside the existing alveolar septa may be overcome. For this purpose, we studied 3D tomographic data sets of vascular casts of rat lungs obtained at the TOMCAT beamline of the SLS. Figure 2 shows the lumen of the capillaries. Inside the cavity of an alveolus, the up-folding of the single-layered capillary network is observed (blue dashed lines in A, C, and E). The folding is indicative of the formation of a new septum. The 3-D visualization enabled us, for the first time, to look at the reverse side of the same septum (B, D, and F). At the basis of the folding, we detected a local duplication of the existing capillary network (covering of the blue dashed line in B, D, and F). Whereas most duplications are already formed in these examples (arrowhead), one is most likely just forming by sprouting angiogenesis (arrow in B). In addition, (forming) tissue posts inside the capillary network (holes in the vascular cast, green asterisk) are indicative for intussusceptive angiogenesis (the growth of the capillary network to allow the up-folding).

We were able to show that the requirement of a double-layered capillary network at the site of septation is still valid; however, the two layers do not have to be preexisting as currently postulated, but they may be formed rapidly and locally by angiogenesis when needed. Because microvascular maturation takes place during alveolarization, we defined the entire time when new septa/alveoli are formed during lung development and growth as “developmental alveolarization”. This term distinguishes the developmental processes from any kind of lung regeneration, which we called “regenerative alveolarization”.

Synchrotron-radiation tomographic microscopy was essential for the structural understanding on how new alveoli are formed throughout lung development and growth. We could show that new alveoli are formed not only before, but also after, the maturation of the alveolar microvasculature. During the latter, the requirement of a double-layered capillary network at the site where a new septum will be formed is overcome by a local duplication found at the sides of septation. Most likely, many of these duplications were not preexisting. We defined the classically described alveolarization “phase one of developmental alveolarization” and the newly described form “phase two”. Until now, the understanding of phase two is based on structural evidence only. However, due to its clinical significance, we believe that these structural findings will be the starting point for investigations of the molecular mechanisms involved. The description of phase two will most likely force us to rethink our views of (i) lung regeneration and of (ii) side effects on the structure of the lungs during the treatment of children and adolescents with glucocorticoids and retinoids.

References
MYTHEN: The fastest high-resolution solid-state X-ray detector for powder diffraction

Anna Bergamaschi, Antonio Cervellino, Fabia Gozzo, Michael Lange, Dominik Meister, Bernd Schmitt,
Swiss Light Source (SLS), PSI

MYTHEN is a 1-D detector designed for powder diffraction that is capable of acquiring 120° (in 2θ) diffraction patterns with sub-sec time resolution. It is, therefore, optimal for time-resolved and dose-critical measurements. Thanks to its outstanding performance and the calibration procedure developed at SLS, data quality is now comparable with that of traditional high-resolution detectors, with the further advantage of very fast data acquisition or, equivalently, very high counting statistics, with acquisition times of the order of tens of seconds. MYTHEN is therefore also ideal for the analysis of pair distribution functions (PDFs).

Synchrotron radiation X-Ray powder diffraction (SR-XRPD) experiments require detection systems with low noise, high dynamic range and high angular (FWHM) and d-spacing resolution. These requirements can only be fulfilled by single-photon counting systems with high granularity [1]. The MYTHEN detector (Microstrip sYstem for Time reSolved expeRimeNts) has been designed to fulfill all these demands and, furthermore, to perform time-resolved measurements. High-resolution powder diffraction patterns acquiring 120° in 2θ can be collected in a fraction of a second.

Detector description

The MYTHEN detector consists of more than 30,000 independent channels (µstrips) working in parallel and positioned at 760 mm from the centre of the diffractometer, with a pitch of 50 µm. This results in an intrinsic detector angular resolution of 0.004° [2]. The detector is based on a silicon micro-strip sensor absorbing the diffracted X-rays and coupled to a custom-made integrated circuit [3].

Thanks to its single-photon counting capability, the detector is virtually noiseless and has a dynamic range of up to 24 bits. The fluctuation in the number of detected photons is purely Poisson-like, and thus the data quality is maximized, with low statistics. The low noise of the front-end electronics allows the detection of photons of energy down to 5 keV, while the short shaping time of the analogue signal permits counting rates of up to 1 MHz/channel. The channels are read out in parallel, with an inter-frame dead time of 0.3 ms. The maximum frame rate of the whole detector is limited by the data transfer rate and is about 10 Hz for the whole detector (increasing to 300 Hz for a 5° partial readout and 16 bits dynamic range). Acquisition times down to 100 ns are possible and can be synchronized to users’ experiments using external signals. A small on-board memory can store 4 to 32 frames in real time, depending on the dynamic range. Data acquisition with MYTHEN is possible through a user-friendly graphical interface and is completely integrated in the beamline control system.

An upgraded version of MYTHEN was installed at the SLS powder diffraction station in July 2007 and has been available for users since the beginning of 2008, providing excellent data quality.

Applications

Some examples of experiments showing the outstanding performance of the MYTHEN detector are:

1) Bragg crystallography

MYTHEN has worked remarkably well, not only for time-resolved applications but also for structural solution and refinement. Here, time resolution is usually not relevant and, therefore, the intensity of the incoming photon beam is generally sacrificed to achieve an optically aberration-free beam. This results in optimal Gaussian/Voigtian instrumental line-shape functions and, therefore, the diffraction patterns are easily processed by any refining program. Thanks to the exceptional efficiency and fast acquisition of the MYTHEN detector, it is also possible to acquire full diffraction patterns of organic compounds within a few seconds, without any radiation damage, and to solve and refine their crystal structure [5].
PDF studies

The PDF [6] and Debye [7] methods are total scattering techniques, in which the whole powder pattern is taken into account. This is especially useful when Bragg peaks alone do not contain the desired information, either because samples are disordered or have small particle size, or because the research focuses on disorder of some kind which exists apart from a trivial average crystal order. Of course, all contributions to the total pattern that do not stem from the sample need to be either measured separately or sufficiently well modelled. Multiple exposures and long counting times are normally necessary in order to acquire sufficient statistics at high scattering angles and at relatively high X-ray energies, where the photon flux is small.

The need for comparing and subtracting multiple patterns puts further demands on detector stability and linearity. MYTHEN also stands out in this field, thanks to its large dynamic range, that allows both high-intensity and low-intensity regions to be accessed, and to its high counting efficiency, that allows the acquisition of all relevant data sets within a short time. A PDF experiment can now be performed in times comparable to a classical diffraction experiment using a point detector.

Time-resolved experiments

Pioneering in situ microwave heating experiments have been performed by a group from EMPA Thun [9] at the SLS-MS beamline since 2006.

The fast frame rate of the MYTHEN detector enables experiments to be carried out in which the structural and microstructural evolution of solids under microwave application can be accurately followed in near-to-real time, while monitoring the microwave heating processes [8] and eventually fine-tuning the microwave application for processing for a broad variety of materials.

An excellent example of this is the efficient microwave-assisted carbothermal reduction of magnetite Fe₃O₄ to iron, a process of high interest for the steel industry. A transient iron oxide phase was found which intermediates the transition from magnetite, Fe₃O₄, to wüstite, FeO (see Figure 1). The kinetics of this phase transformation provides a deeper understanding of volumetric heating by microwaves [10].

Conclusions

The MYTHEN detector shows outstanding performance, not only for time-resolved experiments but also for structural determination and refinement, and for PDF measurements. The quality of the data acquired with the micro-strip detector is comparable with that obtained by using a crystal analyzer detector, with the further advantage of measurement times that are 5000 – 15000 times faster, depending on the X-ray energy and d-spacing resolution required. Time-resolved studies impossible with any other powder diffraction detector can be performed, opening up new perspectives for in situ measurements.

References

First results on iron-based superconductors

Hubertus Luetkens, Rustem Khasanov, Alex Amato, Laboratory for Muon-Spin Spectroscopy, PSI

In 2008, the Laboratory for Muon-Spin Spectroscopy (LMU) was at the forefront of research on the recently discovered iron-based high-temperature superconductors. In view of the vicinity of the magnetic and superconducting states and of their possible interplay in these compounds, muon spin rotation (μSR) has been widely recognized as one of the key techniques to test for possible microscopic coexistence between different ground states. In addition, μSR has been used to provide fundamental results about the nature of the magnetic and superconducting states.

The observation of high-temperature superconductivity in layered iron pnictides \([1]\) early in 2008 triggered the second gold rush among solid state scientists, after the discovery of high-\(T_c\) cuprates. As in the well-studied cuprates, superconductivity in these new compounds takes place mainly in crystal layers (in this case FeAs), with the rest of the structure acting as a charge reservoir. Moreover, a remarkable parallel with the cuprates can be drawn from the observation that superconductivity appears when doping away from an antiferromagnetically ordered mother compound, suggesting the importance of magnetic fluctuations in the mechanism of Cooper pair formation. At the same time, in contrast to the cuprates, the magnetic parent compound is not a Mott-Hubbard insulator but a metal. Therefore, it is believed that, after 20 years of research on high-\(T_c\) superconductors, the Fe-pnictides may finally provide insight into the superconducting coupling mechanism. From the beginning, muon-spin spectroscopy (μSR) research at PSI has been playing a key role in the investigation of Fe-pnictides, on the one hand by providing fundamental results about the nature of the magnetic and the superconducting states, and on the other hand by investigating the interplay between these two ground states (see e.g. \([2–6]\)).

Diverse studies were conducted on various families of the Fe-pnictides by different research groups at the PSI μSR facilities in 2008. As examples, we present some results on the magnetic and superconducting properties of the first discovered \(\text{LaO}_{1-x}\text{F}_x\text{FeAs}\) system.

Magnetic properties

Muon-spin relaxation measurements and \(^{57}\text{Fe}\) Mössbauer spectroscopy were used to determine the magnetic properties of \(\text{LaOF}_{\text{As}}\), a mother compound of the newly discovered iron-based superconductors \([3]\).

These studies prove a static magnetic order below \(T_N = 138\) K with a clearly commensurate spin structure and a strongly reduced ordered moment at the Fe site in the ordered phase. The data provide a high-precision measurement of the temperature dependence of the sublattice magnetization. As shown in the inset of Figure 1, the muon thermalizes at an interstitial lattice site in the vicinity of the iron moments, which generate a dipole field at the muon site. Therefore, the μSR technique allows the Fe sublattice magnetization to be determined via the muon spin precession in the local field. In combination with Mössbauer spectroscopy measurement, the absolute value of the Fe moments can also be estimated, even without knowledge of the actual spin structure. In Figure 1, the estimated Fe magnetic moment, as measured via the μSR precession frequency, is shown as a function of temperature.

![Figure 1: Iron magnetic moment measured via the μSR precession frequency as a function of temperature \([3]\).](image-url)
The quick saturation below T_n markedly differs from conventional mean field behaviour. Theoretical calculations can reproduce the size of the order parameter as well as its approximate temperature dependence only by invoking a multi-band spin density wave model [3].

Superconducting properties

Muon-spin rotation experiments in applied magnetic fields have been carried out on a series of differently doped LaO$_{1-x}$F$_x$FeAs samples. In such experiments on polycrystalline type-II superconductors, bulk superconductivity is revealed by an additional Gaussian relaxation of the muon precession signal below T_C. This additional relaxation arises from the inhomogeneous internal field distribution in the vortex phase of type-II superconductors, see inset of Figure 2. In an anisotropic superconductor, the observed relaxation rate can be converted into λ_{ab}, the in-plane magnetic penetration depth. The expression $1/\lambda_{ab}^2$ is proportional to the superfluid density η_s divided by the effective mass m^* of the charge carriers. The temperature dependence of $1/\lambda_{ab}^2$ for an LaO$_{0.8}$F$_{0.2}$FeAs sample is depicted in Figure 2. A nearly temperature-independent behaviour below $T_c/3$ is found, which is indicative for a low density of states in the superconducting gap and excludes superconducting symmetries with nodes in the gap function.

Phase diagram of LaO$_{1-x}$F$_x$FeAs

The competition of magnetic order and superconductivity is a key element in the electronic phase diagram of all unconventional superconductors, such as, for example, the high-T_c cuprates, heavy fermions and organic superconductors. In these systems, superconductivity is often found close to a quantum critical point where long-range antiferromagnetic order is gradually suppressed as a function of a control parameter, e.g. charge carrier doping or pressure. It is widely believed that dynamic spin fluctuations associated with this quantum critical behaviour are crucial for the mechanism of superconductivity. In Figure 3, the structural and electronic phase diagram of LaO$_{1-x}$F$_x$FeAs that has been determined by μSR, Mössbauer spectroscopy and X-ray diffraction is shown. The μSR experiments yield information on both the doping dependence of the transition temperatures and the respective order parameters. A discontinuous first-order-like change from the spin density wave magnetic state to superconductivity upon doping is found. While these results strongly question the relevance of quantum critical behaviour in iron pnictides, they prove the strong coupling of the structural orthorhombic distortion and the magnetic order with both disappearing exactly at the phase boundary to the superconducting state.

References

Superconductors conduct electric current without resistive loss, and thus hold great promise for technological applications. Superconducting materials serve already now in a number of industrial and device applications, but many of them are only marginally understood at best. At the heart of superconductivity are electron pairs, the so-called Cooper pairs, which are quantum-entangled electrons. Electric current in superconductors is transported by Cooper pairs, and not by single electrons as in metallic materials.

Probably the most intriguing question in the field of superconductivity concerns the coupling of electrons into Cooper pairs. While this is understood in phonon-mediated superconductors, it is still a mystery in various classes of materials, such as organic, heavy-fermion and doped Mott-insulator superconductors.

The existence of Cooper pairs depends on the preservation of electron entanglement of their wave-functions. External magnetic fields or the ordering of the electrons in charge or spin structures generally perturbs the entanglement. In fact, in order to qualify as a superconductor, a material has to be a perfect diamagnet, which means that all magnetic fields are completely shielded from the inside of the material at sufficiently low field strength.

A similar antagonism also exists between magnetic and superconducting order, which often compete and rarely co-exist. The reason for this is that an ordered spin loses its quantum character and becomes more classical. The loss of the electron’s spin quantum nature inhibits superconductivity.

There are a number of examples where magnetic order and superconductivity do co-exist. In these cases, magnetic order and superconductivity arise from different species of electrons, thus preserving the quantum nature of the electrons that contribute to superconductivity. In such materials, magnetic order and superconductivity thus merely tolerate each other.

Magnetic order and superconductivity have been found to coexist in a number of magnetically mediated superconductors, but these phenomena generally compete. We report that, close to the upper critical field, CeCoIn$_5$ adopts a multicomponent ground state that simultaneously carries cooperating magnetic and superconducting orders. Suppressing superconductivity leads to the simultaneous collapse of the magnetic order, showing that the material needs to be superconducting in order to adopt magnetic order. A symmetry analysis suggests a form of superconductivity that is associated with a non-vanishing momentum.

Conspiring magnetic and superconducting order

Michel Kenzelmann, Markus Zolliker, Laboratory for Developments and Methods, PSI; Thierry Strässle, Christof Niedermayer, Balasubramanian Padmanabhan, Laboratory for Neutron Scattering, ETH Zurich and PSI; Manfred Sigrist, Institut für Theoretische Physik, ETH Zurich; Andrea D. Bianchi, Département de Physique, Université de Montréal, Canada; Roman Movshovich, Eric D. Bauer, John L. Sarrao, Joe D. Thompson, Los Alamos National Laboratory, Los Alamos, USA
We have studied the heavy-fermion superconductor CeCoIn$_5$ using neutron diffraction at very low temperatures and high magnetic fields. CeCoIn$_5$ features d-wave superconductivity which is believed to be magnetically induced [1]. The material features strong electronic hybridization between localized f-electrons and itinerant d-electrons, which leads to charge carriers of composite nature and high mass [2]. CeCoIn$_5$ is believed to be close to a critical point at zero temperature that separates phases of different symmetry. This type of criticality is often also referred to as a quantum critical transition.

The field–temperature (H-T) phase diagram of the superconducting phase features two phases that are separated by a second-order phase transition (see Figure 1), indicating they are of different symmetry. It has long been suggested that this additional phase, which we call Q-phase and which can only be reached with high fields, features superconducting order arising from Cooper pairs that carry a finite momentum [3]. The key result of our experiment is that the Q-phase features a long-range ordered spin-density wave which is modulated in an incommensurate manner perpendicular to the magnetic field direction [4]. The magnetic moments point perpendicular to the magnetic field and modulation vector. Most importantly, the spin-density wave is stabilized only in the superconducting phase, and it collapses abruptly when the material becomes metallic above $H \sim 11$ T (see Figure 2). This is the first example of superconductivity induced magnetic order that has been observed in nature.

The origin of magnetic order in the Q-phase came as a surprise, and it is currently not understood. Small-angle neutron scattering revealed an anomalous flux line form factor [5], which indicates fluctuating magnetism in the flux line cores. Our results suggest that this fluctuating magnetism becomes static at low temperatures. However, the magnetic fluctuations in the superconducting and metallic phases must be fundamentally different, as no magnetic order is observed in the normal phase.

Cooper pairs carrying momentum

The direct coupling of magnetic and superconducting order in CeCoIn$_5$ allows conclusions to be drawn about the symmetry of the superconducting order. A symmetry analysis shows [4] that possible magneto-superconducting terms include terms where magnetic order couples directly to superconducting order that is associated with momentum. This is indirect evidence that the Cooper pairs could indeed carry a finite momentum, as has been suggested. Our experiment illustrates a novel way of how magnetism and superconductivity can conspire rather than compete, and, as a result, form a novel state of solid matter.

References

Dynamic nuclear polarization, from polarized targets to metabolic imaging

The methods of dynamically polarizing nuclei (DNP) have led to the development of increasingly sophisticated polarized targets used in investigations of the role spin plays in nuclear and particle interactions. Only very recently, DNP has been recognized in the Nuclear Magnetic Resonance (NMR) community as the most promising technique for enhancing the nuclear spin polarization of organic molecules. The tremendous sensitivity enhancement of up to 10,000 potentially obtainable opens a wealth of new applications, with metabolic imaging being a prominent example. The techniques developed in polarized target research need now to be adapted to the new applications.

Dynamic Nuclear Polarization methods were developed during the past decades for applications in nuclear and particle physics research. Continued improvements in DNP, however, are being pursued not only for the development of increasingly sophisticated polarized targets used to investigate the role of spin in nuclear and particle interactions, but also in order to open up new fields in neutron science exploiting the strong spin dependence of neutron scattering [1] or develop transmission polarizers for neutron beams [2].

Recently, a unique enthusiasm for the DNP technique has developed in the magnetic resonance (MR) community, most prominently in the biomedical field. Researchers at Amersham (now part of GE Healthcare) have demonstrated that it is possible to transform a dynamically polarized organic sample from its initial frozen state (such as used in polarized targets) into a liquid solution at room temperature, while retaining a large part of the nuclear polarization by rapidly dissolving it in superheated water [3]. The nuclear relaxation times in such polarized liquid solutions are long enough to open the possibility of injecting them into biological subjects, in order to investigate in vivo metabolic processes in a nearby MR installation (see Figure 1) [4].

Figure 1: Dissolution DNP machine (left) connected to the 9.4 T rodent scanner (right) installed at the CIBM Lausanne. The sample is polarized in the solid state at around 1 K at 3.35 T and subsequently rapidly dissolved and blown via a thin tube to an injection pump delivering the polarized room temperature solution to the animal in the imager [7].
A consortium of Swiss researchers, now well-known as the Swiss DNP Initiative (sdnpi.epfl.ch), was formed very soon after this “dissolution DNP” method had become known. It combines the unique know-how of the polarized-target group at PSI with the advanced spectroscopic and imaging methods available at two leading MR institutes sited at EPFL: the Center for Biomedical Imaging (CIBM) and the Laboratory for Biological MR (LRMB) [5]. The DNP techniques developed for building polarized targets had to be adapted to the requirements of magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI). A versatile continuous-flow cryostat system was designed that fits into a standard wide-bore NMR magnet and constitutes the basis of a DNP prepolarizer system which can be coupled to a rodent MRI scanner [6] or an NMR spectrometer.

A main challenge was finding biologically compatible solutions with low concentration of an efficient paramagnetic centre well suited for DNP in which the labelled metabolic precursors could be easily dissolved. The polarization mechanism is based on the transfer of polarization from the electron spins of the paramagnetic centres to the nuclei of the solvent and dissolved molecules, by continuous irradiation with microwaves close to the ESR frequency of the paramagnetic centres. The efficiency of DNP relies on the fact that, at a temperature of about 1 K, the electron spin polarization is close to 100%, even in a moderate magnetic field (3.35 T in a standard polarizer).

Extensive DNP studies have been performed on substances which may well be regarded as model systems for “hyperpolarization” applications [7]. In these studies, compounds of biological interest containing 13C (Na acetate, Na pyruvate, Na bicarbonate, urea, glycine, glucose), 15N (urea, choline chloride) or 4Li (Li chloride) nuclei were dissolved at a typical concentration of a few moles per litre in water-ethanol and water-glycerol doped with TEMPO free radicals. Instead of a proprietary triarylmethyl (TAM) radical, the readily available TEMPO free radical had been chosen as paramagnetic centre, because it has very low toxicity, it dissolves well in water-alcohol mixtures and its DNP characteristics have been studied in various polarized target applications. A 13C polarization of up to 12% was achieved at 1.2 K in a magnetic field of 3.5 T under irradiation with 97 GHz microwaves. This corresponds to an enhancement of 14,000 with respect to the thermal equilibrium polarization in a 9.4 T magnet at room temperature. It is even possible to gain another 50% in polarization by increasing the field from 3.5 T to 5 T [8]. Most importantly, it was found that the DNP properties of the solute compounds are mainly determined by the solvent matrix, which suggests that this approach can generally be used to polarize molecules of metabolic interest.

A hardware characteristic is that the DNP and the MRS and MRI applications are performed in separate magnets, at different fields. The crucial step is an efficient dissolution of the solid-state sample (typically by a factor 10 to 80) to obtain the “hyperpolarized” solution and a rapid transfer from the polarizer to the MR equipment (usually by blowing it through a thin plastic tube), because an intrinsic limitation of the technique is the finite lifetime of the hyperpolarized state. The signal is very intense, but only available for a limited length of time (see Figure 2).

Fast dissolution experiments have shown that 70% to 80% of the initial solid-state polarization level can be retained for all nuclei studied (13C, 4Li, 15N), while the liquid state NMR amplification factor reached (up to 10,000) mainly depends on the relaxation time T1 of the specific nuclei after dissolution. Optimum samples are now routinely used in metabolic/MRI experiments at CIBM Lausanne employing the developed DNP and dissolution apparatus (see Figure 1).

![Figure 2: 13C NMR signal enhancement of labelled glycine compared to its thermal equilibrium value in a 9.4 T field. After the dissolution, the polarization starts to decay rapidly. The inset illustrates the tremendous gain in NMR signal obtained [6].](image-url)

References

Many of the phenomena in solid-state physics that still lack a profound conceptual understanding comprise mechanisms with a coupling between two order parameters. Unconventional superconductivity as well as spin- and charge-order coupled to conduction electrons in intermetallic materials are some of the most prominent examples.

Another class of materials with similar high technological potential are multiferroics. These exhibit simultaneous magnetic and ferroelectric orders that are directly coupled. Several classes of applications have been suggested, including next-generation electronic devices in which the magnetic properties may be controlled by an electric field, magnetically-controlled ferroelectric memory devices for instant boot-up computers, or magnetically-tuned dielectric capacitor devices [1].

Simultaneous magnetic and ferroelectric order – a rare phenomenon

Until a few years ago, only a small group of materials exhibiting coupled magnetization and electrical polarization had been identified since – quite generally – the ordering of the magnetic moments and cooperative atomic displacements responsible for ferroelectricity occur at distinctly different temperatures. Recently, however, an increasing number of multiferroics have been discovered that are magnetically frustrated magnets, suggesting that competing magnetic interactions play a crucial role in these materials.

It is thought that magnetic frustration naturally leaves the system with some degree of freedom at low temperatures and hence does not allow its entropy to reduce upon cooling. According to the third law of thermodynamics, however, entropy has to be zero at zero temperature, requiring a massive entropy reduction at low temperature. In multiferroics, this is achieved through the coupling to an additional order parameter – ferroelectricity – that, in the process, reduces the magnetic entropy. Ferroelectricity is thus magnetically driven.

Pressure – a powerful stimulus

Experimental studies probing the effects of perturbations on such complex interacting systems have often been proved to be indispensable for validating proposed theoretical models. Application of pressure is particularly powerful since, on the one hand, pressure alters atomic distances and hence directly changes the magnetic interactions between the atoms, making it thus possible to change the degree of magnetic frustration in a material. On the other hand, theory may predict pressure effects relatively simply.
Suppressing frustration with pressure

One of the simplest spin-spiral multiferroic materials, namely Ni$_3$V$_2$O$_8$, has been studied, in which magnetic frustration results from the specific geometric arrangement of spins on a so-called Kagome lattice, in which the interactions between neighbouring spins compete with those between next-neighbouring spins. As a result, the compound displays a complex magnetic phase diagram, with at least three different magnetic phases. Ferroelectricity emerges in one of these phases and is magnetically driven [2, 3].

Our neutron diffraction measurements on Ni$_3$V$_2$O$_8$ show that pressure removes magnetic frustration and thus suppresses ferroelectricity. The ferroelectric phase (denoted LTI in Figure 1 (top)) gradually becomes suppressed by a phase with a simple commensurate magnetic structure that is typical for unfrustrated magnets and eventually disappears at pressures above 1.5 GPa. At even higher pressures (beyond 3.5 GPa) a remnant incommensurate phase at higher temperature (denoted HTI in Figure 1 (top)) is also fully suppressed, thus removing the last signs of magnetic frustration from our data. The transition between the two incommensurate magnetic phases (denoted LTI and HTI in Figure 1) changes in nature from being continuous at ambient pressure to being discontinuous at pressures above 0.5 GPa. This feature is evidenced by the discontinuous jump of the magnetic wave-vector shown in the Figure. A small temperature range exhibiting phase-coexistence between the two phases further hints at the first-order (discontinuous) nature of this magnetic phase transition. This clearly shows that magnetically-induced ferroelectricity can occur in a first-order transition, and might thus be switched in principle with relatively small temperature changes.

References
Muon lifetime measurement with FAST

Konrad Deiters, Large Research Facilities, PSI; Claude Petitjean, Department for Particles and Matter, PSI; Artur Barczyc, Luca Malgeri, Jasper Kirkby, CERN; Chiara Casella, ETH Zurich; Javier Berdugo, Jorge Casaus, Carlos Mana, Javier Marin, Gustavo Matinez, Carlos Wilmott, CIEMAD Madrid, Spain; Samuel De Laere, Martin Pohl, University of Geneva

The Fibre Active Scintillator Target (FAST) detector at PSI is designed to measure the lifetime of a positive muon to better than 2 ppm statistical precision. After including theoretical and experimental systematic uncertainties, this will determine the Fermi constant, G_F, to 1 ppm precision. G_F is one of the three free parameters of the Standard Model in the bosonic sector, and the uncertainty in its determination is currently dominated by the muon lifetime [1].

The measurement of the lifetime of a positive muon is a difficult challenge, involving the dual requirements of increasing the event sample by a factor of 100 relative to earlier measurements, while, at the same time, reducing the systematic errors by an order of magnitude. The concept of the FAST experiment is to suppress the systematic effects at the detector level, as far as possible. In this way, only small systematic corrections to the raw measurement are required to reach the final value of the μ^+ lifetime.

Set-up

The FAST detector is an imaging plastic scintillator target comprising 32×48 pixels (Figure 1, [2]). Each pixel corresponds to a plastic scintillator of dimension $4 \times 4 \times 200$ mm3. A π^+ beam from the PSI proton accelerator facility (nM1 beamline) is stopped in the target. A wedge-shaped degrader distributes the stopping positions through the target depth. The system identifies the $\pi^+ \rightarrow \mu^+ \nu$ decay chains and registers the time and space coordinates of each particle. Time-to-Digital converters (TDCs) record a time window from 10μs preceding the beam particle arrival time to 20μs afterwards. The wide positive decay region allows the muon decay time to be observed over a period of about 9 muon lifetimes. The negative decay time region is used to calibrate accidental backgrounds. In order to reach the desired precision in the measurement, a data sample of about 5×10^{11} events is required.

This is achieved in FAST by running at an LV2 (i.e. tagged $\pi^+ \rightarrow \mu^+$) trigger rate of about 80 kHz and handling several muon events, with overlapping time windows, in parallel. At this rate, the required statistics can be reached in about 200 days of data taking. Achieving this performance requires a dedicated second-level (LV2) trigger and a highly segmented data acquisition (DAQ) system (Figure 2).

The first part of the DAQ system comprises 8 chains, each consisting of a fast PC attached to a VME crate containing 2 CAEN V767 TDCs and a VME-to-PCI interface. The LV2 trigger

Figure 1: Schematic drawing of the FAST detector: a) top view, and b) side view. A representative event shows a π^+ beam particle stopping in the target followed by a $\pi^+ \rightarrow \mu^+ \nu$ decay and finally a $\mu^+ \rightarrow e^+ \nu \nu$ decay. This sequence is imaged by the target in the xy projection and the pixel times are recorded.
recognizes a π⁺→μ⁺ decay chain and selectively triggers only those TDCs in the 7×7 pixels surrounding the muon stop pixel. This reduces the data bandwidth by a factor of 2.5. The LV2 trigger also encodes the muon stop pixel and records the information in the TDCs. The huge throughput of data (about 80 MB/s) requires that events are analysed in real time; only lifetime histograms are recorded on disk, together with monitoring information and around 1% of raw events for later analysis of systematic effects. The on-line analysis farm comprises 4 fast PCs, which are supplied with time-slices of data in round-robin fashion. The time-slices are assembled from the 8 DAQ/VME chains with a collector PC, and routed via a Gigabit ethernet switch.

Operation and results

A pilot physics run of FAST in December 2006 allowed a measurement of GF with 8 ppm precision (Figure 3, [3]). The average LV2 trigger rate was 30 kHz, and a total of 1.1×10^{10} events were recorded. In spring 2008, the FAST detector was prepared for a long data-taking run at an LV2 trigger rate of about 70kHz. By the end of the 2008 run, FAST had taken data for 140 days and recorded a sample of 3×10^{11} events. During this period, the detector was operated in a fully automated mode. All hardware functions were under the supervision of a slow-control program. The read-out and analysis processes were controlled by watch-dog programs. A web-based online monitoring program controlled the data quality. This allowed remote operation of the experiment by a small experimental group. The overall operation efficiency was of the order of 80%, including unexpected beam down-time and detector stops. For a typical day, without any hardware failure, FAST was active for 96% of beam time. In conclusion, FAST had a very successful data taking period in 2008. The muon lifetime measurement from the 2008 data sample has a statistical precision of about 3 ppm, which allows a determination of GF to 1.5 ppm. During 2009, FAST will record an additional data sample of about 3×10^{11} events, taken under different conditions, in order to calibrate the systematic errors and accumulate the remaining statistics for a 1 ppm measurement of GF.

References

[1] A precision measurement of the μ⁺ lifetime with the FAST detector, R-99–06, PSI.
The first experiment to search for the neutron electric dipole moment (nEDM) was performed more than 50 years ago [1]. A non-zero nEDM would violate both parity (P) and time reversal (T) symmetry. Assuming the conservation of CPT, T symmetry is equivalent to CP symmetry. P, T and CP symmetries are violated in weak interactions [2], and all related particle physics observations are so far successfully described within the Standard Model (SM) of particle physics via a phase in the Cabibbo-Kobayashi-Maskawa quark mixing matrix [3]. CP violation is also needed to explain the matter-antimatter asymmetry of the universe [4]. However, the CP violation of the SM is not sufficient. While the electro-weak SM predicts only unobservably small particle EDM values, extensions of the SM often provide extra CP violation and generate sizeable EDM values.

Up to now, no permanent particle EDM has been found. Figure 1 displays the history of experimental results setting upper limits on the neutron EDM, presently less than $2.9 \times 10^{-26} \text{e cm}$ (90% confidence level) [5]. This constrains many theories beyond the SM, e.g. Supersymmetry [6]. Today, several collaborations around the world are trying to measure the nEDM with 1–2 orders of magnitude improved sensitivity. This might allow CP violation to be discovered beyond the SM.

Experimental approach

This nEDM collaboration (http://nedm.web.psi.ch) follows a three-phase programme: During Phase I, the existing experimental apparatus [5] was operated at the Institute Laue-Langevin in Grenoble. This phase ended with the transfer of the apparatus to PSI in March 2009. Phase II foresees the operation of the upgraded apparatus at the new Ultracold Neutron Facility at PSI. The setup should be ready by the end of 2009 and the collaboration plans on a 2-year operation during 2010 and 2011. The sensitivity of the setup will be about a factor of 5 better than that of [5]. At the same time, a new experiment is being designed and constructed to come online in Phase III, starting in 2012. Its goal is to improve the sensitivity by another order of magnitude, to $5 \times 10^{-28} \text{e cm}$ or better.
Phase I – Operation at ILL

Phase I at ILL in 2005–2008 delivered various important results, including the first direct limit on neutron–mirror-neutron oscillations [7], a search for exotic spin-dependent interactions, and systematic studies of the influence of magnetic field gradients on the measurement of the neutron to Hg atom precession frequencies.

The most important experimental issue was a severe deterioration of the transverse polarization decay time T_2 of the ultra cold neutrons (UCN) after 2003. Although much work was done to resolve this issue, major progress was achieved only after finding and removing some magnetic components towards the end of 2008. The T_2 times came back up to about 400 s and further progress can be expected. Hunting magnetic impurities is a continuing effort and part of the necessary quality control. The R&D work in Phase I included the adaption and development of highly sensitive laser pumped Cs magnetometers [8], the development of a new insulator ring using DPS (deuterated polystyrene) coated PS [9], the development of high-rate UCN detectors [10], as well as studies on high voltage, leakage current measurements, field mapping, and data acquisition.

Phase II – Running at PSI

Figure 2 shows the experiment [5] located in a thermally stabilized room on the UCN beam in area South of the UCN facility at PSI. The setup will be fully operational and ready for UCN by the end of 2009. The beamline is 3.3 m above the floor, leaving space for the counting house below. A superconducting polarizer magnet is used to polarize the UCN beam upstream of the EDM apparatus. A horizontal beamline will allow test measurements to be made downstream of the EDM ‘house’. A UCN switch below the EDM apparatus will allow the experiment to be filled, monitoring the incoming flux and emptying the UCN into the detection system. Detailed Monte Carlo simulations have confirmed the expectations of an increase in UCN density inside the experiment of 30–50 times that obtained previously at the ILL PF2 beam.

Phase III – A new device

The design of the new experiment started with the evaluation of various conceptual ideas over the past 3 years. It converged on a double UCN chamber inside a 5-layer mu-metal shield using co-magnetometry as well as external 3He and Cs magnetometers. The year 2009 will see more detailed design as well as progress with ordering the magnetic shield. R&D will concentrate on issues with the magnetic shield, such as demagnetization, magnetometry (R&D on 129Xe, 199Hg, readout of 3He via Cs or SQUID magnetometers), the development of non-magnetic equipment, neutron detection, and new neutron-compatible surface coatings.

Acknowledgements

We are grateful to our technicians and engineers and acknowledge the continued support and hospitality received at ILL during Phase I. We thank our colleagues of the Sussex-RAL-ILL collaboration [5] for the loan of equipment and for their constructive comments.

References

[1] E. M. Purcell, N. F. Ramsey, Phys. Rev. 78 807 (1950);
 [Sov. Phys. JETP Lett. 5 24 (1967)].
 N. Castagna et al., arXiv:0812.4425.
The most common method used for ice core dating is annual layer counting, which relies on seasonally varying signals and is supported by the identification of reference horizons such as volcanic layers. For ice cores from high-altitude glaciers, strong ice flow induced layer thinning limits counting of annual layers in the best case to a couple of centuries, and is not suitable for the oldest and deepest part, where individual years can no longer be distinguished. Glacier flow is dominated by the small-scale geometry of bedrock, resulting in a strongly non-linear depth-age relationship over time, which cannot be resolved using physical ice flow models.

The lack of an appropriate dating tool for this lowermost section could be overcome in certain cases by wiggle matching of the stable isotope records, using the strong variation during the glacial-interglacial transition (ca. 14,000–9,000 yrs BP) observed in polar ice cores. However, it is evident that a record reaching at least that far back in time is required for this indirect dating method.

For longer timescales, radiocarbon analysis can provide an absolute date. Radiocarbon (14C) dating has been successfully applied to several ice cores, where enough carbon-containing material was incorporated. Suitable material included wood fragments or insects, although it is emphasized that macrofossils in ice cores appear rather seldom – a fact limiting the wider application of this technique.

To overcome this problem, we have recently developed a novel radiocarbon method, using carbonaceous aerosols contained in the ice for dating. Carbonaceous particles are a major component of naturally occurring aerosols that are emitted ubiquitously, or formed in the atmosphere, and that reach potential ice core sites. The particles are classified as organic carbon (OC, light polycyclic hydrocarbons) and elemental carbon (EC, highly polymerized hydrocarbons), which have different sources. OC is predominantly emitted from the terrestrial biosphere as primary aerosol, or formed in the atmosphere as secondary aerosol from gaseous precursors, whereas the main source of EC is pyrolysis during combustion. By determining the 14C/12C ratios of OC samples from a well-dated ice core from the Swiss Alps (Fiescherhorn, 3,900 m asl), it was shown that the OC incorporated in ice is almost of purely biogenic origin before around 1800 AD, making this fraction a valuable target for age determination. However, the very small amounts of OC incorporated in ice core samples (3–30 µg of carbon) make the usual treatment for radiocarbon dating impossible. This would typically require

Ice cores from high-alpine glaciers provide regional information about past climatic and environmental conditions. However, a precise chronology is a prime requirement for each natural archive, to allow a precise interpretation of the information recorded. Due to complex ice flow, there is a lack of appropriate dating tools for the deeper ice sections. To overcome this problem, a new dating method has been developed using radiocarbon in carbonaceous aerosol particles included in the ice. This required major technical improvements in AMS technologies allowing samples with sizes in the microgram range to be measured.
about 1 mg of material. However, a large step forward has recently been taken to overcome this limitation by exploiting the possibilities of directly analyzing gaseous CO₂ samples using accelerator mass spectrometry (AMS). The novel Mini Carbon Dating System (MICADAS) at PSI/ETH Zurich [5] is equipped with a gas ion source and is able to accept tiny amounts of CO₂ for ¹⁴C/¹²C analyses. A dedicated miniaturized gas-handling system (Figure 1) was constructed for continuous sample introduction into the ion source [6]. The system is designed to handle CO₂ amounts of only 6–60 µl (3–30 µg carbon). Particular emphasis has been taken to reduce possible contamination of the sample material with contemporary CO₂ from ambient air by minimizing the volume and thus the internal surface of the equipment. Using CO₂ directly has, in addition, the great advantage that the final reduction step to solid graphite in the sample preparation procedure can be omitted and the related contamination is avoided. Typically, the carbon contamination introduced in this step is of the order of only a few micrograms. This can be neglected for samples in the milligram range, but would influence the analysis of the OC fraction as it can be extracted from the ice cores.

To extract the OC fraction, the aerosols were filtered off the ice and combusted in a two-step heating system. CO₂ from the OC fraction was collected in a first, low-temperature step at 340°C and sealed in a silica glass tube. In a second step, the EC fraction was released at a high temperature of 650°C [7]. The glass tubes containing the CO₂ from the OC fraction were introduced into the ampoule cracker of the gas handling system and the CO₂ gas was released into the syringe and subsequently mixed with He to a ratio 1:20. This gas mixture was directly fed into the ion source at a typical flow rate of 1 µl CO₂/min. Inside the ion source, the gas mixture was flashed over a titanium catalyst exposed to a high-intensity caesium beam. Due to interaction with energetic caesium ions, negatively charged carbon ions were formed and extracted as an ion beam from the source, and its isotopic composition measured with the downstream accelerator mass spectrometer. From the resulting ¹⁴C/¹²C ratios, radiocarbon ages were calculated and related calendar ages derived from the tree ring calibration record intcal04.

This new ¹⁴C dating technique was applied to two ice cores, from Illimani (Andes, 6,300 m asl) and Colle Gnifetti (Alps, 4,450 m asl) (Figure 2). For both ice cores, the ages cover a time span from 1,000 to more than 10,000 years. A strongly non-linear age-depth relationship is prominent in the lowermost part of the cores, in agreement with the expected strong annual layer thinning gradients. Samples close to bedrock are of Late Pleistocene age. Additional, independent dating methods have corroborated these findings and confirmed the accuracy of the method.

References
We have fabricated 50 nm-period perpendicular magnetic nanoislands by depositing Co/Pd multilayer films onto arrays of SiO$_x$ pillars created with extreme ultraviolet interference lithography at the XIL beamline, Swiss Light Source. A direct comparison of the island diameters with the magnetic switching fields indicated that island-to-island anisotropy variations are likely to be responsible for the observed switching field distribution (SFD) of 11.5%. Recently we have been able to create magnetic islands with sub-30 nm periods corresponding to data storage densities close to 1 Tbit/in2.

We are all familiar with the use of computer hard drives for storage of information, from simple text documents and data files through to images and movies. Since the first IBM hard drives in the mid 50s, there has been a phenomenal increase in the data storage density in the magnetic thin-film media, which is now about 104 times higher than it was 20 years ago. This tremendous increase has been spurred on by new discoveries, such as the Nobel Prize winning giant magnetoresistive (GMR) effect implemented in the read elements of magnetic recording heads and improvements in the magnetic layers. However, the train of innovation in magnetic data storage faces derailment due to the thermal stability of the written information. This issue is set to change the course of magnetic data storage history.

Current devices record bits of information in continuous magnetic films in the form of magnetised areas which are presently made up of about 100 crystal grains. In order to increase the magnetic storage density, both the magnetic bit size and the grain diameter must be decreased, and at a certain volume limit the grains are no longer stable against thermal fluctuations. Information can therefore no longer be stored below this so-called superparamagnetic limit. One solution to this problem is to replace the continuous grainy magnetic media with a magnetic film patterned into nanoscale magnetic islands, where each island corresponds to a single bit of information [1]. Currently industry is searching for a viable method to fabricate arrays of islands, and extreme ultraviolet interference lithography (EUV-IL), which has been developed at the XIL beamline at the Swiss Light Source since 2003, provides a highly promising fabrication method, with its ability to create high-resolution periodic island structures over large areas and with a high throughput [2].

Towards the beginning of last year we published a method to create 50 nm-period magnetic islands on a square array [3], which are to our knowledge the smallest magnetic islands created by a photolithography rather than an electron-beam lithography method. We succeeded in doing this by first creating an array of SiO$_x$ pillars on a silicon substrate (see Figure 1a) and depositing a Co/Pd multilayer film with perpendicular
anisotropy on top (see Figure 1b). This resulted in single-domain perpendicular magnetic islands on top of the pillars, which were isolated from the material in the valleys due to the serendipitous negative profile of the SiO$_x$ pillars. These 50 nm-period magnetic nanoislands covered an area of 20 by 20 µm2.

In order to determine whether such islands are suitable for magnetic data storage, it is vital to determine the magnetic switching behaviour [4]. For this we wanted to make a direct correlation between the switching field and dot size, so we chose to look at an inhomogeneous area at the edge of an array (see Figure 2) which allowed us to measure for each and every island both its size with scanning electron microscopy and its switching field with magnetic force microscopy.

The mean switching field of the island array was 7200 Oe with a switching field distribution (SFD = σ/mean) of 11.5%, which compares well with values for islands fabricated by electron beam lithography. Looking at the switching field distribution as a function of island size, we were able to deduce that the key cause of the SFD is not a variable island size nor the inter-island magnetic stray field coupling, but rather is linked to a variation in the island-to-island anisotropy. This falls in line with the current thinking in the patterned media community. We are working hard to make the magnetic islands even smaller [5] and have had first success in creating sub-30 nm period arrays. This opens up the possibility of creating patterned media with EUV-IL at densities greater than 1 Tbit/in2, corresponding to a bit period of less than 25 nm, so answering the call from industry to beat the superparamagnetic limit at higher densities.

References
Dots and stripes: Nanofabrication enables new science

Jens Gobrecht, Harun H. Solak, Celestino Padeste, Kim Nygard, Christian David, Laboratory for Micro- and Nanotechnology, PSI; Frank Zoller, Laboratory for Micro- and Nanotechnology, PSI and Biozentrum, University of Basel

Micro- and nanofabrication technology enables the creation of well-defined structures and patterns in various forms and shapes, down to the size of a few nanometres. Interesting phenomena are expected and observed when small objects, such as colloidal particles and molecules, interact with such structures. In periodic structures it is often easier to observe collective phenomena, since tiny signals originating from well-localized nanoscale objects can sum up to yield a better signal-to-noise ratio.

Pushing the resolution limit of photon-based lithography

The extreme ultraviolet interference lithography (EUV-IL) set-up established a few years ago at the SLS produces periodic structures in the range from micrometers down to a few tens of nanometers [1], a size range not only interesting for future integrated electronic devices, but also for looking at interactions with immobilised biomolecules such as proteins, which are typically a few nanometers in size. Figure 1 shows a recent result with a 22 nm-period structure exposed in hydrogen silesquioxane (HSQ) resist. The lines are only about 11 nm wide, which is the highest resolution achieved with a photolithography technique to date. Unique to this technology is the narrow size distribution of the periodic surface features (lines or, for the case of multiple beam interference, dots) which can be of the order of 0.5 nm (1σ), i.e. the size of one resist molecule. Field sizes up to 2×2 mm² can be exposed in a few seconds. Controlled nanofabrication on a length scale approaching the size of single molecules allows exciting new science.

Periodic nanostructures at the size of biomolecules.

In addition to being of potential use in bio-analytics, arrays of immobilized single protein molecules are of interest as substrates for cell growth studies, since interactions of single molecules or molecule ensembles with living cells are not

Figure 1: 11 nm-wide lines in HSQ on a silicon surface exposed by EUV-IL. This is the best resolution ever achieved with photon-based lithography.

Figure 2: Process scheme for the fabrication of gold dot arrays (explanations in the main text).
necessarily the same. Here the crucial resolution is reached when the sites for biomolecule immobilization is so small that they can only host single molecules. The process schematically shown in Figure 2 has been developed to reduce the size of structures produced with EUV-IL towards these dimensions. (A) A layer of chromium is evaporated under a shallow angle and sample rotation onto an array of nanoscale holes produced with EUV-IL in a photoresist leading to minimization of the hole size. (B) A gold layer is evaporated through the holes. (C) Removal of the photoresist and annealing yielded arrays of 12–15 nm gold islands (Figure 3). After deposition of a protein-resistant layer, proteins are specifically bound to the gold islands. Such arrangements provide the basis for protein detection at the single-cell level using scanning-force microscopy techniques [2].

Particle ordering in nanochannels

Confinement-induced ordering of particles in nanofluidic devices depends on the ionic charges on the particle and container surfaces as well as in the surrounding solution. However, direct experimental observation is challenging, due to the restrictions imposed on the probe.

A recently developed technique relies on using a nanofabricated array of channels (Figure 4) for confinement, allowing the fluid density profile across the channel to be determined by means of X-ray diffraction [3]. The method was demonstrated on a charge-stabilized colloid, in which the colloidal particles were observed to move from the center of the channel (left panel of Figure 5) to the channel walls (right panel of Figure 5) upon adding a small amount of salt. The observation of the effective channel width depending on the ion concentration should prove useful for future nanofluidic devices. The present fabrication technique, based on electron-beam lithography, allows structural studies on confined fluids with particle diameters of about 30 nm or larger. However, the application of EUV-IL should make studies on smaller particles, such as macromolecules, feasible.

References

Molecular insight into amyloid fibril formation from a de novo design

Michel O. Steinmetz, Biomolecular Research and Clemens Schulze-Briese, SLS, PSI, in collaboration with Zrinka Gattin, Rene Verel, Peter Tittmann, Heinz Gross, Wilfred F. van Gunsteren, and Beat H. Meier, ETH Zurich, Thusnelda Stromer and Louise C. Serpell, University of Sussex, UK; Shirley A. Müller, Biozentrum Basel; Barbara Ciani and Richard A. Kammerer, University of Manchester, UK

Amyloid fibrils are protein structures that occur in a number of human pathologies, including Alzheimer's and Parkinson's disease. In the present article, methods are presented that allow the study of amyloid fibril formation in the test tube.

Amyloid fibrils are filamentous, insoluble protein aggregates deposited in vivo in more than 20 different amyloid diseases or formed in vitro from soluble proteins [1]. Although fibril-forming proteins often lack sequence and structural similarity, amyloid fibrils share some common properties which make it feasible to use simple model systems to systematically assess the factors that predispose a native protein to form amyloid fibrils. For this purpose, a 17-residue peptide model system has been generated de novo, referred to as ccβ-Met, which can be converted into amyloid fibrils [2, 3]. The simplicity of this peptide system makes it suitable for probing the molecular details of amyloid assembly.

Analysis by electron microscopy

The structure of ccβ-Met fibrils was analyzed by transmission electron microscopy. Electron micrographs of unidirectional metal-shadowed samples revealed single and frequently twisted fibrils, with uniform morphology and with widths ranging from ~5 to 8 nm (Figure 1). Closer inspection of several electron micrographs indicated the presence of at least two polymorphic fibril forms, with a lower (repeat lengths of ~60 nm) and a higher (repeat lengths of ~30 nm) degree of left-handed twist, referred to as Type 1 and Type 2 fibrils, respectively.

Analysis by X-ray fibre diffraction

The packing of the ccβ-Met peptide chains within the fibrils was investigated by fibre diffraction. Diffraction patterns recorded with the X-ray beam perpendicular to the major axis of the fibril revealed signals at 4.7 Å on the meridian and 12.3 Å on the equator (Figure 2). This pattern is consistent with a laminated cross-β structure and is characteristic for amyloid structures. In this structure, the polypeptide chains are organized in laminated layers of β-sheets and run perpendicular to the long fibre axis. All the reflection positions were measured and the unit cell was determined to be: a = 9.4 Å, b = 23 Å, c = 58 Å, α = β = γ = 90°, where a is the hydrogen bonding direction along the major fibril axis, b is the inter-sheet direction, and c is the peptide chain direction.

Figure 1: Electron micrograph of unidirectional metal-shadowed ccβ-Met. The direction of metal shadowing is indicated by the white arrow. Type 1 and Type 2 fibrils are labelled. Scale bar: 70 nm.
Atomic models and molecular dynamics simulations

To obtain a detailed molecular description of the ccβ-Met amyloid fibril, atomic models were constructed, representing Type 1 and Type 2 fibrils (Figure 3), based on all present experimental restraints (see [4]). To gain insight into the side chain interactions within the ccβ-Met amyloid fibril, molecular dynamics simulations were performed (see [4]). Analysis of structures at the end of the simulation revealed that compatible side chains interdigitate and appear like the teeth of a zipper. Previous experiments showed that chemical oxidation of the sulfur atom of the methionone side chain to a polar sulfoxide (denoted ccβ-MetO) completely abolished amyloid fibril formation of the derivatized ccβ-Met peptide [4]. Calculations indicate that, compared to ccβ-Met, ccβ-MetO strands are more stable in water than in an amyloid fibril. This effect can be explained by the stronger solvation of the methionine sulfoxides compared with methionines and by a perturbation of the packing of the hydrophobic core residues in the fibril.

Conclusions

The simplicity of the ccβ-Met system makes it suitable for probing the molecular origin of amyloid fibril assembly. The detailed structural information presented for the ccβ-Met amyloid fibril provides a basis for understanding the influence of single site-specific hydrophobic interactions on native-state stability, the kinetics as well as the packing and polymorphism of fibril formation and the evaluation of their relative importance.

References

The analysis of cellular processes is of crucial importance for the understanding of human diseases. The use of genetically engineered fluorescent probes allows the monitoring of biological processes in living cells. A new expression vector system has been developed which makes it possible to modify and study multiple cellular parameters simultaneously.

In contrast to bacteria, mammalian cells contain many different compartments. This allows the assignment of specific cellular functions to defined regions of the cell. Examples of such compartments are the nucleus, mitochondria or endosomes. The nucleus stores genetic information (DNA) and transcribes it to a working copy (mRNA), which is then exported to the cytoplasm. Mitochondria are the major sites of cellular energy production. Endosomes are cytoplasmic transport vesicles, which transfer membrane proteins from the plasma membrane to intracellular sites for sorting, signalling, and degradation. Unfortunately, most of these organelles are too small to be identified by classical light microscopy. In addition, they are intermingled within cells and are highly motile. The identification of interesting cellular structures therefore resembles the search for a “needle in a haystack”.

Fluorescence microscopy in cell biology

August Köhler observed at the beginning of the last century that certain structures of plant cells show autofluorescence when they are illuminated with ultraviolet light. In the middle of the century, it became possible to specifically label cellular compartments and to monitor simultaneously several different colours using optical filters. However, the analysis was still limited to fixed material. The analysis of living cells became possible with the introduction of fluorescent proteins. This technology was awarded with the Nobel Prize for Chemistry in 2008. Genetic engineering made it possible for the natural fluorescent proteins from a jelly fish and a coral to be available today in many different colours. Specific targeting signals for subcellular compartments are then added to the genetic information of these fluorescent proteins, and the resulting expression vector is transfected into mammalian cells. The cells translate this information into a new protein, which labels a particular cellular compartment (Figure 1).

The insertion of expression vectors into mammalian cells by transfection is well established, but there are limitations in this approach: (1) Co-transfection with individual vectors leads to cells with different expression ratios, since only small amounts of each plasmid are taken up. This becomes very pronounced when more than two plasmids are transfected simultaneously, or if a cell line is difficult to transfect; (2) The stable integration of expression vectors in a host cell genome works mainly sequentially, meaning that it is a time-consuming process. An expression system has therefore been developed in our Lab that allows the flexible expression of several proteins in a mammalian cell from a single vector.

Figure 1: COS cell transiently transfected with three vectors encoding a blue fluorescent protein with a nuclear localization signal, a green fluorescent protein with endosomal targeting, and a red fluorescent protein with mitochondrial targeting. A phase-contrast picture is shown on the left; the overlay of the three fluorescent pictures is shown on the right. The cell border of the transfected cell is marked with a dashed line.

Philipp Berger, Andrijana Kriz, Katharina Schmid, Kurt Ballmer-Hofer, Biomolecular Research, Molecular Cell Biology, PSI; Imre Berger, Structural Biology of Eukaryotic Complexes, EMBL, Grenoble, France
Multi-protein expression systems

Our group was previously involved in the development of a recombination-based system (cre/LoxP) for the expression of multi-protein complexes in insect cells and bacteria [1,2]. This system allowed the assembly of up to four plasmids, each containing the genetic information for a particular protein, in a recombination-based reaction followed by selection with appropriate antibiotics. It was used exclusively for the production of protein complexes for structural studies. To develop a similar mammalian expression system, unnecessary elements were removed from these vectors and replaced with regulatory elements for mammalian expression. In addition, the system was kept modular so that it is compatible with our robotics-based high-throughput cloning platform. It is currently possible to integrate the information for five different fluorescent proteins into one expression vector. Figure 2 clearly shows that the system has the expected benefits. Transfected cells express all proteins and it is now possible to efficiently generate stable cell lines with several expression units at once.

Conclusions and outlook

It has been shown in this work that a recombination-based assembly of expression cassettes is a successful strategy for expressing numerous proteins in mammalian cells. So far, work has focused on the expression of fluorescent probes for the analysis of cellular processes. The system also allows the expression of several proteins to reprogram cells, which is extremely important in stem cell research, where pluripotent stem cells are transformed into differentiated cells for clinical applications.

References

Figure 2: (A) Expression from a single plasmid leads to the simultaneous expression of several proteins in a cell. The cells were transfected with a plasmid encoding a cyan (mTFP1), a yellow (mCitrine), and a red fluorescent protein (mCherry). (B) The coding sequences for the same fluorescent proteins were located on independent plasmids and cotransfected. Note that not all transfected cells express all fluorescent proteins. The cell borders of the transfected cells are marked with a dashed line.
Human thymidine kinase type 1 (hTK1) is a cytosolic enzyme which catalyzes the Mg\(^{2+}\)-dependent \(\gamma\)-phosphate transfer from ATP to the 5\(^\prime\)-hydroxyl group of thymidine (dT). hTK1 is significantly overexpressed in rapidly proliferating and malignant cells and has proven to be a suitable target for non-invasive imaging of cancer cell proliferation using radioactively labeled thymidine and deoxyuridine derivatives. For this reason, there is considerable interest in the development of a thymidine tracer for single photon emission tomography (SPECT) based on the inexpensive radionuclide technetium-99m (\(^{99m}\)Tc). \(^{99m}\)Tc is readily available at low cost and possesses excellent decay properties (\(T_{1/2} = 6\) h, 140keV \(\gamma\)-radiation) for in vivo diagnosis. However, when we started our studies no such tracer was known, and no technetium-labelled thymidine derivative which retained substrate activity, that is phosphorylation at position C\(^{5\prime}\) by hTK1, had been synthesized. Retaining substrate activity is a prerequisite for in vivo application.

Synthesis and radiolabelling

We identified two potential sites of thymidine (namely C\(^{3\prime}\) and N3) for modification with a bifunctional metal chelating system (Figure 1). It is well known that subtle changes to the lead structure and the metal complex can have a decisive impact on substrate activity. Often such effects can only be identified if larger series of derivatives are synthesized, which in the case of metal complexes is typically associated with multi-step syntheses requiring the use of protecting groups to avoid unwanted side reactions. To speed up this often laborious approach, we employed the “click-to-chelate” strategy, which was recently developed by our group, and which uses the Cu(I) catalyzed cycloaddition of alkynes and azides [1, 2]. This efficient strategy enabled us to assemble and radiolabel thymidine derivatives in a single step using a one-pot procedure, which spares the isolation of the clicked ligands before in vitro screening and assessment.

Commercially available C\(^{3\prime}\) azido-3\(^\prime\)-deoxythymidine and an N3 azido-thymidine derivative were reacted with a set of suitable alkynes (Figure 2). The thymidine derivatives were subsequently reacted in situ with the organometallic \(^{99m}\)Tc precursor \([^{99m}\text{Tc}(\text{H}_2\text{O})_3(\text{CO})_3]^+\) [3]. Using this strategy, ten novel thymidine derivatives with varying structures, hydrophilicity and overall charge were prepared in a matter of a few hours.

The site-specific conjugation of metal chelating systems to biologically relevant molecules is an important contemporary topic in bioinorganic and bioorganometallic chemistry. The “click-to-chelate” approach describes the use of the Cu(I) catalyzed cycloaddition of azides and terminal alkynes to synthesize 1,2,3-triazole-containing metal chelating systems, and their simultaneous incorporation into biologically relevant molecules. Using this strategy, a series of thymidine derivatives were prepared, radiolabelled in situ with technetium-99m and evaluated as potential tracers for single photon emission tomography.

![Chemical structures of thymidine (dT), C\(^{3\prime}\)-azido thymidine and N3-azido thymidine, and general reaction scheme for the “click-to-chelate” approach [2].](image)
which would have taken several weeks using “classical” synthetic procedures \[4\]. In parallel, the non-radioactive rhenium (Re) complexes were also prepared.

Identification of substrates for hTK1

\[^{99m\text{Tc}/\text{Re(CO)}_3}\] complexes 1–10 were incubated with ATP in the presence of hTK1. The time-dependent formation of the monophosphorylated complexes was monitored by HPLC. We observed that all complexes were substrates for hTK1. This was corroborated by mass spectroscopic analyses. The hTK1 substrate activities of \[^{99m\text{Tc}/\text{Re(CO)}_3}\] complexes 1–10 were measured quantitatively relative to the natural substrate thymidine using a coupled hTK1-PK-LDH assay.

As the data in Table 1 show, the overall charge of the thymidine complexes had a pronounced influence on the substrate activity. The neutral and anionic C3’-functionalized complexes were similarly good substrates, whereas the cationic complexes were much less readily phosphorylated. On the other hand, for the N3-functionalized derivatives, we observed that anionic complexes were the worst substrates.

Table 1: Phosphorylation rates of C3’- and N3- functionalized thymidine derivatives.

<table>
<thead>
<tr>
<th>C3’ Complex</th>
<th>[%]*</th>
<th>N3 Complex</th>
<th>[%]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>20.3 ± 0.8</td>
<td>6*</td>
<td>17.9 ± 0.1</td>
</tr>
<tr>
<td>2*</td>
<td>27.6 ± 1.9</td>
<td>7*</td>
<td>14.1 ± 0.2</td>
</tr>
<tr>
<td>3*</td>
<td>23.1 ± 1.8</td>
<td>8*</td>
<td>9.0 ± 0.4</td>
</tr>
<tr>
<td>4*</td>
<td>14.2 ± 0.2</td>
<td>9*</td>
<td>16.8 ± 0.2</td>
</tr>
<tr>
<td>5*</td>
<td>12.5 ± 0.5</td>
<td>10*</td>
<td>10.9 ± 0.4</td>
</tr>
</tbody>
</table>

* The phosphorylation rate for dT was arbitrarily set to 100%.

Conclusions

Using the “click-to-chelate” strategy we were able to identify the first metal-containing substrates for hTK1. Furthermore, the approach allowed the fast identification of structure-activity relationships in a matter of a few hours. Thus, we could demonstrate that neither the synthesis or incorporation of different metal chelating systems, nor the subsequent radio-labelling, need to be the rate-determining steps in the development of radiopharmaceuticals. It is important to recognize that the same approach can be used to functionalize any azide-containing biomolecule and in situ (radio)labelling provides rapid access to a set of conjugates for preliminary screening. By making functionalization of targeting molecules fast, efficient and predictable, click chemistry could play a crucial role in expediting the development of potential SPECT tracers.

References

Improved imaging of prostate cancer with bombesin analogues functionalized by “click”-chemistry

Elisa Garcia Garayoa, Christian Schweinsberg, Olga Gasser, Alain Blanc, Peter Blaeuenstein, P. August Schubiger, Roger Schibli, Center for Radiopharmaceutical Science, ETH-PSI-USZ

“Click”-chemistry offers a powerful tool for the incorporation of chelating systems and other moieties (e.g. glucose) into biomolecules. Using this strategy, new analogues of the tumour-affine peptide bombesin were synthesized which showed higher tumour uptake and lower radioactivity at the abdominal area. This resulted in a better delineation of tumours by Single Photon Emission Computed Tomography/Computed Tomography (SPECT/CT). Moreover, radioactivity wash-out was faster from normal tissues, including receptor-positive organs, than from tumours, which would be advantageous for therapeutic purposes.

A variety of human tumours, including prostate and breast cancers, overexpress bombesin (BBS) receptors on the cell membrane and, thus, BBS analogues are interesting molecules to selectively deliver radionuclides into tumour cells for imaging and therapy [1, 2]. The main drawback of most reported radiolabelled BBS derivatives is their high liver uptake and strong hepatobiliary excretion, which may obscure the detection of tumours or metastases localized at the abdominal cavity. Introduction of carbohydrates in the molecule increases the hydrophilicity and may favour a renal excretion. “Click”-chemistry (the Cu(I)-assisted [2+3] cycloaddition of an alkyne and an azide) offers a convenient way of functionalizing bimolecules [3, 4]. This technique was used to attach glucose to the peptide molecule (BBS-2) as well as a new chelating system (BBS-3). Presented here is the comparison of two glycated BBS analogues as potential radiopharmaceuticals for tumour targeting (Figure 1).

Biodistribution

The presence of glucose neither affected the affinity for the BBS receptors nor the internalization into tumour cells in vitro [5]. The biodistribution of the new 99mTc-labelled BBS analogues was tested in mice with tumour xenografts of PC-3 cells, a human prostate carcinoma cell line that overexpresses BBS receptors. The “click”-glycated analogues BBS-2 and BBS-3 showed significantly higher tumour uptake than the non-glycated analogue BBS-1 (Figure 2). Uptake in the tumour and in the receptor-positive organs pancreas (data not shown) and colon was very specific, and could be significantly inhibited after co-injection with a high concentration of natural BBS. The glycated 99mTc-BBS-2 and 99mTc-BBS-3 were preferentially excreted through the kidneys and, thus, their liver uptake was substantially reduced compared to the non-glycated

Figure 1: Schematic presentation of the Cu(I)-assisted [2+3] cycloaddition of an alkyne and an azide, called a “click” reaction. Structure of the analogues BBS-1 (“non-clicked” reference); BBS-2 and BBS-3 (“clicked” carbohydrates in red and “clicked” chelator in green).
99mTc-BBS-1. In spite of a higher kidney uptake at earlier post-injection times for the “click”-glycated analogues, the activity was rapidly cleared and similar low renal uptake was observed for all the analogues at later times. Moreover, residence times of labelled BBS-2 and BBS-3 in the tumour were longer, whereas activity wash-out was rapid from normal organs, which resulted in much higher tumour-to-tissue ratios.

SPECT/CT imaging

SPECT/CT (Single Photon Emission Computed Tomography / Computed Tomography) is a nuclear medicine imaging technique which combines gamma rays and X-rays. The imaging depicts both the distribution of radioactivity in the body (SPECT) and its anatomic localization (CT). SPECT/CT imaging was performed in mice with PC-3 tumour xenografts 1.5 h after i.v. injection of the radiolabelled BBS analogues. The images corroborated the results obtained in the biodistribution studies. A better delineation of the tumour xenografts was observed with the “click”-glycated analogues, which also showed lower activity at the abdominal area in agreement with their preferential renal excretion (Figure 3).

In conclusion, the insertion of carbohydrates increased the potential of BBS analogues as radiopharmaceuticals for both imaging and therapy of BBS receptor-positive tumours, and “click”-chemistry showed itself to be an elegant method for the glycation of peptides.

References

Figure 2: Biodistribution of 99mTc-labelled BBS analogues in mice with prostate tumours at 1.5 h p.i. Comparison in selected tissues. High uptake in colon is due to the normal expression of receptors in this tissue in mice.

Figure 3: SPECT/CT images in mice with prostate tumour xenografts (1.5 h p.i.). The glycated analogues BBS-2 and BBS-3 gave better visualisation of the tumours, as well as a much lower accumulation of radioactivity in the abdominal cavity.
The quest for a perfect optics correction and highest brightness at the Swiss Light Source

Michael Böge, Andreas Lüdeke, Andreas Streun, Department for Large Research Facilities, PSI

The storage ring of the Swiss Light Source (SLS) was designed to obtain the highest brightness possible within the constraints of machine size, beam energy and available straight sections for undulators. Imperfections of the tense magnet structure, leading to deterioration of brightness, beam lifetime and injection efficiency, were cured progressively by several beam-based means during the years 2000–2008. These efforts resulted in a world-record low vertical emittance of 2.5 pm rad and excellent agreement of measured beam lifetime with data obtained from simulations, confirming successful beam optics correction.

Brightness, emittance and acceptance

Brightness (photons per time, area at the source and solid angle of the beam) is the key measure of light source performance. High brightness requires small transverse emittances (product of beam size and divergence) of the stored beam. Horizontal emittance is determined by the layout of the storage ring lattice, i.e. the magnet structure. A small value is obtained by using a large number (SLS: 36) of dipole magnets for the lattice and by providing a horizontal beam focus in all dipole centres by means of strong quadrupole magnets. The quadrupole chromaticity, i.e. the dependency of focusing strength on particle energy, however, is a cause for beam instability and requires compensation by means of sextupole magnets. The non-linear sextupole field, however, leads to a degradation of the lattice acceptance, i.e. its ability to also store particles which deviate from ideal coordinates, due to the onset of chaotic motion beyond some amplitude. In particular, efficient injection into the storage ring requires a large horizontal acceptance, and long beam lifetime requires large energy acceptance, which basically translates to horizontal acceptance for off-energy particles. Thus it became a crucial issue of the SLS design to find an arrangement of sextupoles which minimizes their adverse effects while delivering the indispensable chromaticity compensation \cite{1}. It took several iterations of the lattice layout to simultaneously fulfil the requirements for beam energy (2.4 GeV), number and size of straight sections ($6 \times 4 \text{ m}, 3 \times 7 \text{ m}, 3 \times 11.5 \text{ m}$), horizontal emittance (5 nm rad) and suitable acceptances ($25 \text{ mm mrad horizontal, } \pm 3\% \text{ in energy}$) within a limited circumference (288 m).

The vertical emittance of an ideal, flat lattice, as given by the quantum emission nature of synchrotron radiation, is very small, $\sim 0.5 \text{ pm rad}$ for the SLS, and is usually dominated in a real lattice by two contributions due to imperfections, i.e. magnet misalignments: direct generation of vertical emittance due to spurious vertical dispersion (i.e. vertical orbit excursions due to energy deviations) and transfer of horizontal to vertical emittance due to coupling between the transverse planes.

Acceptance breakdown and recovery

The vertical acceptance in a light source is rather small, due to the narrow gaps of the undulators. In the presence of coupling, particles at large horizontal amplitudes, as they occur in the injection process or due to intrabeam scattering events (Touschek effect), may be deflected vertically and subsequently get lost. Furthermore, any distortion of the sextupole cancellation obtained for the ideal lattice due to asymmetries in the optics will drive additional nonlinear resonances, leading to a direct deterioration of horizontal and energy acceptance. During the commissioning phase, and later on in parallel with user operation, the lattice imperfections were cured progressively in the following ways:

1. The linear optics is corrected by measurements of the average beta function, i.e. beam size normalized to emittance, in each quadrupole, and subsequent application of individual correction currents to each of the 177 quadrupoles.

2. Transverse displacements between the magnetic centres of the quadrupoles and the centres of the adjacent beam position monitors, i.e. the beam position for zero readings, is measured using the beam itself (beam-based alignment). This allows the beam to be centred in the quadrupoles. Displacements of girders revealed in the process are corrected by careful mechanical realignment utilizing the unique remote girder alignment capability of the SLS \cite{2}.
Recent activities employ small skew quadrupole and auxiliary sextupole magnets, installed as additional coils on the main sextupole magnets, to optimize the lattice in the following ways:

- Twenty-four skew quadrupoles in dispersion-free regions globally suppress the betatron coupling and are also used to locally compensate coupling introduced by vertical beam excursions in sextupoles, if users require orbit bumps.
- Twelve skew quadrupoles in dispersive regions (six installed to date) control the vertical dispersion, and with it the vertical emittance, without introducing coupling.
- Twelve auxiliary sextupoles (six installed to date) restore the symmetry of the sextupole patterns, which is not possible with the 120 main sextupoles since they do not have individual power supplies.

The auxiliary sextupole settings are obtained empirically, whereas the skew quadrupoles settings are derived from orbit response measurements with little further empirical adjustment. The ratio of beam lifetime to beam height was chosen as figure of merit for optimization, where lifetime, dominated by the Touschek effect, ideally scales with the beam height and has to be maximized. Beam height, which depends on vertical emittance, has to be minimized for highest brightness.

A unique high-resolution monitor developed at the SLS was extensively used to observe the beam size [3]: Figure 1 depicts an image of the vertically polarized light emitted by the storage ring dipole which is used by the monitor.

Performance results

Excellent agreement of measured beam lifetime with data from simulations of the ideal lattice was obtained, as shown in Figure 2, indicating the success of the optics correction. An injection efficiency of virtually 100% has been achieved, enabling the storage ring to be filled to 400 mA within seven minutes and largely avoiding any radiation background during top-up operation.

An ultralow vertical emittance of 2.5 pm rad has been achieved, just a factor of five away from the ultimate radiation limit set by the quantum nature of the photon emission. The corresponding ratio of vertical to horizontal emittance of 0.05% sets a world record (Figure 1).

In user operation, lifetime may be increased at the expense of vertical emittance or brightness in a controlled way, since the ideal scaling of lifetime with emittance has been largely achieved; for example, 10 hrs of lifetime can be achieved with 7.5 pm rad vertical emittance in 400 mA top-up operation.

References

Converging missions on cancer treatment at the Center for Proton Therapy (CPT)

Eugen Hug, Beate Timmermann, Eros Pedroni, David Meer, Center for Proton Therapy, PSI

2008 marked the first year of continuous patient treatment operation using Gantry 1 at the CPT. The primary mission of providing proton therapy for adults and children with difficult-to-treat tumours is paralleled by a continued commitment to particle research and technical developments, notably Gantry 2 and the next-generation spot-scanning system.

Summary

In 2008, the CPT completed its first full year of continuous patient treatment operation. One hundred and six patients were treated, thereby almost doubling the highest number of patients ever treated per year. Over the entire treatment system, throughout the chain of events from accelerating protons to actual delivery in the patient, availability was exceedingly high, essentially providing patient treatment for more than 97% of the time possible. Sources of patient treatment delay, either scheduled or unscheduled, are depicted in Figure 1. In practice, this meant that there were occasional delays during the day, but very rarely was patient treatment cancelled. This high availability is unprecedented for a prototype and was certainly only achievable due to the remarkable expertise in accelerator physics, beam controls and beam delivery at PSI. The model of integrating technical service, maintenance and system upgrades into the clinical operation without any major shut-downs proved to be manageable by introducing only six long weekends over the course of the year. The reasons for limiting the number of patients treated per day is entirely due to the needs of competing beamtime to complete the OPTIS2 commissioning process and the development and commissioning of Gantry 2. The present clinical programme was continued, with strong emphasis on the treatment of children, while preparing to evaluate new indications, once Gantry 2 becomes operational.

Childhood malignancies treated at PSI

After initiating the paediatric project at PSI, over 100 children have so far been treated. Since 2004, the treatment of very young children under deep sedation has also been offered, in cooperation with the children’s hospital of the University of Zurich. In addition, the prospective investigation of late effects and quality of life was started in 2004. During 2008, an analysis was performed of all children prospectively investigated at the Institute from 2004 until the end of 2007. Fifty-one children were evaluable for this analysis, with the aim of investigating local tumour control rates and the incidence of acute and late side-effects of treatment. The median age of the children at the time of diagnosis was 2.6 years, ranging from 4 months to 20 years. Twenty-two of these were girls and 29 were boys, sent from 33 hospitals in 8 different countries (Switzerland, Germany, the Netherlands, Denmark, France, the United Kingdom, Spain and Austria). The diagnoses indicated bone or soft-tissue tumours in 24 children, brain tumours in 19 children, chordomas/chondrosarcomas in 5 children, and 3 miscellaneous tumours. The predominant tumour site in 41 children was the head and neck. In 8 children, the tumour was located in the spine, and in 2 in the pelvis. The total median dose of radiation therapy was 54 Gy (range, 45–79.4 Gy). In 46 children, only proton therapy was administered. In 5 children, the radiation therapy was partially given with
In 34 children, proton therapy at PSI was administered under deep sedation, reflecting the very young age of the cohort. In 41 children, chemotherapy had been administered before radiotherapy, and in 26 patients chemotherapy was given in parallel to irradiation, in the children's hospital, University of Zurich. In 49 children, only incomplete resection or biopsy was achieved before starting radiotherapy. After median follow-up time of 29.4 months (range, 5–62.3 months), 7 children experienced local recurrence. All local recurrences were found to be located in the high-dose area of the radiotherapy. No systemic dissemination occurred. 44 children (86.3%) are free of disease after proton therapy. Regarding acute side effects, major adverse events (scored according to international standards) were observed only for skin/mucosa (n=5) and bone marrow (n=19) in children having parallel chemotherapy. Regarding late effects, 35 children were evaluable as follow-up time exceeded 6 months. In 5 children, major late effects were observed for skin (n=1), central nervous system (n=1), eye (n=1) or ear (n=2). Quality-of-life analysis data are not yet available. So far, 76 children have entered this study and completed forms on their quality of life status. Early results suggest that, in general, parents consider the status of their child more negative compared with the perception of the child.

Initial commissioning of the Gantry 2 beam line

During the first half of 2008, the beam line on Gantry 2 was completed and the proton beam could be transmitted to the gantry iso-centre. The initial experimental phase was used to demonstrate the new concepts of the system. New and outstanding features are the very fast changes of the beam energy, the parallelism of the 2D scanned beam and the small size of the proton beam, due to a sophisticated nozzle design. The much faster 2D scanning (compared with Gantry 1), with invariant spot shape, is the precondition for delivering the dose with repainting, one of the promising strategies for treating mobile tumours on Gantry 2.

The PROSCAN project – the expansion of the proton therapy facility at PSI – comprises a new treatment station for deep-seated tumours. Gantry 2 is based on long-term experience with a scanned proton beam on Gantry 1. It incorporates many improvements and will be the system for performing further developments of the scanning technique [1]. The mechanical structure of Gantry 2 was finished during 2007 and the beam line was completed during the first half of 2008. First beam at the gantry iso-centre was detected on 9 May. This was the starting point of a new phase of commissioning, to demonstrate the new features of Gantry 2.

Fast energy selection

In contrast to Gantry 1, where the proton beam energy is modulated on the gantry itself, the degrader system in the beam line of PROSCAN is used to set the correct energy for Gantry 2. This has advantages in the design of the nozzle and allows a continuous set of beam energies to be produced. On the other hand, the complete beam line must be set in the shortest time for each new energy. This becomes an even more critical issue in the case of volumetric repainting, where the dose of the complete volume is applied several times. Therefore, beam lines were constructed with laminated magnets, to reduce eddy currents. As shown in Figure 2, typical energy steps corresponding to 5 mm in water can be performed in less than 80 ms.

![Sequence of spots with an energy change in between. The currents of the kicker magnet and the 90° bending magnet are shown.](image)

This time was measured for the 90° bending magnet, which is the slowest, and also the largest, magnet in the beam line. The degrader system has a highly energy-dependent transmission, of the order of two magnitudes, but for precise dose monitoring an energy-independent proton current at the iso-centre is advantageous. The problem cannot be solved with a set of different collimators, since the mechanical switch between different energies would slow down the energy selection. This was solved by introducing additional beam losses for higher energies, which help to equilibrate the proton current. They are controlled by defocusing the beam with quadruple magnets on a fixed collimator. Since these magnets are part of the beam tune, the intensity compensation is solved intrinsically, as shown in Figure 3. Additionally, an energy parameterization of the beam tunes was found which allows the settings of the complete beam line to be calculated for all possible energies.
Spot shape and size

An invariant and small proton spot at the iso-centre is of large importance for good quality of treatment planning. Therefore a lot of attention was paid to the design of the beam exit region, the so-called nozzle. Without dose monitors and collision protection, the standard deviation of the Gaussian spot form at iso-centre is about 0.3 cm, as shown in Figure 4.

By installing all required material into the nozzle, the beam is broadened due to multiple scattering, especially for low energies. To reduce this effect, the nozzle is designed with a movable snout, containing all affecting material, which can be moved closer to the iso-centre. A further improvement can be achieved if the patient is placed closer to the nozzle. This reduces the air gap, and the spot size approaches the limit of an undisturbed beam.

Gantry 2 is equipped with two sweeper magnets, allowing fast 2D beam scanning. Due to upstream scanning and sophisticated design of the 90° bending magnet, the scanned beam is parallel. It was expected that the spot form would change along the x scan axis. To correct for this deformation, a quadruple corrector was installed at the middle of the first doublet on the gantry. With a static corrector value, the spot shape can be optimized for one specific x deflection. To achieve the goal of an invariant spot shape in the complete scan region, the quadruple corrector must be changed dynamically with the x sweeper magnet. Therefore the corrector magnet was connected in series with the power supply of the x sweeper magnet. The resulting spot shapes are shown in Figure 5.

Conclusions

The feasibility of some important concepts of Gantry 2 has been demonstrated and fundamental parameters of the beam delivery system measured. We believe that the new gantry has the necessary potential to become the best performing system in this field. This is a solid basis for further development towards the treatment of moving tumours. The areas which are still awaiting completion are the mechanical system, the finishing of the treatment area, the electronics and the software for patient safety, the steering system for the patient table and the diagnostic equipment for patient positioning.

First patient treatment with static tumours is planned for 2010.

Reference:

Strategy and highlights of General Energy Research

Alexander Wokaun, General Energy Research Department, PSI

The year 2008, the year of PSI's 20th anniversary, was a year of infrastructure and knowledge build-up for future research in General Energy. A process development unit (1 MW) for the production of methane from synthesis gas was completed, so new experience can be gained with this avenue of biomass utilization. Test stands for combustion and hydrothermal gasification have been installed in the new laboratory hall of CCEM. Solar technology and atmospheric research have embarked on several important EU projects, and Electrochemistry laid the groundwork for future avenues in electric mobility, comprising both advanced batteries and fuel cells.

Turmoil in the energy market, concern about a changing global climate, and discussion about the future energy supply for Switzerland have drawn attention to the importance of energy efficiency and renewable energies. The mission of the General Energy Department is responding to these challenges as it targets the generation of low-CO₂ energy carriers from renewables, the efficient provision of energy services, and minimizing material flows from and into the natural environment. Demonstrating their engagement for these issues, researchers from the five Laboratories of the Department have responded to members of the parliament, to interested audiences, and to the general public during the various events of this anniversary year, culminating with the “Open Day” in October 2008.

Energy carriers from renewables

General Energy at PSI is deliberately focusing on the two renewable primary energies of biomass and solar energy, and targeting energy storage in both cases. For solar energy, PSI's specialty is applying concentrated solar irradiation to drive endothermic chemical reactions, thereby producing chemical energy carriers or upgrading low-quality waste streams. For biomass, which represents solar energy stored by photosynthesis, the emphasis is on the production of fuels or electricity, to maximize work rather than heat.

In this context, energy carriers for transportation are of international interest. Which fuels – liquids, gases, or electricity – will be used as oil availability decreases, or as greenhouse gas emission reductions become even more pressing? The project “Transition to hydrogen-based transportation” is taking a comprehensive, unbiased view on the role hydrogen might play in a future transportation system.

Energy and Material Cycles

The project “Methane from Wood” took a big step forward in 2008, with the commissioning and first successful operation of the 1 MW process development unit installed at Güssing, Austria (Figure 1). In the PSI process, raw synthesis gas from the gasifier is converted into methane in a single catalytic step, followed by conditioning to gas grid quality. This development is supported by advanced on-line diagnostic tools for the gasification process.

For waste biomass with high water content, such as agricultural residues or sludges, hydrothermal gasification is being pursued as an alternative route. A Ruthenium catalyst is added to convert organics completely into CH₄ and CO₂, while
the nutrients precipitate as the medium is heated above the critical point of water, and can be recycled. For the first time, X-ray absorption spectroscopy at the super-XAS beam-line of the SLS has been successfully applied to look at the catalyst in situ under supercritical conditions.

Solar Technology
The solar thermal ZnO/Zn cycle, in which water is split into oxygen and solar hydrogen in two steps, has advanced, and construction and planning are ongoing for a demonstration at the 100 kW scale in 2010. In addition, a variety of novel ideas for high-temperature solar processes is being investigated. In one of these, CO₂ rather than H₂O is reduced by the solar Zn auxiliary medium. Several processes are advancing in which a low-quality feedstock, such as petcoke, is upgraded by solar energy, thereby halving associated CO₂ emissions.

Efficient energy conversion
Efficiency is recognized internationally as one of the most important measures needed to make our energy system more sustainable. The Combustion Research Laboratory devotes itself to efficient, clean combustion of fossil and biogenic fuels. The Electrochemistry Laboratory focuses on advancing efficient electric drive trains in transportation, be they hybrids with internal combustion engines, plug-in hybrids, fuel cell hybrids, or electric vehicles.

New infrastructure created by the CCEM
Several of the projects targeting energy carriers from renewables and their efficient conversion are embedded within the Competence Center Energy and Mobility (CCEM), a joint endeavour of the ETH domain facilitated by PSI. In 2008, important new facilities have been commissioned, in particular a test stand for large (ship) diesel engines (see image on page 71), and a laboratory hall hosting installations for biomass conversion and test stands for combustion research.

Combustion Research
Completion of the CCEM hall enabled the upgrading of two large test rigs for lean premix and catalytic combustion, representing key experimental facilities for research on low-emission gas turbines. This is supported by advanced laser diagnostics and by theoretical modelling, and was presented at the 7th International Workshop on Catalytic Combustion, organized by the Laboratory. The portfolio further includes important activities in exhaust gas after-treatment, targeting in particular the simultaneous removal of NO, and particulates from diesel exhausts.

Electrochemistry
The Battery Group is improving high-energy, high-power batteries for electrochemical energy storage by means of novel electrode materials, notably nanoparticulate oxides produced by flame spray pyrolysis.

In fuel cell research, development continues on stable, potentially low-cost polymer electrolyte membranes. Novel simplified stack concepts are being developed in collaboration with an industrial partner, Belenos Clean Power, with the goal of building a fuel cell car operated on hydrogen and oxygen produced by solar energy. The key for progress in 2008 was the intensive use of in situ diagnostic methods, including using the unique analytical capabilities available at PSI’s large facilities, such as neutron radiography of operating fuel-cell stacks, microtomography of porous materials, and locally resolved impedance spectroscopy.

Energy, environment and society
The Laboratory of Atmospheric Chemistry has focused on atmospheric particles, their sources, atmospheric transformation, and climatic impact. In particular, the generation of secondary organic aerosol particles from anthropogenic and biogenic precursors is not only of scientific interest, but also of high political relevance for source attribution of particulate air pollution. These activities, including experimentation at the smog chamber, are being pursued within a network of European projects, in several of which PSI is a leading contributor.

Energy system analysis has gained importance in creating scenarios for developing a sustainable energy system, while respecting global climate protection goals. In particular, important contributions have been made to the Energie Trialog Schweiz, in which stakeholders from politics, industry, and academia seek solutions for the Swiss energy system consistent with security of supply, environmental goals, and economic growth.

Outlook for 2009
The activities of the CCEM during the past three years will be evaluated early in 2009, and directions for its future development given. The launching of a major initiative for electromobility is under discussion. In May, PSI will invite major European players to an international conference on 2nd generation biofuels. The seminal projects of solar fuels, “zero emission” power plants and atmospheric ecosystem quality will be pursued in the context of international consortia.
Hydrothermal gasification of wet biomass – results from SLS

Stefan Rabe, Thomas Ulrich, Maarten Nachtegaal, Frédéric Vogel,
Laboratory for Energy and Materials Cycles, PSI

Wet biomass (e.g. algae, sewage sludge, manure, food wastes) can contribute significantly to a sustainable energy supply if converted efficiently into synthetic natural gas. PSI is developing a novel process that allows wet biomass to be converted into methane with a net efficiency of 65–70 %. Understanding the key steps of the gasification and methanation is of paramount importance for improving the process. The catalytically active sites involved in the gasification were investigated for the first time by applying in-situ X-ray absorption spectroscopy (XAS) in supercritical water at 25 MPa.

Biomass may be converted into a variety of energy forms, including heat, electricity and mechanical work in the form of traction power. Today, most of the biomass used for energy purposes is combusted to produce electricity and/or heat. Biomass conversion to transportation fuels has been the subject of many studies. Among all options, biogenic synthetic natural gas (Bio-SNG) is particularly attractive because its combustion produces much less atmospheric pollution than fossil fuels. Furthermore, it can be distributed using an existing natural gas grid.

Bio-SNG can be synthesized directly from biomass in water at supercritical conditions ($T = 400{\,}^\circ\text{C}$, $p = 30$ MPa) using a catalyst. This is described in Eqs. 1–3 for the hydrothermal gasification of ethanol, as an example. Ruthenium catalysts have been found to be very active and selective in this process [1,2].

\[
\begin{align*}
\text{C}_2\text{H}_5\text{OH} + \text{H}_2\text{O} & \rightarrow \text{CH}_4 + \text{CO}_2 + 2 \text{H}_2 \quad (1) \\
0.5 \text{CO}_2 + 2 \text{H}_2 & \rightarrow 0.5 \text{CH}_4 + \text{H}_2\text{O} \quad (2) \\
\text{net: C}_2\text{H}_5\text{OH} & \rightarrow 1.5 \text{CH}_4 + 0.5 \text{CO}_2 \quad (3)
\end{align*}
\]

The main advantage of supercritical water gasification over conventional gasification processes is that it allows wet biomass (i.e. manure, crop residues, algae) to be converted efficiently into fuels, since the energy-intensive drying of wet biomass feedstocks is eliminated.

In-situ X-ray absorption spectroscopy

In-situ X-ray absorption spectroscopy (XAS) of a working catalyst was performed, in order to obtain representative in-formation about its active sites responsible for the transformation of organic constituents into the desired product methane [3]. Due to the demanding reaction conditions applied during the supercritical water gasification, a dedicated setup was designed for operation up to 400°C and 25 MPa (Figure 1). The key part of this setup is the sapphire reactor. Sapphire has a high mechanical strength, which is needed to withstand the high pressure, while still showing sufficient transparency for hard X-rays.

The experiments were conducted with a commercialized ruthenium catalyst (2 wt% Ru on carbon, supplied by Engelhard Corp.). A solution of 5 wt% ethanol in water was used as a simple model feed for wet biomass. Experiments were conducted at the SuperXAS beamline of the Swiss Light Source (SLS), at a total pressure of 25 MPa and temperatures up to 390°C, and spectra were recorded at the Ru K-edge ($E_0 = 22118$ eV).
Active sites of the ruthenium catalyst

Figure 2 displays ethanol conversion as a function of the reaction temperature. The conversion of ethanol increased sharply above 300°C, and complete conversion was observed at 370°C.

The corresponding in-situ XANES spectra recorded at 25 MPa are shown in Figure 4. For comparison, reference spectra of the fully oxidized and fully reduced catalyst are displayed in Figure 3.

Comparison of the reference spectra (fully oxidized and fully reduced catalyst, Figure 3) with those recorded at different reaction temperatures (Figure 4; 100–250°C and 250–370°C) revealed that a reduction of the catalyst took place between 125°C and 150°C. Metallic ruthenium was formed, as indicated by the appearance of the typical double-peak structure in the XANES spectra. The double-peak structure remained in the spectra at higher temperatures (up to 370°C). The position of the absorption edge did not change. A systematic decrease of the peak intensities with increasing temperature was observed, which was most likely related to surface reactions and/or adsorption of small molecules on the ruthenium surface.

The results obtained clearly indicate that ruthenium metal sites (Ru⁰) are catalyzing the hydrothermal gasification of ethanol [3]. These findings do not support the commonly cited reaction mechanism published by Park et al., who proposed a redox-type reaction involving Ru⁰ and Ru⁴ species [4].

Acknowledgements

We thank E. De Boni and M. Hottiger for their support during the construction of the experimental setup and would also like to thank M. Schubert, T.-B. Truong and J. Müller for their help during the measuring campaign.

References

Stabilizing atmospheric CO$_2$ concentration is of major concern today. Considerable effort is currently underway to attain a zero-emission energy production scenario involving the development of more efficient energy systems and renewable energy utilization, as well as CO$_2$ capture, sequestration and/or utilization. CO$_2$ capture, either by means of fuel decarbonization prior to combustion, by separation from combustion flue gas, or directly from air, produces a stream of pure CO$_2$ that is stored long-term or utilized as feedstock for the synthesis of chemical commodities. A promising and sustainable alternative to CO$_2$ sequestration is the decomposition of CO$_2$ into C, CO, and O$_2$. Solid carbon can be safely stored, and both C and CO can be used as combustion fuels or further processed to synthetic liquid fuels for transportation. O$_2$ is needed for oxy-combustion and gasification technologies. Direct thermal decomposition of CO$_2$ at atmospheric pressure occurs at ultra-high temperatures, i.e. 30% dissociation is theoretically obtained above 2700 K. Further complication arises from the need to separate the product gases at these high temperatures, in order to avoid recombination. The operating temperature can be reduced and the separation problem bypassed by making use of thermochemical cycles. Of special interest is the two-step cycle based on metal-oxide redox reactions, shown schematically in Figure 1.

Chemical thermodynamic equilibrium

Thermochemical equilibrium calculations for Zn(s) at 1 bar indicate three temperature regimes: below 700 K, C is produced; between 700 and 1000 K, C and CO are produced; and above 1000 K, CO$_2$ is the only product, which can be reduced to C and CO with Zn(s) at below 1000 and above 700 K, respectively, and with FeO at below 550 K and above 800 K, respectively. In the case of stoichiometric Zn+CO$_2$ and 3FeO+CO$_2$ reactions, C(s) formation reaches maxima below 700 K and 300 K, respectively. For all cycles, higher pressures favour the formation of C, according to Le Chatelier’s principle. Note that the reduction of CO$_2$ to C(s) requires double the amount of ZnO or Fe$_3$O$_4$ compared with the reduction of CO$_2$ to CO.

Figure 1: Scheme of the two-step solar thermochemical cycle for CO$_2$ reduction via M/M$_x$O$_y$ redox reactions (M denotes metal).
Second-Law analysis

A Second-Law (exergy) analysis has been performed to determine the theoretical maximum energy conversion efficiency of the CO\textsubscript{2}-splitting solar thermochemical cycle using the proposed two-step Zn/ZnO and FeO/Fe\textsubscript{3}O\textsubscript{4} redox reactions. A flow diagram for a general CO\textsubscript{2}-splitting cycle is shown schematically in Figure 2, composed of a solar reactor, a quench unit, and a reducer. Readily available CO\textsubscript{2} is assumed, i.e. after capture. The molar flow rate of CO\textsubscript{2} to the CO\textsubscript{2} reducer is set to 1 mol/s, to produce either CO or C, which implies different molar flow rates of the metal oxide to the solar reactor according to the given reactions. The complete process is assumed to be carried out at steady-state and at a constant pressure of 1 bar. In practice, pressure loss will occur throughout the system and pumping work will be required. Heat exchangers for recovering sensible latent heat are not considered. Additional assumptions are that the solar reactor is a blackbody absorber, all products separate naturally without expending energy, kinetic and potential energies are neglected, and all reactions reach completion. The solar-to-chemical energy conversion efficiency is defined as the portion of solar energy that is converted into chemical energy, given by the Gibbs free energy of the products, i.e. the maximum possible amount of work that can be extracted from the products when transformed back to the reactants at 298 K in a reversible, ideal fuel cell:

\[\eta_{\text{solar-to-chemical}} = \frac{\dot{W}_{\text{FC,ideal}}}{Q_{\text{solar}}} = \frac{-\dot{n} \Delta G_{\text{products}}|_{298 \text{ K}}}{Q_{\text{solar}}} \]

The baseline parameters are: molar flow rate of CO\textsubscript{2} = 1 mol/s, normal beam solar isolation = 1 kW/m2, solar flux concentration ratio = 5000 suns, nominal reactor temperature = 2000 K, and ambient temperature = 298 K. For Zn/ZnO cycles, \(\eta_{\text{solar-to-chemical}} \) reaches 30% and 39% for C and CO production, respectively. For FeO/Fe\textsubscript{3}O\textsubscript{4} cycles, \(\eta_{\text{solar-to-chemical}} \) reaches 22% and 29% for C and CO production, respectively. Higher efficiencies for Zn/ZnO than for FeO/Fe\textsubscript{3}O\textsubscript{4} are attributed to two factors: 1) the lower enthalpy change of ZnO-dissociation, resulting in 25% lower solar input, and 2) the lower heat capacities (on a molar basis) for Zn and ZnO compared to FeO and Fe\textsubscript{3}O\textsubscript{4}, resulting in a reduction of heat lost from quenching by a factor of more than 2. Major sources of irreversibility are associated with the re-radiation losses of a solar reactor operating at 2000 K and the quenching of products exiting the solar reactor.

In general, the Second-Law analysis indicates that a favourable aspect of using solar energy at high temperatures is the potential of achieving high solar-to-chemical conversion efficiencies. High efficiencies directly translate to lower solar collection area and associated costs of the heliostat field, which amount to 40–50% of the capital cost for the entire solar CO\textsubscript{2}-splitting plant.

Conclusions

Two-step thermochemical cycles for CO\textsubscript{2} splitting via Zn/ZnO and FeO/Fe\textsubscript{3}O\textsubscript{4} redox reactions have been thermodynamically examined. The results provide a foundation for pursuing an experimental study for reducing CO\textsubscript{2} with Zn and FeO. Additional measures could be applied in a real system to increase the overall efficiencies that were not considered in these analyses. For example, waste heat may be recovered from the quenching process and from the exothermic \(xM + CO_2 \rightarrow CO + xM \) reaction. An in-depth description of the thermodynamics analysis is described in Ref. [1], the reaction kinetics is described in Ref. [2], and the solar reactor technology for thermally reducing ZnO to Zn is described in Ref. [3].

References

Molecular dynamics of combustion species

Molecular states and energy barrier levels have to be known exactly when assessing reaction processes. Knowing the energy and configuration maps of a single molecule alone is an invaluable contribution to combustion modelling, as dynamical models primarily depend on energy levels and the number of possible states. As the overall progress of a chemical reaction is determined by single discrete rearrangements and the exchange of atoms between two colliding molecules, the kind and state of the resulting species, and the speed at which they form, are strongly dependent on such mechanisms.

Using formaldehyde as an example, the dissociation of molecules along two channels into two possible products was investigated: H + HCO and H$_2$ + CO. For both channels to proceed, formaldehyde has to be activated to relatively high, and only slightly different, energies (Figure 1). The goal was to understand the underlying mechanisms leading to either molecular or radical products. Currently, an approach to the even more complicated multi-channel dissociation of alkyl peroxy radicals is being made. Better knowledge of the peroxy chemistry in a flame will allow the ignition processes of a flame to be described more accurately than is possible today.

With femtosecond spectroscopy, the intra-molecular energy transfer in formaldehyde was monitored [1], beginning with measurements on the dissociation of di-tert-butylperoxide. Using the experimental facilities at the SLS/VUV beamline, urgently needed data will be added to the peroxy spectroscopy in the domain below 200 nm, in order to obtain highly resolved multi-photon [2] spectroscopic measurements in the laser lab.

Figure 1: Energy levels and potential of states of H$_2$CO relevant for the description of the dissociation reaction channels to H + HCO and H$_2$ + CO.

Chemical reactions in micro-scale devices

Flows in complex geometries and with flow regimes of Kn > 0.1 (ratio of mean free path to characteristic geometric dimension), e.g. porous media in catalytic modules and fuel cells, are being investigated by the Lattice Boltzmann (LB) method. A model consistent with kinetic theory that accounts for multi-component, surface-reacting and complex-geometry flows has been
established for the first time [3]. This model is able to capture non-trivial microscopic effects, such as velocity slip on rigid boundaries, which depends on the channel dimensions as well as the mixture composition. The model is being applied to transient reacting flow through catalytic pellets (Figure 2). An extension of the current formulation is underway, that will account for flows with temperature and density gradients, e.g. in (partial) oxidation catalysts. The thermal Lattice Boltzmann model [4] will be used as a platform for deriving a new thermal, multicomponent and reacting Lattice Boltzmann model.

Figure 2: Catalytic pellet bed reactor (pellets shown in blue). 2D distribution of methane mole fraction (dark red = max. conc.) and flow streamlines.

Dynamics of flames in meso-scale channel flows

Direct numerical simulation with detailed chemistry and transport is being used to map the dynamics of lean, premixed hydrogen/air flames in planar mesoscale (mm-sized) channels. Different burning modes have been observed, depending on inlet velocity, such as steady and oscillating flames, as well as the chaotic behaviour of cellular flame structures. Stability maps delineating the regions of different flame types have been constructed showing their dependence on channel geometry and inflow conditions [5]. It has also been shown that all intrinsic flame dynamics (Figure 3) can be suppressed by an appropriate catalytic reactivity of the channel walls. Thus, it is possible to eliminate undesirable unsteady combustion modes in practical small-scale combustors by applying a predetermined catalyst loading to the channel walls.

Figure 3: Flame stability diagram as a function of the inlet velocity (channel height: h = 4 mm).

Flame dynamics near the lean extinction limit

Homogeneously mixed, ultra-lean flames are favoured for their low-emission performance in stationary gas turbines. Exploiting this combustion technique to its limit (lean extinction) leads to dynamic extinction/re-ignition behaviour. OH chemiluminescence spectra are indicative of the resulting heat release fluctuations. Power spectra derived from OH-CL data (Figure 4) highlight the dynamic behaviour of lean premixed flames when approaching the lean blow-out limit. While system-specific resonance frequencies (see peaks at around 200 Hz) are observed for “stable” operating conditions, low-frequency pulsations (<10 Hz) dominate at lean blow-out [6].

References

Examples from the Swiss Light Source

Materials
Fundamental understanding of the interaction of highly porous carbon electrodes with electrolyte ions is of great importance for the optimization of energy storage processes in the electrochemical double layer of supercapacitor electrodes. In situ X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS) were performed at the MS and cSAXS beamlines of the SLS, respectively. In situ XRD enabled changes in lattice spacing of graphitic materials to be characterized as ions are intercalated. The formation of staged phases was observed for different electrolytes, and the effective size of intercalated ions could be estimated [1]. Experiments with ionic liquids under similar conditions indicate that staging is hindered in these electrolytes, demonstrating that the presence of solvent molecules can have a significant effect on the intercalation mechanism. For the first time, activated carbons for supercapacitors were investigated by in situ SAXS during electrochemical charging (see Figure 1). Changes in the scattered intensity were observed, predominantly on the length scale of the microporosity (<2 nm) of the activated carbon, implying a change in composition of the electrolyte within the pores (double-layer charging) and indicating that dimensional changes on these length scales are likely to occur. Structural changes accompanied frequently with oxygen evolution are among the major failure mechanisms of positive electrode materials used in lithium-ion batteries [2]. The combined use of in situ X-ray synchrotron powder diffraction (Figure 2), ex situ X-ray powder diffraction, and in situ neutron diffraction is efficient when studying ageing effects of materials in lithium-ion batteries. The goal is understanding the long-term reversibility characteristics of, e.g., Li1.1(Ni1/3Mn1/3Co1/3)0.9O2 by investigating the phase transitions the material might undergo when subjected to high potential (>4.5 V vs. Li+/Li). The changes in the crystal structure after first cycle charge, extended galvanostatic cycling, and potentiostatic stresses were examined by X-ray powder diffraction. It was found that Li1.1(Ni1/3Mn1/3Co1/3)0.9O2 did not undergo any phase transition when deeply delithiated, because of a lithium-nickel exchange degree of about 4% in the present sample. The latter property is believed to be the reason for improved structural stability as nickel ions present in the interslab space keep the (MO6)n slabs in place, thus preventing the O3 phase
from converting into the O1 phase. The Li1.1(Ni1/3Mn1/3Co1/3)0.9O2 material class is therefore a good candidate as a low cobalt electroactive oxide suitable for high-potential window operation.

Ex situ X-ray micro-tomography at the Tomcat beamline allows the bulk material and interfaces in complex structures to be visualized (Figure 3), e.g. in components of polymer electrolyte fuel cells (PEFCs) [3]. Ultrathin platinum layers serving as electrocatalysts can be displayed down to a typical loading of 25 μg/cm². Hence, this technique offers the chance of visualizing post-mortem morphological changes occurring in these layers during different operating conditions, e.g. steady-state, potential or relative humidity cycling.

Processes

In the case of PEFCs, a detailed and fundamental understanding of the transport processes – in particular in the microporous gas diffusion layer (GDL) – is important, because these processes contribute to polarization losses and degradation. Research is focused on the role of liquid water in the porous structure. At a given energy (10–40 keV), X-rays are attenuated by both carbon and water. Thus, X-ray micro-tomography allows the microporous structure of the carbon-fibre-based GDL materials to be determined simultaneously with the distribution of liquid water contained in parts of the void [4] – with a resolution of 1 μm at the Tomcat beamline. Figure 4 shows a 3-dimensional view of a GDL filled with water from the bottom. “Fingering” of water through the path with largest connecting pores is observed.

![Figure 4: X-ray micro-tomogram of a gas diffusion layer partially filled with water (blue: water; white: solid phase of GDL; black: void).](image)

Example from SINQ

Earlier successful work on Neutron Imaging at SINQ was continued and extended to novel aspects of liquid water visualization in PEFCs. Optimizations in the detector system allowed exposure times of less than 10 s to be achieved, while keeping the high spatial resolution required for observing the different layers of a GDL. This opens the way to **in situ** studies of water accumulation and removal dynamics. Additionally, advantage was taken of the isotopic sensitivity of neutrons for **in situ** study of exchange processes at fuel cell electrodes, by labelling either the fuel or external water humidification with heavy hydrogen atoms (2H) [5].

References

In the third year of operation of the Competence Center Energy and Mobility CCEM, several infrastructural investments have been realized, which now offer important opportunities to the research community. In the fields of Heat and Buildings, Electricity, Mobility, and Renewable Fuels, the networks among the involved groups started to generate fruitful benefits. The first joint Master's programme between ETH Zurich and EPFL, Lausanne has started and is in its initial year. The interdisciplinary approach has clearly increased the exchange and collaboration beyond the borders of the separate institutions.

In 2008, the Competence Center Energy and Mobility CCEM complemented its project portfolio. The scope of this was fully covered by available funds, which in the reporting period of expansion were lower than in years before.

The flexibility of CCEM's structure, which refrained from creating strict boundaries between the research fields as proposed in the business-plan (technologies for mobility, electricity production, and heat and buildings) has proved itself to be very powerful. In the meantime, a cross-cutting field (the generation of fuels based on renewable primary energies) has emerged which is linked to almost all the other fields. Interactions are quite easy to establish and are very effective.

In 2008, several of the infrastructure enhancements were completed, and now offer additional opportunities for interested research groups. Examples include the new experimental hall and the large-engine research facility at PSI, the engine test-bench at ETH Zurich and the test-stand at EMPA, all of which are now in operation.

In 2008, CCEM succeeded in strengthening its relations with the Universities of Applied Sciences (UAS). To date, the Fachhochschule Nordwestschweiz, Fachhochschule Zentral-schweiz, Zürcher Hochschule für Angewandte Wissenschaft, and Berner Fachhochschule have signed agreements of common understanding, which secure, at least partially, the funding of participating research groups of the UAS.

From PSI's internal perspective, activities are well connected with the research activities of the departments of General Energy Research and Nuclear Energy and Safety. The new experimental hall has opened new opportunities within CCEM projects, as well as outside the Center.

Results of collaborative projects

An educational project, the first joint Master’s course between ETH Zurich and EPFL, Lausanne, was started in 2008 with 12 students: Both schools and PSI are collaborating in the ‘Master’s programme of Nuclear Engineering’ supported by CCEM, and large interest has been shown in the second term of this course.

In the field of electricity, the platform for high-temperature materials (PHITEM) has seen the investigation of advanced high-temperature materials with the support of a new nano-indentation device and the FIB multiscale characterization tool. These tests included irradiated, i.e. radioactive, samples. The project is described in more detail in a dedicated article within this scientific report (see page 80).
In the NEADS (Next Generation Exhaust gas After-treatment for Diesel Systems), new SCR catalyst materials are being investigated in order to achieve high reactivity and conversion with low exhaust gas temperature. In addition, a ceramic-foam-based substrate is under development to replace the conventional diesel oxidation catalyst, improving the performance and lifetime of the subsequent after-treatment system (particulate filter and/or SCR system). This project is organised in three sub-projects: Sub-project I develops zeolite-based catalytic materials; Sub-project II concerns the development of the micro reactor; while Sub-project III investigates emission formation and reduction paths from the combustion through the after-treatment systems. The sub-projects in turn make use of tools and knowledge developed and acquired in the three tasks “new instrumentation for particle characterisation”, “numerical simulation” and “atmospheric interactions”.

One particular tool is the use of X-ray transmission microscopy for imaging phase-separated nanostructured organic material, to obtain a microscopic picture of soot particle properties at the nanoscale. After having designed, constructed and tested a novel environmental cell at the X-ray scanning transmission microscope (POLLUX) at the Swiss Light Source (SLS) at PSI, the tool was used to investigate the morphology, chemical composition and water uptake of diesel soot particles. Samples were taken from a smog chamber into which diesel soot from a EURO III diesel passenger car had been injected. In a first experiment, particles were studied as they underwent photochemical aging in the smog chamber. The main result was a unique spatially resolved picture of how water interacts with soot particles (see Figure 1). Detailed spectral analysis at the O K-edge allows water strongly bound to hydrophilic functional groups at low humidity to be differentiated from capillary water at high humidity.

The results and activities of other projects, covering the fields of mobility, electricity, heat and buildings, as well as fuels from renewable primary energy sources, can be found in [1].

New facilities available

A range of new infrastructure became available during 2008. After the indentation devices and focussed ion beam that are already being intensively used this year, the test stand at ETH Zurich was commissioned, with a single-cylinder engine for specific research on combustion and emissions from new fuels and injection strategies.

At EMPA, the construction of a dynamic test bench for large Diesel engines has made good progress and will be inaugurated in 2009.

Reference

The debate over the benefits and risks of nuclear energy has certainly not ended, but it can be seen in the international press that the tide of opinion is changing. The turbulence in the oil and gas markets, and the now obvious need to restrict the emission of greenhouse gases, compel today’s governments to look with new eyes at their nuclear options. A growing number of European governments are starting to invigorate their civilian nuclear programmes, and present them as the most pragmatic option for fighting greenhouse gas emissions. Sweden and Italy are the most spectacular examples as their governments have very recently announced a phase-out of the previous nuclear phase-out policy.

In Switzerland too, nuclear energy is making the headlines. During 2008, three requests for general site permits for nuclear power plants have been submitted: for Beznau, Mühleberg and Niederamt. In addition, the national nuclear waste cooperative, Nagra, has disclosed six potential sites for underground waste repositories.

For us researchers, geared towards the safe and sustainable use of nuclear energy, this confirms our basic conviction: that nuclear electricity generation is an asset to life in Switzerland today, and will remain one tomorrow. Our goal is to integrate nuclear energy in the sustainable energy mix even more comprehensively.

Strategic collaborations and tools

The Nuclear Energy and Safety Department (NES) is an active partner in the overall Swiss energy scene. It is NES’s duty on the national level to deliver objective judgments and rational methods to the stakeholders involved in the decision-making processes. The Department is also strongly embedded in the international nuclear energy research community, where it collaborates formally or informally with its contemporaries in other countries. Examples of this engagement are, for example, its active presence in the EU-based Sustainable Nuclear Energy Technology Platform; its formal engagement in support of the VHTR and GFR systems within the Generation IV International Forum; and its membership in the numerous working groups and committees of the IAEA and the OECD Nuclear Energy Agency.

Last but not least, NES is fully integrated in PSI’s research portfolio. For example, the use of the large facilities at PSI for addressing basic though far-reaching problems regarding the structure of matter is combined with application to practical, present-day issues, such as the sorption mechanism of radionuclides on specific clays or cements, and the ageing process of the metals used in current reactors. The state-of-the-art analytical, experimental and computer-supported tools available at PSI are an asset to the technologies of today, and will serve future applications in the decades to come.

Fundamental and applied research

In nuclear research, the focus on practical applications can be seen in NES’s involvement in the safety and operational issues relevant to present-day operating plants (Generation II), as well as its drive to a deeper understanding of plants offering even higher safety and reliability standards, such as those (Generation III plants) now being constructed worldwide,
and also envisaged for Switzerland. The development of the next generation of nuclear plants, for which increased sustainability is a central issue, is NES’s contribution to the long-term nuclear perspective. Furthermore, it is participating in the advancement of Generation IV designs, which aim to maintain the advantages of safety and cost-effectiveness of today's plants, while decreasing dramatically the consumption of the planet’s fissile resources and recycling a significant share of the radioactive waste.

Six laboratories and a common strategy

NES’s portfolio concentrates on selected topics of nuclear science and technology and is organised in six units. The Laboratory of Reactor Systems (LRS) focuses on the high-fidelity numerical simulation of nuclear reactor systems under normal operational conditions, and their transition to abnormal situations. As a counterpoint, an experimental platform on reactor physics is maintained, providing hands-on experience of neutronic behaviour for various reactor concepts. LRS is also involved in developing better understanding of advanced reactor cores operating with fast neutrons.

The Laboratory for Thermal Hydraulics (LTH) addresses the reactor cooling issues. For Generation II reactors, the coolant is water at high pressure and temperature. Both single- and two-phase flows are studied, the latter including mixtures containing water and steam bubbles, and steam with water droplets, and the related heat transfer phenomena. The long-term goal of the research is to link instrumentation of high spatial and time resolution with solutions of the basic equations of fluid motion, not only for water-cooled reactors, but for the variety of coolants which feature in future design concepts, such as gases, liquid-metals and (possibly) molten salt.

Materials, either in the form of oxide or ceramic fuels, or as metallic structural components, determine both the reliability and lifetimes of nuclear reactors, and thereby their overall economic viability. Material behaviour also determines the ultimate operational limits for reactors. The Laboratory for Nuclear Materials (LNM) has a long tradition in the study of nuclear fuels, and in the ageing of structural components under the hostile conditions that exist over decades in a nuclear power plant. With an eye to the future, LNM has recently developed experimental and modelling skills in advanced ceramics and metals for high-temperature environments.

Examination of materials following irradiation is the main focus of the Hot Laboratory at PSI. The Hot Lab (AHL) serves the users of the PSI irradiation facilities, both in regard to their industrial operational needs and in the context of advanced materials research. Dedicated measurement points for the safe handling of radioactive samples are also installed in other large, less-specific facilities at PSI, such as SINQ and SLS.

Nuclear reactions produce fission products as waste, but with an associated risk of radioactive contamination of the biosphere. The Laboratory for Nuclear Waste (LES) investigates the retention capabilities of certain geological layers to isolate the waste from the biosphere over the long time periods commensurate with the longest decay times of the radionuclides present: that is, from tens of thousands to millions of years. The responsibility of the Laboratory of Energy Systems Analysis (LEA), which is common to both Energy Departments at PSI, is to offer a global perspective over all sustainable energy technologies of interest to Switzerland. The technologies are considered over their entire life-cycles, including their ecological, economic and social implications.

Highlights

The following pages present a selection of highlights of the activities of NES during the past year. The articles aim to give a representative view of the variety of tasks needed to further the understanding of nuclear reactors, both present and future, and of the nuclear fuel cycle.
Coupling classical thermal hydraulics with computational fluid dynamics for nuclear reactor systems

Davide Bertolotto, Annalisa Manera, Rakesh Chawla, Laboratory for Reactor Physics and Systems Behaviour, PSI; Simon Frey, Horst-Michael Prasser, Laboratory for Thermal Hydraulics, PSI

The use of computational fluid dynamics (CFD) codes to address nuclear safety issues and to improve the accuracy of nuclear system transient analysis has grown significantly in recent years. However, the large computational costs involved in a CFD simulation limit its use to local areas of the nuclear plant system. As a consequence, best-estimate 1-D thermal-hydraulics codes still represent the main workhorse for system analysis. PSI’s STARS project is developing a tool capable of performing detailed CFD component analyses, while retaining the full feedback from, and to, the plant 1-D simulation through coupling with a system code.

Introduction

As part of the safety assessment and licensing procedure for nuclear power plants (NPPs), a wide range of analyses are carried out using best-estimate codes. These have been developed and validated to analyze system response during a wide variety of accident scenarios and transients. In these codes, the conservation equations (mass, momentum and energy) that describe the two-phase flow and the heat transfer are usually based on 1-D approximations. The thermal-hydraulics modelling employs an appropriate set of correlations and physical models (closure relationships). The model for a specific nuclear power plant is then built up by connecting 1-D modular components (pipes, tees, pumps, valves, etc.). There are, however, certain accident scenarios foreseen for NPPs in which strong asymmetries exist in the properties (e.g. boron concentration or temperature) of the coolant entering the reactor pressure vessel (RPV). These asymmetries depend largely on the coolant mixing taking place in the downcomer and in the lower plenum of the RPV. Such mixing phenomena are strongly 3-D and are influenced by turbulence, so that 1-D approximations are unsuitable for this class of problem.

On the other hand, in the context of single-phase mixing applications, CFD codes have reached a satisfactory level of maturity to be able to provide a complementary capability to system codes for accurately dealing with multidimensional flows. The coupling of system codes and CFD is therefore a logical step for nuclear safety applications, especially when applied to the analysis of transients in which 3-D flows play an important role in the evolution of a given accident scenario.

Coupling

A coupling [1] has been developed between the US NRC (Nuclear Regulatory Commission) best-estimate system code TRACE and the commercial CFD code ANSYS-CFX. The PVM (Parallel Virtual Machines) environment has been used to manage the information traffic between the two codes. Exchange of variables occurs at the boundary elements of each code. The conversion from 1-D to 3-D boundaries is crucial, since additional information on the flow is required (e.g. inlet velocity profile, which is not necessary in 1-D approximations). Another critical point is the numerical stability of the coupling, since it is developed following an explicit or semi-implicit scheme. This limits the choice of the temporal and spatial discretization adopted.

The currently implemented coupling has been verified, firstly against simple numerical tests, and then against an experiment involving 3-D mixing effects.

Figure 1: Simplified scheme of the double T-junction experiment.
Double T-junction experiment

The experimental set-up used consisted of two loops connected by means of a double T-junction, with a recirculation loop connecting the two branches (Figure 1). The operating fluid was tap water and the mass flow ratio between inlet and recirculated mass flow rates was 1:1. The loop was instrumented with three wire-mesh sensors [2] to measure the cross-sectional distribution of a tracer, injected at the location WM1 indicated in Figure 1. During the transient, the tracer was partially recirculated (to location WM2) and partially ejected (WM3) from the system at each recirculation, until it was completely expelled from the facility. For the coupling involved in the simulation, the double T-junction was modelled with CFX, while the recirculation loop was modelled with TRACE.

Results

The velocity field inside the double T-junction is strongly multidimensional (Figure 2), and therefore a TRACE simulation alone cannot capture the correct amount of tracer which is recirculated in the side loop (a 1-D code will partition the tracer according to the mass flow ratio between the junctions themselves). A clear improvement of the computational results was obtained when the coupled tool CFX-TRACE was employed (Figure 3), with some small discrepancies due to the unstable velocity field in the proximity of the outlet boundary WM3. Parametric studies have shown a clear influence of the inlet velocity profile on the simulation results [1]. In the currently presented results, a fully developed turbulent profile has been used, since this is representative of the actual experimental conditions.

Conclusions

A coupling between the 1-D system code TRACE and the CFD code ANSYS-CFX has been developed and verified. A first validation experiment, in which 3-D effects in the flow are important, has been carried out and comparison between experimental and simulation results indicate definite advantages of the coupled tool, relative to the use of a stand-alone system code.

References

In T-junctions, particularly in the regions where hot and cold streams are not completely mixed, significant temperature fluctuations can occur near the walls. Such fluctuations may induce cyclic thermal stresses in the walls and may eventually lead to fatigue cracking. These problems were first considered in the context of Liquid-Metal Fast Breeder Reactors (LMFBRs) in the 1980s. Although the problem is particularly pronounced in a liquid-metal reactor, due to the high thermal conductivity of the liquid-metal coolant, thermal striping is an issue in Light Water Reactors (LWRs) as well. A few instances of high-cycle fatigue have been observed in T-junctions, such as the one at Civaux. Recent research activity in this area includes the experiments and benchmarks undertaken by Vattenfall and the comprehensive, European 5th Framework Program THERFAT. Present research is undertaken as a part of the Plant Life Management (PLiM) project in Switzerland.

Experiments

The high cyclic nature of these phenomena makes them difficult to monitor with conventional thermocouple instrumentation, due to the limited sensor response time. Yet reliable prediction of thermal fatigue loads is an important part of managing the risk. The temperature fluctuations at frequencies up to several Hz caused by the turbulent thermal mixing, present the highest risk of wall thermal fatigue. Significantly higher frequencies than these appear not to pose a risk, as they are strongly attenuated by the thermal inertia of the pipe wall. Using the analogy between turbulent mass and thermal transport and mixing, isothermal experiments have been performed using regular tap water and demineralised water. The setup consists of a horizontal T-junction geometry of Plexiglas pipes of 50 mm inner diameter. Regular tap water flows in the longer pipe (1.5 m) and demineralised water in the shorter, branch pipe (0.5 m).

A photograph of the test section is given in Figure 1. The two streams join and mix at and after the T-junction, and the mixture is drained through a flexible hose shown on the right side (green). Close to the inlets of both pipes, honeycombs are placed to straighten the flow. Both pipes are sufficiently long to ensure a developed flow profile as the fluids arrive at the T-junction, giving well-defined boundary conditions for the CFD simulations. In the arrangement used in this work, the instrumentation consists of two wire-mesh sensors (WMS) placed one behind the other, 51 mm downstream of the junction. The wire-mesh sensors used for this study have 16 × 16 wires constituting a grid of 236 measurement points (from the 256 combinations, a few points are missing in the corners due to the circular pipe geometry). The pitch of the measurement grid, which also defines the spatial resolution of the measurements, is 3 mm. The time resolution of the measurement is 600 frames per second.
Calculations

The calculations presented here were based on the Large Eddy Simulation (LES) approach and were carried out using the FLUENT 6.3 commercial CFD package. Previous studies \[2,3\] on mixing showed the higher suitability of LES with respect to Reynolds-Averaged Navier-Stokes (RANS) and Scale-Adaptive Simulation (SAS) of turbulence. As a drawback, LES is an order of magnitude more expensive than SAS and two orders of magnitude more expensive than RANS \[3\].

Results

Figure 2 shows a comparison of the conductivity distribution in the pipe cross-section at \(x/D = 1\) distance downstream of the T. Apparently, LES is able to qualitatively predict conductivity distribution very well. At \(x/D = 1.0\), the high conductivity region has quite similar half-moon shape for both WMS and LES. The most obvious difference is a slight anti-clockwise tilt visible in the experiments, which is due to the buoyancy of the side flow, but not accounted for by LES. The recirculation region (blue in Figure 2) is also well predicted by LES. Recirculation transports tap water back to the measurement plane, thus leading to a slight increase in conductivity. Distribution of RMS of conductivity at \(x/D = 1.0\) is shown in Figure 3. As with conductivity distributions, LES predicts its RMS very accurately.

The sharp interface region (red) shows high RMS values and results from a strong shear between the two streams. RMS of conductivity reaches a minimum in both high-velocity and recirculation regions, since they are not yet mixed at this position. The interface region (sickle-shaped) is thin for both WMS and LES and has similar thickness. Figure 4 gives comparison of conductivity and its RMS at the midline of the measuring plane. The accuracy of LES is striking for both quantities.

Conclusions

Mixing studies are being performed at PSI’s Laboratory for Thermal Hydraulics with the final aim of finding the most suitable experimental technique, as well as to improve modelling aspects to predict these phenomena. WMS is particularly suited for examining such flows, thanks to its spatial resolution and high frequency. From the numerical viewpoint, LES offers the most accurate answer, but as a drawback is very expensive. The striking accuracy of LES in predicting conductivity and its RMS is encouraging but not surprising, since LES is most suitable for predicting phenomena governed by large coherent structures, such as the one featured in the mixing part of the flow in the T-junction. Future experimental and numerical investigations should focus on the near-wall region, which is responsible for generating thermally-induced cyclic stresses, and on prediction of characteristic mixing frequencies.

References

The Hot Laboratory (HOTLAB) of the Paul Scherrer Institute (PSI) started its activity in 1963 (at that time in the Eidgenössisches Institut für Reaktorforschung/EIR). Since then, it has been extended with so-called Pu-Laboratories, which allow the production, study and storage of advanced nonirradiated nuclear fuel for future generations of nuclear reactors. Its infrastructure has been steadily upgraded, to ensure the required safety for such infrastructure and the safe containment of the hazardous materials.

A major effort has been made throughout these years to keep the available analytical infrastructure up to the needs and expectations of the users and also offer new possibilities for detailed analysis of radioactive materials.

Most of the research activities realized in the HOTLAB start with the delivery of heavily radioactive batches of materials to the large concrete hot-cell chain and continue with detailed and often sophisticated analytical analysis.

The concrete hot-cell chain

Heavy transport casks used for the international transport of radioactive goods are unloaded in one of the five large concrete hot cells. Cell number 1 can accept full-length Light Water Reactor (LWR) fuel rods for detailed non-destructive examination. Visual inspection of the rod surface and measurement of the oxide layer thickness and variation of rod diameter and rod length, with regard to their nominal values, allow a detailed analysis of the rod state to be made. This allows the first characterization of flaws resulting from the service life of a rod in a reactor, which is essential for the prediction of the lifetime of new rod design for nuclear power plants.

Smaller batches of material irradiated in accelerator facilities in PSI itself, as well as in research reactors around the world, are unloaded in smaller concrete cells. For example, irradiated test materials for future neutron sources, based on liquid metal technology, are delivered, sorted and cleaned in these cells for the target development group of PSI, as well as irradiated materials developed for future fusion nuclear reactors by the fusion technology group of EPFL. After delivery, subsamples must very often be cut up for further detailed investigation. The HOTLAB had to adapt commercially available equipment, such as the Electrical Discharge Machine (EDM), for their remote handling in the cells. This allows small specimens with complex shape (as seen in Figure 1) to be produced.

After cutting, these samples are dispatched to the many shielded analytical facilities available in the laboratory, where observation of the material structure is often needed.
Solid-surface analytical tools

Irradiation induces changes in material structures through nuclear reactions, as well as thermal or chemical processes. These modifications can be observed at the micron and sub-micron length scale on polished specimens with an Optical Microscope (OM), Scanning Electron Microscope (SEM) or Electronic Probe Micro-Analysis (EPMA). The Hot Laboratory has two shielded cells dedicated to the preparation of such specimens, to allow the detection of structural modification in a material, such as in the case of the nuclear fuel restructuring occurring at very high burn-up (Figure 2 – left). These observations are often the starting point for more sophisticated analysis to understand the degradation processes resulting from the irradiation.

Elemental and isotopic analytical tools

Irradiation also induces modification of element distribution. EPMA allows the distribution of the major elements in a sample to be determined. This helps to understand the thermal and nuclear processes that occurred during reactor operation. For example, observation of the Uranium distribution at the fuel/cladding interface (Figure 2 – right) gives information on the corrosion processes at this critical interface relevant to the integrity of an LWR fuel rod.

Often the elemental information is not sufficient and isotopic details are needed to comprehend properly the irradiation effects. This is often critical for the validation of the very sophisticated modelling software available today. The HOTLAB is a leader in the development of the Secondary Ion Mass Spectrometer (SIMS) as well as in Inductively Coupled Plasma Mass Spectrometry (ICP-MS) techniques for the isotopic analysis of highly radioactive materials. The ICP-MS coupled with High Performance Liquid Chromatography (HPLC) allows, for example, the separation of different neighbouring elements that suffer from isobaric interferences, as shown in Figure 3 for the analysis of fission products in nuclear fuel.

Mechanical properties

Finally, structural and chemical modification of materials can have a critical effect (often degrading) on the mechanical properties of samples. The HOTLAB offers the basic infrastructure for investigating irradiated specimens in shielded environments, including the transfer, loading and unloading of specimens in dedicated test facilities. Different machines have been developed, and are operated, by PSI and EPFL research groups for the shielded boxes to allow detailed investigation of the mechanical properties of irradiated materials at different temperatures and in different environments (Figure 4).

Summary

The PSI Hot Laboratory offers state-of-the-art infrastructure for experimental studies of radioactive material behaviour and is being successfully used by many PSI and external research groups. Further information on current Hot Laboratory tasks, operators and users can be found on: http://ahl.web.psi.ch.
Advanced reactors will be exposed to high temperatures, non-aqueous environments and high dose levels. Also, reactor materials are expected to differ considerably from those used in current plants (coarse-grained materials, nickel-based alloys, etc.). These facts suggest a need for non-destructive evaluation (NDE). The major challenge for this is the envisaged plant design lifetime of 60 years, with possible extension. Information about the actual condition of components becomes extremely important, as there is no long-term experience with such plants. Complementary to conventional NDE techniques, the analysis of very small samples taken from significant locations can provide more detailed information concerning damage.

Stress-strain information can be obtained from punch tests. Discs of 3 mm diameter and about 200 µm thickness are deformed either with a small ball (1 mm diameter) or a cylindrical punch of similar diameter. The resulting load-displacement curves can be converted into stress-strain curves with finite element analysis – a method well established for the determination of irradiation hardening in the laboratory. Thin strips, i.e. 100–200 µm-thick dog-bone-shaped samples, can be used for tensile and creep tests. Even less sample material than for thin strips and punch tests is needed for nano indentation and micro/nano-sized samples, such as micro bend bars or micro pillars. Nano-indentation and micro-sample testing will be described in the present article. Figure 1 shows the load-displacement response of a ferritic oxide dispersion strengthened (ODS) steel which was tested before and after He-implantation. The implantation creates irradiation damage (point defect clusters), leading to hardening of the material, which can be clearly seen.

Samples of micrometre dimensions can be manufactured with a focused ion beam (FIB) and these samples deformed using the head of the nano-indenter for the application of deformations and loads. Figure 2 shows a small pillar which was tested under compression. The material is again the ferritic ODS steel. This alloy has very large grains and therefore the pillar consists of a single crystal. The shear plane is clearly visible and a correlation with the critical shear stress can be made. Comparison of the shear stress measured with dog-bone samples in tension compare very well with the results obtained from micro-pillar compression. This is not necessarily always the case, and considerable size effects can be found in micro-pillar tests, particularly for single-phase materials [1]. Most important for condition monitoring is the relative
change of mechanical properties as a result of damage. Figure 3 shows results from compression tests of the ferritic ODS steel before and after helium implantation. The sample material was the same as that for which the nano-indentner results were shown in Figure 1. Irradiation hardening of about 20% was found for the indenter tests as well as for the micro-pillar tests.

Important additions to the micro-mechanical investigations are micro-characterization with electron microscope and advanced beamline techniques such as extended X-ray absorption fine structure (EXAFS). These techniques allow quantitative assessments of damage to be made, such as the analysis of point defect clusters or coordination analysis.

Another important issue concerns the quantitative understanding of damage with respect to component life. Constitutive equations and other parameterizations of material properties are usually applied with time-independent coefficients and exponents using the properties of virgin material. These can change as microstructure changes. Conversion of these changes into mechanical response could provide a possibility for better assessments of the development of mechanical properties with time. The inclusion of multiscale modelling tools for describing materials through several length (and time) scales, starting at the atomic level up to the level of finite element analysis, is expected to enhance the current modelling schemes used. A detailed discussion of these methods is given in [3].

Figure 3: Stress-strain curve of a ferritic ODS steel before and after helium implantation determined by micro-pillar compression.

Mechanical testing of small samples, together with advanced analytical methods and materials modelling, provide a very promising option for the determination of damage in nuclear plants. It is proposed to use these combined tools for the assessment of the residual life of components with an expected lifetime of 60 years or more. Even very small samples (not affecting the integrity of a component) could be investigated. Taking such a “fingerprint” of the condition at scheduled time intervals would provide an improvement in relevant material parameters and design rules. Using these fingerprints in synergy with a multiscale modelling scheme would bring a more fundamental understanding of the mechanisms causing material aging. Information from such methods of condition monitoring goes far beyond the possibilities of current NDE. Micro-sample/micro-scale modelling for condition monitoring should be used complementarily to conventional non-destructive methods, to provide a sound picture of the status of a component, which can be used for safety considerations and reliable risk assessment.

This work was essentially supported by the Swiss Competence Center Energy and Mobility (CCEM).

References:
Assessing the long-term safety of a radioactive waste repository can be greatly assisted by a molecular-level understanding of the behaviour of radionuclides in the geosphere. This knowledge is needed in order to establish reliable thermodynamic data to quantify the retention and transport of radionuclides in deep groundwaters. The fate of released radionuclides in geological environments is primarily controlled by sorption/desorption processes onto mineral surfaces. Clay minerals are major constituents of the potential host rock formations considered in the design of a high-level radioactive waste repository.

The sorption of metal ions is strongly dependent, amongst other things, on ionic strength, pH and the presence of organic or inorganic ligands in solution. A detailed understanding of the sorption mechanisms occurring at the mineral surface over a representative range of relevant conditions is essential for performance assessment.

Carbonate is ubiquitous in deep groundwaters and has a great complexation affinity for actinides. Such complexes in the aqueous phase can potentially lead to a decrease in sorption and thus an increase in the migration rates of actinides. Thermodynamic and structural data for lanthanide/actinide-carbonate-mineral systems are sparse. However, such data are absolutely essential, since clay rock porewaters often contain quite high carbonate concentrations. For trivalent actinides and U(VI) it has been reported that the formation of ternary (hydroxo)carbonate surface complexes may contribute to surface sorption reactions [1–3] (Figure 1). Taking the latter into account requires unambiguous identification of the mixed surface species. The objectives of the current study are to investigate with a combination of wet chemistry, geochemical modelling and spectroscopic studies whether or not ternary Ln(III)/An(III)-carbonate complexes form at the surface of clay minerals.

Macroscopic and microscopic investigations

Macroscopic sorption experiments have been carried out in the absence and presence of carbonate, to quantify the influence of inorganic carbon on the sorption of trivalent actinides/lanthanides on different clay minerals. Sorption measurements were carried out as a function of pH in the presence of various carbonate concentrations. The measurements show that a pronounced decrease of sorption is observed in the presence of carbonate (Figure 2).

Modelling with the 2-Site Protolysis Non-Electrostatic Surface Complexation and Cation Exchange (2SPNE SC/CE) sorption model [4], under the assumption that carbonate complexes
do not sorb, largely under-predicts the experimental data (red dashed line in Figure 2). Consequently, other surface sorption reactions involving carbonate complexes must be considered. The experimental data for Ln(III)/An(III) could only be successfully modelled with the 2SPNE SC/CE sorption model by including two additional surface complexation reactions, forming $≡$SSOAnCO$_3$ and $≡$SSOAnOHCO$_3$ surface species [3].

Time Resolved Laser Fluorescence Spectroscopy (TRLFS) has proven to be a versatile tool for Cm(III) speciation studies and for sorption studies on various solids [5, 6]. The TRLFS measurements were carried out on Cm(III)-loaded clay pastes at T < 20 K. In a preliminary step, an iron-poor clay mineral, kaolinite, was chosen in order to avoid any fluorescence quenching by iron. The excitation spectra of the Cm(III) kaolinite samples were measured by scanning the excitation wavelength in the range of the $[^4D_{7/2} \rightarrow ^6S_{7/2}]$ transition [595–625 nm], recording simultaneously the corresponding Cm(III) emission spectra.

Figure 3a shows the excitation spectra of Cm(III)/kaolinite samples prepared in the absence (black line) and in the presence (red line) of 20 mM NaHCO$_3$. Figure 3b shows the fluorescence emission decay curves of Cm(III) obtained for both systems by exciting at two different wavelength. The fluorescence features (shift to higher wavelength and shape of the excitation spectra, bi-exponential decay and increase of the fluorescence lifetime) of the Cm(III)-carbonate-mineral systems differ strongly from those of the carbonate-free systems, indicating different coordination environments for Cm(III). This is clear evidence that ternary An(III)/(hydroxy)-carbonate surface complexes form on the clay edge surface, as postulated in the macroscopic study.

References

Secondary organic aerosol (SOA) is formed by the chemical transformation of gaseous precursors in the atmosphere and comprises a substantial fraction of the organic mass of atmospheric aerosols. At present, the global formation of SOA is poorly constrained, with estimates ranging from 12–70 Tg/year. Such estimates rely critically on laboratory measurements of the amount of SOA produced by individual SOA precursors, typically carried out in large environmental (“smog”) chambers. The global emission of isoprene (2-methyl-1,3-butadiene, C5H8), estimated at ~500 Tg/year, is far higher than that of biogenic terpenes and anthropogenic hydrocarbons. Thus, even if only a small fraction of the isoprene oxidation products partitions to the atmospheric aerosol, this may result in a very large contribution to the global aerosol. This necessitates careful investigation of the fate of isoprene oxidation products on a global scale, in order to reduce the associated uncertainties. Recent laboratory-chamber studies of isoprene photo-oxidation reported SOA yields that varied by a factor of 5 ([1] and references therein). The discrimination between the oxidation products of a specific precursor and the organic matrix of the pre-existing aerosol can be achieved by isotopic labelling.

For the production of 13C-labelled isoprene, six potted velvet bean plants (Mucuna pruriens) were placed in a 184 L Plexiglas chamber and irradiated with xenon lamps after the addition of 600–700 ppm of 13CO2 (Figure 1). The isoprene concentration and its degree of labelling were checked regularly with a proton transfer reaction mass spectrometry (PTR-MS) instrument (Ionicon). Figure 2 shows that 70–80% of carbon was already labelled after one hour, and on average a final labelling of 81±2% was obtained [1]. When the concentration of isoprene in the plant chamber became sufficient (~2200–4100 ppb), the air mixture was
transferred to the large smog chamber. Two glass traps cooled to \(-131^\circ C\) were used in the transfer line, resulting in negligible quantities of any impurities also produced by the plants (such as monoterpenes), as shown by PTR-MS. Varying amounts of (non-labelled) \(\alpha\)-pinene were added, then nitrous acid (HONO) was continuously injected into the smog chamber as an OH radical source. Thereafter photo-oxidation of the mixture was started by turning on the lamps of the chamber. All experiments were performed at \(20^\circ C\) and 50% relative humidity.

Since the photo-oxidation of \(\alpha\)-pinene produces SOA much faster than that of isoprene, \(\alpha\)-pinene SOA serves as organic seed for the isoprene oxidation products. The amount of organic seed was varied by the addition of different amounts of \(\alpha\)-pinene. SOA was then sampled by three different methods for \(^{13}\)C analysis, i.e. an impactor, a filter and electrostatic deposition, with all three sampling techniques providing very similar results. The sampled aerosol was burnt with oxygen in an elemental analyzer coupled to the inlet of the isotope ratio mass spectrometer. From the \(^{13}\)C content, the amount of isoprene SOA as well as the yield (formed isoprene SOA normalized by the amount of reacted isoprene) were determined.

Results

The yield of isoprene as a function of SOA mass is presented in Figure 3. The measured yields are shown, as well as the values after correction for incomplete reaction of the first products of isoprene. The data show a strong increase of the aerosol yield with pre-existing aerosol mass concentration, increasing from 0.02 at 10 \(\mu g\) m\(^{-3}\) to 0.1 at 100 \(\mu g\) m\(^{-3}\) of SOA. This is explained by the partitioning theory: with a higher aerosol load, more semi-volatile compounds are driven into the aerosol. Figure 3 also depicts isoprene SOA yields used in the literature for modelling studies [2, 3]. Results described here fall somewhere between these two studies. The application of the upper line of Figure 3 in global models could result in an increase of the total SOA burden in the atmosphere by a factor of 2–3, with major increases in the free troposphere [4].

These model results underline the importance of studies of this kind. As the data in Figure 3 show, these studies need to be performed under conditions that are as close to the ambient atmosphere as possible. Here, experiments that take advantage of labelling techniques offer a high potential.

References

Direct radiative forcing due to increase in total solar irradiance since 1750 is estimated to be only +0.12 (−0.06, +0.18) W/m² [1]. Nevertheless, a number of climate records show a significant response to variations in solar activity [2–4], providing evidence for a solar forcing effect. The underlying physical processes, however, are still not fully understood. Here, we report on a 10–30-year lag between solar forcing and temperature response in the continental Altai, pointing to an indirect sun-climate mechanism in this region.

Temperature record

The Altai Mountains lie on the border between Russia, Kazakhstan, Mongolia, and China. In 2001, a Swiss-Russian research team drilled an ice core from the Belukha glacier in the Siberian Altai (Figures 1 and 2) that provides information about the climate and atmospheric pollution during the past 750 years in this region with a pronounced continental climate [5]. Temperatures in the Altai were reconstructed using the ice-core oxygen isotope (δ¹⁸O) record. It was demonstrated that the δ¹⁸O record followed closely the atmospheric temperatures at a nearby weather station over the past 130 years, and can therefore be used as a temperature proxy [5].

Temperature response lags behind solar forcing

The established temperature record was directly compared with proxy records of solar activity (solar modulation derived
The Altai temperature record correlated significantly with the solar activity proxies in the period 1250–1850 (Figure 3), suggesting that the sun was the main driving force for the temperature variation during the preindustrial period. The influence of solar activity on the Altai temperatures is corroborated by a spectral analysis of the temperature record, showing significant periods at 205, 86, and 10.8 years [5], which can be related to the solar Suess, Gleissberg, and Schwabe cycles, respectively. Interestingly, the regional temperatures followed the solar forcing with a time lag of 10 to 30 years (Figure 4). Since the influence of solar activity on climate has not yet been fully resolved, such observations provide an important contribution to its understanding. One possible mechanism, which might explain this average lag of 20 years, is the indirect effect of the solar activity on temperature changes involving ocean-induced changes in atmospheric circulation [7]. Ocean water warms up more when the solar radiation is most powerful, i.e. in the sub-tropics and the tropics. The heat energy absorbed is carried from lower to higher latitudes by the ocean, then released back into the atmosphere. Because of the high thermal capacity of the oceans and the variable velocities of their currents, these processes are subject to considerable delay. Changes in the North Atlantic atmospheric circulation system, which is responsible for temperature changes in the Altai, may be initiated 20 years earlier by changes of solar radiation in the tropical oceans.

Industrial period 1850–2000

The reconstructed temperatures are significantly correlated with the 10Be-based and 14C-based solar activity reconstructions in the period 1250–1850, but not with the greenhouse gas CO$_2$ (Figure 3). This indicates that solar activity changes are a main driver for the temperature variation in the Altai region during the pre-industrial period. However, during the industrial period (1850–2000), solar forcing became less important and only the CO$_2$ concentrations show a significant correlation with the temperature.

Acknowledgements

This work was supported by the SNF, Marie Heim-Vögtlin programme. We would like to thank Patrick Ginot and Beat Rufibach for drilling, and Martin Lüthi, Henrik Rhyn, Dimitrii N. Kozlov, Sergej Derewstschikow, Vladimir Vashenzev, Andrej Jerjomin, Veronica Morozova, Alexander Chebotkin, and Igor Karakulko for their help during the expedition.

References

Figure 3: a) Reconstructed Altai temperature (deviation from mean, orange) and solar activity inferred from 10Be (blue) and 14C (green). The solar modulation curves were shifted by 20 years (average value of the lag between solar forcing and temperature response); b) Reconstructed temperature (orange) and CO$_2$ concentration (black). Given are 10-year means smoothed with a 5-point moving average. The vertical line divides the pre-industrial era (1250–1850) from the last 150 years. Significant r^2 ($p<0.05$) are marked (*, bold).

Figure 4: Cross correlation (r) between Altai temperature reconstruction and 10Be-based solar activity. A window of 200 years was moved through the data in steps of 10 years to obtain the temporal changes of the correlation coefficient.
Power generation based on fossil fuels will substantially contribute to the world’s growing electricity demand over the next few decades. However, considering the ambitious goals set for climate change mitigation and the increasing scarcity of resources, fossil technology improvement is essential. Life Cycle Assessment (LCA) shows that it can significantly reduce Greenhouse Gas (GHG) emissions, but only the application of Carbon Capture and Storage (CCS) will allow renewable technology GHG levels to be reached by 2050. However, CCS will at the same time substantially increase costs and consumption of fossil resources.

The recently finalized EU project NEEDS (New Energy Externalities Developments for Sustainability; 2004–2009) included a comprehensive environmental and economic assessment of a wide spectrum of current and future power generation technologies. This evaluation will support the further development of a sound European energy strategy. Among other tasks, PSI was – in collaboration with IER – responsible for the assessment of advanced fossil systems, including CCS technologies [1].

Scope and methods

This analysis covered hard coal, lignite (both as pulverized coal (PC) and IGCC units) and natural gas combined cycle (CC) power plants, with and without CCS, as well as natural-gas-fuelled plants for decentralized combined heat and power generation. Three different scenarios were established for the time frame of the study: the estimation of pessimistic, realistic-optimistic, and very optimistic technology developments, which could reflect the possible spectrum of evolutionary technological progress until 2050. The three most promising options for CO₂ capture – post-, pre-, and oxyfuel-combustion – were considered, along with CO₂ storage in saline aquifers (at a depth of 800 m) or depleted gas fields (2500 m), representing the two types of storage sites most likely to be implemented in Europe on a large scale [2]. The environmental assessment was based on LCA methodology, taking into account complete energy chains, including not only the operation of power plants but all steps in the energy chain, e.g. the extraction and processing of resources, construction of infrastructure, transport and waste disposal. Cumulative environmental burdens (emissions to air, water and soil, land use and consumption of resources) were calculated per kWh electricity at the busbar of a power plant, using...
Selected results and conclusions

The LCA results in Figures 1 and 2 show the “worst case” and “best case” scenarios for hard coal: the former assumes CCS with post-combustion capture and depleted gas field storage of CO₂, while the (very) optimistic scenario considers CCS with oxyfuel-combustion capture and saline aquifer storage. Advanced power plants, with higher efficiencies due to new Ni-based alloys which can withstand combustion temperatures up to 750°C, will allow GHG emissions to be reduced from about 840 g(CO₂-eq.)/kWh today to around 650 g(CO₂-eq.)/kWh in 2050, in the best case, but still exceeding the emission levels of natural gas chains by almost 100%. Application of CCS leads to a more substantial reduction, with about 30–40 g(CO₂-eq.)/kWh of cumulative emissions (red lines in Figures 1 and 2). While hard-coal supply alone is responsible for about 100 g(CO₂-eq.)/kWh, lignite with CCS, due to minor emissions from mining and transport, and natural gas chains with CCS, could reach GHG levels of 30–40 g(CO₂-eq.)/kWh. The rate of CO₂ capture (90% for post- and 100% for oxyfuel-combustion), energy demand for CO₂ injection depending on the depth of the reservoir, and contributions from fuel supply are the factors dominating the GHG performance of fossil energy chains with CCS.

Using Life Cycle Impact Assessment (LCIA) methods and external costs, aggregating a wider spectrum of environmental impacts reduces the advantages of CCS (Figures 3 and 4). Carbon dioxide capture considerably decreases power plant efficiency and, therefore, more fuel is required for the same power generation, which in turn results in higher environmental burdens from the fuel supply. Coal chains with IGCC and PC plants perform similarly in terms of environmental burdens. Due to the high weighting of the scarcer natural gas (compared with hard coal and, especially, lignite), gas chains perform worse using this LCIA method. However, the external costs (not including the monetization of resource consumption) of natural gas chains, emitting less CO₂ and fewer pollutants, are lower.

The economic assessment shows a reduction of capital costs of the order of a few percent for fossil plants, by 2050. However, CCS will increase electricity generation costs significantly: for hard coal and lignite by approximately 35%, resulting in production costs of about 4 €cents/kWh, and for natural gas by almost 50%, resulting in 8.7 €cents/kWh, in 2050.

References

The Paul Scherrer Institute runs Switzerland’s Large-Scale research facilities for users from the national and international scientific community, in particular for condensed matter, materials science and biology research. PSI is one of only two locations in the world providing the three complementary probes of synchrotron X-rays, neutrons and muons at one site.

Synchrotron X-rays are available at the Swiss Light Source (SLS) – a third-generation synchrotron light source based on a 2.4 GeV electron ring and providing photon beams of high brightness at 14 beamlines. Neutrons are produced at the continuous spallation source SINQ – the only one of its kind worldwide. SINQ is a state-of-the-art user facility for neutron scattering and imaging with a suite of 13 instruments. The Swiss Muon Source (SµS) is the world’s most intense continuous muon source, with 6 beamlines available for experiments using muons as sensitive local magnetic probes. High-precision particle physics experiments use these unique beams to complement the LHC high-energy frontier experiments at CERN in investigating the limits of the Standard Model of particle physics.

Both SINQ and SµS are powered by a 590 MeV cyclotron that delivers a 1.3 MW proton beam (the world’s most powerful proton accelerator). In 2010, the suite of User Facilities will be extended by the Ultra-Cold Neutron Source (UCN), and a few years later by the X-Ray Free-Electron Laser (XFEL), a new large-scale facility that will provide ultrashort, intense X-ray pulses for the investigation of fast processes and the determination of molecular structures.

In addition to the User Facilities at the accelerators, other PSI laboratories are also open to external users, for example the Hot Laboratory operated by the Nuclear Energy and Safety Department that allows experiments to be performed on highly radioactive samples.
Operation and development of the high-intensity 590 MeV proton accelerator complex

During the 2008 shutdown, the upgrade programme for the Ring Cyclotron was completed, with the installation of the remaining two copper resonators (Figure 1). Operation with the new resonators has several beneficial effects: Because of better electrical conductivity of the cavity walls, the unwanted conversion of microwave power into heat is reduced and, in practice, approximately 600 kW of electrical power is saved under the same operating conditions; the much better properties of the vacuum sealing surfaces lead to a lower leak rate; but the most important benefit is the possibility of generating higher fields in the new resonators. By raising the gap voltage per resonator from 780 kV to 850 kV, the number of turns in the Ring Cyclotron was reduced from 202 to 186. This resulted in a reduction of residual beam losses at extraction by a factor of 2. Consequently, the Ring Cyclotron is now capable of accelerating higher beam currents while keeping losses to acceptable levels.

The present licence allows operation at 2.0 mA under standard conditions. In addition, a temporary licence was granted to PSI that foresees operation at 2.2 mA for a maximum time fraction of 10%. In total, 12 runs were performed at this elevated current and it was possible to demonstrate smooth operation without exceeding the loss limits. With the help of the experience gained, a request has been made to the Swiss authorities to raise the licensed current limit to 2.6 mA. It is planned to approach this value in small steps over several years and, as a first goal, standard operation at 2.2 mA is envisaged for 2009.
Accelerator reliability has been improved substantially thanks to the reduced losses in the new setup. During the second half of the year, when the new setup was in operation, availability reached the unprecedented level of 94%, whereas the average over the whole year was 90%. The integrated charge was 9.2 Ah on Target E and 5.5 Ah on the SINQ Target (Table 1).

In preparation for the start-up of the new ultracold neutron source (UCN) in autumn 2009, many short-pulse beam tests were performed on a beam dump in the UCN beamline. These tests represent a first commissioning step for the new mode of operation with UCN.

In the following, accelerator operation and the most important incidents that occurred during the year are described. After completion of the yearly shutdown in Week 16, some delay was caused by the necessity to re-optimize the Ring Cyclotron settings, since the radial voltage distribution of the new resonators deviated from that of the original cavities. One-and-a-half weeks later, frequent high-voltage trips in both electrostatic elements necessitated their exchange in Weeks 18/19.

The extraction element had breakdowns in the oil-insulated, high-voltage feed-through, and the injection element suffered from in-vacuum breakdowns. After these incidents, beam current was continuously increased and the production current of 2000 µA was reached in Week 23. In Week 31, the beam could not be restored for 15h after a regular service. The cause was finally identified as a distortion of the bending field of the Injector II Cyclotron by an inappropriately parked crane hook. In Week 51, a failure of the site power occurred and resulted in a beam interruption of 12 hours followed by 4 hours to reach stable operation. The various relative contributions to the downtimes in 2008 are shown in Figure 3. The longest break was caused by the replacement of the electrostatic devices already mentioned. The other two major contributions were vacuum problems in both cyclotrons and failures of the control system. A prominent control system problem was caused by sporadic failures of the very large CAMAC field-bus system in the experimental hall. Another class of control-system failures is related to start-up problems of new VME hardware that replaces older CAMAC systems. Both problems are expected to vanish when the ongoing CAMAC/VME transition is completed. The above contributions accounted for over 50% of the downtime; the magnitude of other items is similar to past experience. In comparison with recent years, the new category “Setup” was introduced. This accounts for unplanned setup times during scheduled production periods.

Continuous patient treatment with Proscan

Since February 2007, the PSI cancer therapy facility using protons has been operated using a dedicated superconducting cyclotron. This allows, typically, 15 patients to be treated per day on Gantry 1 continuously throughout the year. In the evenings and on weekends, cyclotron and beamlines are used.
for further development of Gantry 2, the commissioning of the new eye treatment facility OPTIS2, and the proton irradiation facility PIF. Compared with 2007, 2008 showed a doubling of the operational time, to 4690 hours per year, of which 2071 hours were devoted to patient treatment.

The unscheduled downtime of approximately 4% (Figure 7) is defined as the time during which the cyclotron or beam lines were not operational, although scheduled, and it includes unforeseen, but nevertheless “planned”, repairs that affected the patient schedule. The inner region of the cyclotron contains a specially shaped copper electrode, called a puller, that extracts protons from the ion source (chimney) and applies the first acceleration to the initial proton beam. Major problems were due to sputtering of the puller by beam particles, and overheating of RF contact springs in the cavity. The latter necessitated the replacement of two stems (Figure 5), and caused a shutdown of five days, including a weekend. The sputtering of the puller is well understood, using tracking simulations (see Figure 6), and developments are in progress to increase the puller lifetime. The stability of the beam intensity is now well under control. The relative variation amounts to $(\Delta I/I)_{\text{rms}} < 5\%$. The stability of the beam intensity is of major importance for fast three-dimensional scanning of tumours, as it is planned for operation with Gantry 2. The extraction efficiency has been steadily above 80\%, giving a typical dose rate of 300–500 μSv/h within the cyclotron and allowing a routine intensity of 800 nA for OPTIS2.

Operation of Injector I

An important part of the Injector I programme consists of the operation of the OPTIS facility for treatment of eye cancer. This facility, which has been in operation since 1983, is used for approximately 250 patients per year, in periods of one week per month. During the first months of 2008, several major repairs were needed to the pressure springs in the RF-vacuum feed-through. Despite these difficult repairs, only one OPTIS-week had to be cancelled. Since June, the Injector I cyclotron has run without major problems. In the present shutdown, a limited refurbishing programme is in progress to ensure smooth OPTIS operation in 2009.
Operation and development of SLS

A significant improvement of SLS beam quality was achieved in 2008 by better control of local coupling and spurious dispersion, and the design energy acceptance level was finally reached. These improvements are described in a dedicated article within this report [1].

Two beamlines ended their operation this year: LUCIA and SIS/XIL. LUCIA was shipped to the French light source SOLEIL, and its replacement PHOENIX will start operation in March 2009. The two experimental stations SIS and XIL shared one beamline until the end of 2008. The rebuilding of their long, straight section will allow the simultaneous operation of both as two independent beamlines. The new SIS beamline will start operation in March 2009.

Total beam downtime in 2008 was 218 hours. This rather high value, compared with the previous year, was mainly due to a small number of severe incidents. If the downtime is split up into events longer or shorter than 5 hours, as shown in Figure 8, it is recognized that the number of shorter outages has remained nearly constant in the past, while the contribution from major incidents has fluctuated strongly from year to year.

The longest interruption had a duration of 82 hours and was caused by a water leak in the cooling circuit of the RF coupler of a cavity. As a first measure, the risk of further leakages was decreased by reducing the water flow in those cooling circuits, but the replacement of those couplers by newer types is under investigation. A total interruption of 30 hours was directly and indirectly caused by the scheduled repair of a 50kV mains transformer. A 10-hour scheduled interruption was planned, but afterwards the Helium cryostat system of the 3rd harmonic cavity became unstable and this required a longer beam interruption to restart the system. Figure 9 shows the outage time assignment to individual systems. More than half of the downtime was caused by RF problems. The operational data is summarized in Table 2.

Table 2: SLS Operation Statistics.

In 2009, further steps will be undertaken to optimize the SLS for highest brightness. New correction magnets will be used to further reduce the vertical beam size while maintaining the beam lifetime.

The beamlines PHOENIX, SIS and XIL will start operation in 2009. The latter will be upgraded later to XIL II, with new X-ray optics. Only then will the two beamlines be able to operate independently. The installation of a new type of cryo-cooled permanent magnet undulator (CPMU) is in preparation, as a replacement for the wiggler W61 of the Materials Sciences Beamline. This measure will allow the maximum photon energy of this beamline to be increased to 30 keV. After this, only one new beamline is planned: a dipole beamline to serve the Photo-Emission and Atomic Resolution Laboratory (PEARL), which will start operation in 2010.

References

[1] Michael Böge, Andreas Lüdeke, Andreas Streun, The quest for a perfect optics correction and highest brightness at the Swiss Light Source (this report p. 54).
SLS facility in 2008
Great instrumentation for excellent science

Over the year, SLS continuously increased the number of beamlines up to 16 at the end of 2008. With this expansion of the facility, the SLS now covers practically the whole spectrum of synchrotron radiation applications. In the reporting year, a broad scientific programme was carried through by a large number of teams – many of them international and multidisciplinary. Public activities at SLS during the reporting period include a number of high-level scientific conferences, seminars and workshops, as well as the two-day public visitor event carried out in the framework of PSI's 20th anniversary.

More than 1000 experiments in 2008

Compared with 2007, the year 2008 showed a significant increase in the number of experiments performed. More than 1600 individual users carried out a total of 1036 experiments, visiting the facility 1.8 times on average. Figure 1 shows the number of proposals submitted per beamline. While the IR and VUV beamlines operated in the pilot phase, all other beamlines were fully operational. Overbooking was in the range of 1.5 – 3 for the non-PX beamlines and 6.5 for PX I. To cope with this high demand for protein crystallography, the proposals were partly redirected to the new PX III beamline. Figure 2 illustrates the distribution of granted shifts by scientific area and also shows the extent of the programmes in condensed matter research (47%) and in life-science and protein crystallography (24%). However, many attractive new opportunities for environmental and energy-related research activities are arising with the new beamlines VUV, SuperXAS and IR.

Open access and European Support

The geographic distribution of the SLS users remained relatively constant over the last year, showing a 60:40 ratio of international to Swiss users (Figure 3). Within Switzerland, half of the users were hosted by PSI, followed by ETH Zurich (20%), EPFL, Lausanne (10%), the University of Basel (6%) and EMPA (4%). Approximately half of the SLS users came from EU countries, with the largest numbers coming from Germany (36%), France (19%) and the UK (19%); 9% of the beam time was used by groups from outside the EU.

Access to the SLS is supported through the European integrated infrastructure project IA-SFS for users from EU member or associated states. In 2008, 500 projects were supported through IA-SFS. Out of these users, 75% are between 20 and 40 years of age and 30% are women. This shows that SLS has a user base with a high potential for the future. In addition,
the IA-SFS project supports joint research activities (JRAs), with the purpose of enhancing the effectiveness of the facilities in serving users.

International conference (XRM2008) and public awareness

In the period 21–25 July 2008, the 9th International Conference on X-Ray Microscopy XRM2008, organized by SLS, brought together almost 300 participants from the international community developing new instrumentation and applications of X-ray microscopy. The Werner Meyer-Ilse Memorial Award went to Pierre Thibault (PSI) and Anne Sakdinawat (Lawrence Berkeley National Lab., USA) for pioneering work in coherent diffraction imaging and for the development of optimized Fresnel zone plates, respectively.

Another highlight was the 20th anniversary of PSI, which was celebrated with many different events. Among the highlights of the celebrations were two days when PSI opened its doors to the public, allowing more than 10,000 visitors to experience the broad range of multidisciplinary research performed at the Institute. The visitors enjoyed the fascinating world of science and took a close look at the neutron, muon and X-ray sources here. At SLS, they were allowed to circumnavigate the whole building on a guided round-trip, with detailed information on the instrumentation and research available at each beamline. In addition, a set of educational movies was shown, presented by scientists.

Committees

As a sign of the maturity achieved at the SLS, which has now been operating for more than 7 years as a user facility, the year 2008 saw the appointment of several new members to the SLS Scientific Advisory Committee (SAC), while the retiring members were thanked for their valuable work. The committee is now chaired by Prof. Dr. Gerhard Materlik from the Diamond Light Source.

The non-PX Proposal Review Committee (PRC) met twice, to elaborate on dedicated proposal evaluations. The four sub-committees (HardXAS, SoftXAS, Photoemission/Infrared and Diffraction/Tomography) evaluated a total of 520 proposals during the year. Since the autumn, this committee is being chaired by Prof. Dr. Philippe Aebi (Univ. Neuchâtel). The SLS Users Association SUUSA has been extended to represent the users of all three PSI User Facilities (SLS, SINQ, SpS). The mission of SUUSA is to promote research at the PSI user laboratories, and the SUUSA board is newly chaired by Prof. Dr. Bernd Schönfeld, ETH Zurich. The first joint Users’ Meeting (JUM@P09) will be held in the period 12–13 October 2009, at PSI.

New beamlines

The IR beamline started operation in 2008 and provides a service to an exceptionally wide range of experiments, from bone research to catalysis to the electronic structure of graphene to in-situ gain experiments on quantum cascade lasers. The synchrotron beam exceeds any other source in terms of brightness. The VUV beamline, which is jointly operated by staff from the General Energy and Synchrotron Light departments, produced its first spectra, and interesting programmes in combustion and atmospheric research lie ahead. During its first year of operation, the super-XAS beamline, running in 'quick-EXAFS' mode, demonstrated its capability to monitor oxidation/reduction reactions on catalysts under working conditions in sub-second steps. This beamline also runs in partnership with the General Energy department at PSI, and a further increase in energy-related projects at the SLS are awaited.

Highlights

The SLS highlights presented in this report represent just a few selected out of many. In 2008, a remarkably high number of user publications (41 in total) appeared in the leading journals Science, Nature, Cell and Phys. Rev. Letters. This illustrates the excellence of our user community and our in-house staff. Breakthroughs have been achieved, for example, in high-resolution resonant inelastic X-ray scattering and angle-resolved photoemission studies of correlated electron systems, in ptychographic X-ray imaging and 3D tomography, and in various applications of our PILATUS and MYTHEN detectors in biocrystallography and materials science.

All users are sincerely thanked for the excellent science they have brought to the SLS in 2008.
The year 2008 was the 11th year of full user operation of SINQ, and another very successful one, with a record-high number of user visits and experiments demonstrating the strength of the national and international user programmes at Switzerland's unique neutron facility.

Protons and Neutrons

The performance of both the proton accelerator and the SINQ neutron target was outstanding in 2008. The availability of the PSI proton source was 90% and exceeded even slightly the very good values of the year 2007. The new operational schedule, with 3 weeks of proton production interrupted by 3–4 days of maintenance, service or beam development, has now proven to be very successful and well accepted by users, those responsible for the instruments, and facility operation staff. SINQ itself ran very stably and reliably: With an availability between 98% and 99%, SINQ was able to deliver neutrons almost as reliably as Swiss clockwork. Between 12 May and 23 December, the target received a total charge of 5390 mAh (2007: 3885 mAh; 2006: 2796 mAh; 2005: 5822 mAh).

During the winter shutdown of 2008, the SINQ operation staff installed an additional intermediate cooling circuit, to provide an additional barrier between PSI's secondary cooling circuits, operated with normal water, and SINQ's D2O moderator. This guarantees additional safety and reliability.

User Operation statistics

In 2008, 15 instruments for neutron scattering experiments and imaging applications were in operation. Two of them (‘MORPHEUS’ and ‘NARZISS’) were mainly used for in-house activities, whereas 13 instruments were fully available to users. On those instruments, almost 450 experiments were performed in 2008, with an average duration of approximately 4 days. As usual, most of the experiments were used for academic research, but on the two imaging instruments ‘NEUTRA’ and ‘ICON’ a total of 18 experiments were performed in cooperation with, or even ordered by, industry.

The number of user visits was higher than ever before, and the user office counted a total of 677 visits by 447 different individuals. These numbers clearly exceed those from 2007 and 2006, with their reduced operation times of SINQ, but also those from ordinary fully operational years, such as 2005 and earlier.

As previously, SINQ was strongly used by Swiss user groups and clearly served as home base for the Swiss neutron scattering community, with more than 50% of the beam time being used by Swiss groups. Another 37% was used by foreign groups from EU countries and 10% by groups from countries outside Europe (Figure 1). The largest foreign national communities came from Germany (10%), followed by the United Kingdom (8%), Denmark and France (both 6%).

Looking closer at Swiss use of SINQ (Figure 2), PSI (44%) again provided most of the Swiss groups, followed by ETH Zurich (35%). The remaining share was almost equally distributed between the Universities of Bern, Fribourg and Geneva, EPFL, Lausanne and EMPA in Dübendorf.

The scientific impact of SINQ is documented in more than 120 publications in peer reviewed journals which appeared in 2008, based on data obtained at the SINQ instruments. Thirteen of these articles were in high-impact journals, such as Science, Nature Materials, PRL and JACS.
The SINQ instruments are also being heavily requested by the user community for the future, as 275 new proposals were submitted during 2008 and the average overbooking factor of the instruments was 2.2.

Complementary use of X-rays and neutrons

PSI can offer three probes for condensed matter research on one site: muons, synchrotron X-rays and neutrons. To enhance the complementary use of these facilities, a new proposal submission channel was opened in 2008. For the first time, users could submit proposals requesting beam time for both synchrotron X-rays and neutrons. This first call was dedicated to experiments in the field of powder diffraction and included the MS-powder beamline ‘X04SA’ of the SLS and the high-resolution powder diffractometer ‘HRPT’ at SINQ. The experiments allocated were then performed directly after each other at SINQ and SLS, to reduce travel demands on the users. Because of the positive resonance to this initiative, it will be continued and a second call will be made in 2009.

Twenty years of partnership with ILL

2008 was not only the year of PSI’s 20th anniversary. In 1988, the year when PSI was founded, the contract was signed that made Switzerland a full member country of the Institut Laue-Langevin (ILL) in Grenoble. Since then, a very fruitful partnership with manifold collaborations has been established, including the Cryopad/Mupad development, the collaborations on Time-of-Flight spectrometers (INE/FOCUS), and the PSI development of supermirrors, now also routinely used at ILL. Between 1988 and 2007, 939 Swiss proposals were submitted to ILL, with a success rate of 80%. This is the highest national success rate of all ILL member countries, and the complementary use of SINQ and the ILL neutron source is definitely one of the reasons for this success. A total of 682 publications have appeared from Swiss experiments at ILL, which makes an average of 45 per year (R. Wagner, ILL Grenoble, private communication, 28 November 2008).

The 20th anniversary of Swiss membership of ILL was celebrated in a dedicated symposium on 28 November 2008 at PSI, jointly sponsored by the Swiss State Secretariate for Education and Research and PSI.

Highlights

In 2008, the impressive number of 125 papers based on experiments performed at SINQ were published in peer reviewed journals – many of them in highly ranked journals such as Science or Physical Review Letters. Results from two of these papers are described in the Highlight section of the present report. In one of them (p. 30) the authors report on a superconductor in which superconductivity and magnetism are intimately connected: the material shows magnetic order only as long as it is superconducting. In the second article (p. 34), new results on multiferroics are presented. These materials exhibit spontaneous coupling between magnetization and ferroelectricity and show great promise as components in new electronic devices.

Goodbye Walter Fischer

For PSI and the Swiss neutron scattering community, 2008 started on a sad note: On 17 March, Walter E. Fischer, one of the pioneers in establishing SINQ, passed away after half a year’s battle with cancer. Walter’s major contributions to the Swiss spallation neutron source will never be forgotten and his colleagues will greatly miss him.
PSI offers three major probes for condensed matter research on one campus. Next to SLS and SINQ, the Swiss Muon Source, SμS, provides unique possibilities for muon spin spectroscopy. The facility is highly attractive for the user community, and never before was the number of new proposals as high as in 2008.

User Laboratory SμS

The Swiss Muon Source, SμS, is one of the large PSI user facilities and can look back on 2008 as a very successful year: The six SμS instruments delivered a total of 655 instrument days, and 168 experiments were completed successfully during the operational period between April and December. Two-thirds of the user groups came from abroad, with the largest foreign user community coming from the United Kingdom (19%), followed by Germany and Japan (both 13%). The experiments were carried out by 151 different researchers during 185 visits. In 2008, SμS for the first time launched two calls for proposals instead of one. In addition to the usual December deadline for all instruments, it was possible to submit proposals for the three instruments ‘GPS’, ‘GPD’ and ‘LTF’ in summer 2008. Having two calls instead of one per year provides higher flexibility and significantly reduces the time between proposal submission and allocation of beam-time. The new scheme was well accepted by the user community and will be continued in the future. A total of 156 proposals were submitted in 2008, which represents a new record for the facility. Several instrumental improvements were realized in 2008. In particular, to cope with the increasing number of proposals, the GPS instrument was provided with a port for an additional cryostat (Figure 1).

SμS reveals secrets of the new superconductors

The year 2008 was also outstanding for SμS regarding publications: A total of 54 publications appeared, based on data obtained at the Swiss Muon Source (39 with an LMU author). Even more than the pure number, the impact of the publications is significant: To give an example, μSR at PSI has been at the forefront in rapidly providing essential information about the phase diagram and the superconducting and magnetic properties of the newly discovered iron-based superconductors. Overall, the journal publication record contains one ‘Science’ and one ‘Nature Materials’ article, 13 papers appeared in ‘Physical Review Letters’ and another 24 were published in ‘Physical Review B’. Finally, it should be mentioned that 2008 marked the retirement of Dierk Herlach, Head of Laboratory, and Ueli Zimmermann, GPD instrument scientist. We wish to thank these two esteemed μSR scientists for their long-standing commitment to μSR and to the user programme at PSI, and wish them all the best for the future.
The PSI Ultra-Cold Neutron Source

Bertrand Blau, Manfred Daum, Klaus Kirch, Knud Thomsen, Werner Wagner
for the PSI UCN project team and the PSI UCN collaboration

The construction of the Ultra-Cold Neutron Source (UCN) at PSI is under way. In the beginning, it will be mainly used for extremely precise measurements of the neutron’s electric dipole moment. Those are important tests of the Standard Model of particle physics. Source commissioning is planned to start in autumn 2009. A density of 1000 UCN/cm3 is expected in typical experiments – an increase of almost two orders of magnitude over the best source currently available (PF2 at ILL Grenoble). User operation will start in 2010.

Prominent milestone

The most important milestone in 2008 was the delivery of the UCN tank system to PSI. All main components of the UCN source, i.e. the spallation target for neutron production, the 3.5 m3 heavy water moderator, the solid deuterium cold source and UCN converter at 5 K, and the UCN storage volume (∼2 m3), will be embedded in the 6.5 m-high tank (Figure 1).

Proton beam and spallation target

Tests with kicking the proton beam onto the test beam dump have been successfully performed at full intensity (2 mA, 600 MeV; 10 ms pulse duration). All beam elements worked perfectly well. The spallation target for neutron production, made of 760 lead-filled reactor-grade zircaloy tubes, is also ready for operation.

The heart of the UCN source...

... is the cold moderator: 30 litres of solid deuterium at 5 K will cool neutrons and produce UCN. The moderator vessel must withstand 3 bar overpressure. A peculiarity of this vessel is the top lid (Figure 2), that must be penetrable for UCN and, thus, as thin as possible. Production of the optimal toroidal shape was a formidable challenge.

The UCN flagship

The search for the electric dipole moment of the neutron (nEDM, see page 38 in this report) is the flagship experiment in physics with ultra-cold neutrons. A large international collaboration aims at an improved measurement at PSI. The experiment will be ready for data taking in area south at the end of 2009.

For more information, visit: http://ucn.web.psi.ch
In April 2008, the analysis of radiocarbon samples was moved from the EN Tandem accelerator to the MICADAS AMS spectrometer. This was a big step forward, because a major fraction of the external financial resources of the laboratory are related to these measurements. From the operational point of view, the new measurement procedure has the great advantage that the efforts of radiocarbon measurements are significantly reduced, and analyses can be performed unattended and fully automated. Moreover, the quality of the analyses has improved. The PSI/ETH MICADAS system is based in its design more on a conventional mass spectrometer than a traditional AMS system. This is a good qualification for achieving more precise $^{14}\text{C}/^{12}\text{C}$ and $^{13}\text{C}/^{12}\text{C}$ measurements. During the first year of routine operation, precision limits could be improved and measurements approaching the 1% level became possible. The BioMICADAS project has been successfully accomplished. On 25 June, the instrument was shipped to the USA and only 14 days later became operational. Rigid performance tests followed, and final acceptance was achieved on 21 July. Since then, the instrument has been operated at Vitalea Science under commercial conditions, and more than 5000 analyses of biomedical samples were conducted by the end of the year. At the 6 MV Tandem-based AMS system, a total of 2868 ^{10}Be, ^{26}Al, ^{36}Cl samples were measured. The Tandy AMS system was predominantly used for ^{129}I, Pu and Pa measurements as well as for experimental AMS work. The reduced burden of routine measurements at the EN Tandem left freedom for experiments in material sciences. In a new materials science project, the possibility of using micro-capillaries for the focusing of MeV ion beams is being investigated. The transmission of proton and helium ion beams through capillaries of approximately 1 micron tip size has been observed. The technique has large potential for simplified micro analysis of surfaces and small objects.

2008 was a year of change for the PSI/ETH Laboratory of Ion Beam Physics (LIP). After the retirement of Martin Suter and Georges Bonani, a new structure for the laboratory had to be found and the tracks were laid for the integration of the laboratory into the ETH structure from 1 January 2009. A fruitful and successful relationship of more than 24 years has come to an end, but the connection between PSI and the new ETH Laboratory of Ion Beam Physics will not terminate completely, and PSI will continue to support the activities of the Laboratory and benefit from its analytic capabilities.
The design and construction of the large research facilities at the Paul Scherrer Institute require new and innovative solutions at the limit of current technologies. Scientists and engineers are successfully pushing the limits in various technological fields, from power electronics to precision machining to nanotechnology. Combined with achievements in various research fields being investigated at PSI, these accomplishments offer outstanding opportunities for commercialization by industrial partners.

The Technology Transfer Office at PSI is ready to assist partners from industrial companies with their search for sources of innovation at PSI or to prepare the way for solutions to their technological challenges.

The following pages explain the various options for technology transfer models and illustrate a selection of successful commercialization projects, as well as some promising technologies still to be tapped by our industrial partners.
Technology transfer projects rely on the quality of the relationships between the persons involved in different aspects with both partners. A major factor shaping this relationship is the layout of the contractual framework and collaboration concept, which is adapted to each transfer project. The greatest task within these boundary conditions is the alignment of the needs and expectations of the industrial and scientific partners.

The most effective way to transfer competencies in technologies and know-how is the “transfer” of persons, who take along not only additional intangible knowledge to the company but also the enthusiasm to transform their research into industry-standard applications. PSI has experienced successful “person transfer” of PhD graduates as well as senior scientists.

A very useful way of supporting industrial research and development activities is to make available the instruments and methods used at our large research facilities. As a User Lab, PSI develops and operates instruments and equipment for a wide range of applications, from material and structure analysis to imaging. The following sections showcase a variety of the opportunities present at our particle beam facilities. The services offered by PSI include the evaluation of the appropriate measurement configuration, support with data acquisition and expertise in data analysis.

From the economical point of view, the most significant model for technology transfer is with projects involving intellectual property rights (IPR) generated at PSI. If the right is granted to use PSI-owned IPR, or to transfer patents, industrial partners expect a direct economic advantage from applying such protected IPR in their products and are ready to compensate PSI for this advantage.

Research collaborations enable companies to tap PSI’s know-how and technologies early in the innovation process. Depending on the technological situation and requirements, a collaboration framework will be set up that equally suits the interests of the industrial partner and PSI. An agreement which includes the project plan, provisions on intellectual property and confidentiality is the basis for such collaboration. A long-term collaboration project for an energy and mobility concept was launched in 2008 together with Belenos Clean Power Holding (see article on page 111).

If you are interested in one of the technology transfer models described above, or if you are looking for advice or consultation on a specific topic, the Technology Transfer Office is ready to connect you with the matching centre of expertise at PSI.

The following pages give a selection of opportunities and success stories in technology transfer, as motivation to contact PSI concerning a technological solution that is challenging your own R&D department.

X-ray microscopy of active samples: The micro-XAS instrument

The availability of high-performance light sources – such as the Swiss Light Source (SLS) – and remarkable advancements in the field of X-ray optics have enabled the design of efficient hard X-ray microscopes. Recently, such a high-resolution microscope was completed at the SLS: the microXAS beamline.
This analytical facility allows materials and matter to be investigated with a high spatial resolution of approximately 1\(\mu \)m - providing microscopic insights into their structure. A synchrotron-based X-ray microscope comprises a suite of powerful analytical methods, such as molecular structure analysis (X-ray absorption spectroscopy, XAS), chemical compositional analysis (X-ray fluorescence, XRF) and structural analysis (X-ray diffraction, XRD). These three techniques represent key analytical techniques in many fields of basic and applied science, and now have a major impact on the exploration of chemical reactivity and structural analysis of both engineered and natural systems. Furthermore, micro-XAS is capable of providing chemical information from within single micro-domains and at the same time providing local structural analysis of such domains.

Among other things, one particular unique characteristic of the micro-XAS is that it enables radioactive materials to be investigated. Consequently, after starting user operation, micro-XAS became widely used for investigations in close collaboration with, or relevant to, the nuclear industry. Active samples analyzed so far include solidified radioactive waste, such as glasses or cement materials, irradiated alloys, activated corrosion products (crud), and analogues of next-generation fuel materials.

In most cases, elemental distribution maps (chemical images) were recorded by collecting two-dimensional micro-XRF data, followed by molecular-scale chemical information gained by collecting the micro-XAS spectra at specific locations within the radioactive specimen. Most recently, the capability of collecting structural images was added to the facility through the generation of two-dimensional X-ray micro-diffraction images.

A tool for non-destructive residual stress characterization: POLDI

The time-of-flight (TOF) diffractometer POLDI (Pulse-Overlap Diffractometer) is the dedicated instrument at the SINQ neutron source at PSI for the study of residual stresses and the mechanical behaviour of industrial materials. POLDI uses a beam of thermal neutrons with a range of wavelengths which satisfy the diffraction condition for many crystal lattice spacings. Consequently, the recorded diffraction pattern consists of many crystal reflections (Figure 2), which allow multi-phase and composite materials to be studied, as well as intergranular stresses in single-phase materials.

Residual stresses are of great concern in industry, since they can lead to premature failure of industrial materials and structures if they are not detected. Such stresses can be studied in crystalline materials using neutron diffraction, where the crystal lattice is used as an atomic strain gauge. The penetration of neutrons in many engineering materials allows for the non-destructive determination of residual stresses from the near surface to deep within the bulk. Examples of residual stress experiments that have been conducted include residual stress in pump cases for aerospace, railway wheels, mechanical surface treatments (i.e. laser peening) and welded structures.

Residual stress distribution can be non-destructively mapped in three dimensions by translating the sample through a sampling volume established where the incident beam and diffracted beam intersect. Concomitantly, the mechanical deformation of industrial materials can be studied by in-situ straining, providing phase-specific information during specific loading regimes. In-situ neutron diffraction during mechanical testing is among the most advanced research methods, providing details of micro-structural evolution under service-like conditions, input that is needed for the development of new predictive engineer-
ing models. An example of in-situ mechanical deformation studies concerns high-field (>80 T) pulsed magnets, which are subject to large forces during operation. Such loads require conductor materials with a very high elastic limit. In-situ neutron diffraction during tensile deformation of the Cu-Nb-based nanocomposite system is an ideal tool for investigating the evolution of the lattice strain of each component. These observations allow conclusions to be drawn about possible deformation mechanisms in Cu-Nb nanocomposite wires, and reveal the build-up of large internal stresses during deformation.

Pushing the limits in microscopic tomography: TOMCAT

Synchrotron-light-based Tomographic Microscopy is a powerful technique for fast, non-destructive, high-resolution quantitative volumetric investigations on samples of diverse nature. At the SLS, a beamline for TOmographic Microscopy and Coherent rAdiology experiments (TOMCAT) has been recently put into operation. TOMCAT covers an X-ray energy range between 8 and 45 keV. The standard TOMCAT detector offers field of views ranging from 0.75×0.75 mm2 up to 15×15 mm2, with a theoretical pixel size from 0.37 µm to 7.4 µm, respectively. The beamline design and flexible endstation setup make a large range of investigations possible. In addition to routine measurements which exploit the absorption contrast, the high coherence of the source also enables phase contrast tomography, implemented with two complementary techniques, based on a modification of the ‘Transport of Intensity’ method and grating interferometry. In-situ experiments are also routinely conducted. Typical acquisition times for a tomogram are of the order of a few minutes, ensuring high throughput and allowing semi-dynamic study. Raw data are automatically post-processed online, and full reconstructed volumes are available shortly after a scan, with minimal user intervention. Quantitative evaluation of the tomographic scans is available on site, see Figure 3.

TOMCAT is offering its services to applications in the materials and life-sciences area. Examples of these range from the visualization of cellular structures in bone samples to the micro-structure in selected concrete applications. Other applications range from high-resolution, non-destructive investigation of defects in metallic and non-metallic prototype components to the quantitative analysis of pore networks in diverse rock types – for instance, for improving oil recovery, understanding element mobilization by hydrothermal fluids, studying the dynamics of volcanic eruptions, or refining current contaminant diffusion models.

Microspectroscopy of nano-scale materials: PoLux

The PoLux facility at the SLS operates a scanning transmis-

Figure 3: 3D visualization of the pore structure of a sandstone. Data have been obtained at the TOMCAT beamline, with a theoretical voxel size of 740 nm3.
magnetic states. Usually, the characteristic properties vary across the sample, and the spatial distribution of these variations has to be investigated at sufficiently high spatial resolution. Soft X-ray absorption spectroscopy, combined with high spatial resolution, is an ideal tool for such tasks, since it provides the necessary information with high sensitivity and minimum sample preparation. In particular, near-edge X-ray absorption fine structure (NEXAFS) shows superior sensitivity in organic materials.

In order to achieve high spatial resolution in scanning transmission soft X-ray microspectroscopy, Fresnel zone plates are commonly used to focus the X-rays to a point focus. Images are formed from raster-scanning the sample through the focal point while measuring the transmitted intensity using an X-ray detector.

Because of its flexible sample environment, which includes heating, cooling, gas and liquid cells, and electrical connections to the outside, the PolLux-STXM offers a very wide variety of experiments, from hard- and soft-condensed matter as well as in environmental science and biology.

Methane from wood: Pilot Plant is operational

In 2008, the demonstrator plant for the catalytic conversion of wood gas to methane was built and commissioned by our industrial partners in Güssing (Burgenland, Austria). The core component and real innovation of the plant is the catalytic fluidized bed reactor, which is responsible for the chemical conversion to methane. This reactor has been developed and built based on experience gained over the past few years with a 10 kW laboratory plant at PSI. In an ambitious scale-up step, the capacity of the reactor was increased by a factor of 100. The team achieved an important milestone in December 2008, when the 1 MW catalytic fluidized bed reactor first started operation, and achieved the expected performance level right from the start.

The project 'Methane from Wood' overcame a crucial technical hurdle on the way to its successful implementation in practice. This achievement was recognised in January 2009 with the "Watt d’Or" prize of the Swiss Federal Office of Energy, for outstanding accomplishments in energy technologies, awarded to the consortia comprising the industrial partners CTU and Repotec, the scientific partners PSI and the TU Vienna, and the biomass power plant in Güssing. For more information on the technology, see http://tpe.web.psi.ch

Improving the design of exhaust-gas after-treatment systems

Commercial vehicles have been increasingly equipped with urea-SCR systems for the reduction of NOx emissions over the past few years. To achieve high NOx conversions, it is important to mix the reactant urea homogeneously with the exhaust gas before it reaches the catalyst. As the constructed space in vehicles is usually very limited, computational fluid dynamics (CFD), as offered by Swenox, has been used as a design tool to achieve this goal. A specific feature of the Swenox software is its ability to calculate dynamic processes, which is crucial for the realistic modelling of urea-SCR systems in vehicles. Within this collaboration, PSI has contributed significant know-how for the implementation of the SCR chemistry and generated the data used in the models of commercially available vanadium- and zeolite-SCR catalytic converters. In an experimental programme at PSI, samples were cut from such commercial catalytic modules and measured in steady and dynamic states, using laboratory test equipment. The experiments included varying temperature, velocity, concentration and the NO/NO2 ratio over large ranges. The acquired data were used to successfully parameterise the Swenox model, consequently helping the efficient design of exhaust-gas after-treatment systems. Such improved systems help to further reduce NOx emissions, for the benefit of human health and nature.

Regulatory support tasks on the human factor

The human factor is an important element of nuclear power plant safety. Methods for treating this element in safety studies, known as Human Reliability Analysis (HRA), are a subject of research within NES. NES’s expertise in this area is also used to support the regulatory activities of the Swiss Federal
Nuclear Safety Inspectorate, ENSI. Tasks include reviews of the HRAs within the Probabilistic Safety Assessments (PSAs) of the Swiss nuclear power plants, evaluations of the plants’ procedures for emergency operations, and analyses of the implications of new developments in human factors for regulatory activities and guidelines.

The reviews of HRAs address the methods and assumptions used in the analyses, and the failure probabilities obtained for the personnel actions included in the safety studies. These analyses and their results are examined in the light of developments in methods, as well as in safety analysis practice. When a study uses a widely applied method, the implementation is considered in the light of international practice, otherwise comparisons with accepted methods are performed. This review work bases NES’s HRA research in actual practices, providing the impulse for research and motivating efforts to enhance current HRA methods.

The personnel actions required in plant emergencies are planned thoroughly and described in formal procedures, e.g. the ‘Emergency Operating Procedures’, which guide the actions required by, as well as the assessment of, the actual plant situation, and the actions that the operators will need to take in these situations. Tasks in this area evaluate the usability of the procedures, focusing on the most significant accident scenarios postulated in the PSAs. At its most basic level, usability is based on criteria ranging from readability to the technical clarity and specificity of the procedures. A broader assessment of usability is performed by “walking through” the procedures and anticipating the plant indications that will be presented to the operators as they assess the evolving plant situation and perform the actions required by the procedures. The actions are also assessed in terms of the time needed to perform the required assessments of, and actions on, the plant’s systems, and of the systems available in the scenario. Such evaluations complement the verification and validation of the procedures by examining the beyond-design-basis scenarios included in PSAs.

Reference
A new way of cooperation for big challenges

Philipp Dietrich, Competence Center Energy and Mobility CCEM, PSI

On the way to a more de-carbonized system for individual mobility, several elements have to be adapted. The whole chain is affected, starting with fuel production, followed by the whole supply logistics of the fuel, including delivery to the customer, and finally its application in transport vehicles. This process creates opportunities as well as threats to several industrial sectors. Even society itself may be influenced by the availability of new mobility concepts. To contribute within this arena, the Belenos Clean Power Holding and PSI are collaborating with a new business model.

The idea behind the concept of Belenos Clean Power (BCP) is to substitute a part of the fossil fuels used in the mobility sector with available renewable energy. Since an alternative fuel will be only used on a large scale if the fuel supply and the fuel converter are already in the vehicle, BCP is involved along the whole energy chain. The concept is visualized in Figure 1.

The business model consists of creating joint venture companies along the complete value chain, from the capture of the primary energy all the way to its use to generate mechanical power to propel passenger cars.

The shareholders in the BCP are, to date, The Swatch Group, Hayek Engineering, Deutsche Bank, group e and the Ammann Group. It is intended that the ETH domain, through PSI, also becomes a shareholder. The share capital is initially CHF 21 million.

The holding company, together with other partners, is interested in creating joint ventures in specific areas of this clean energy chain.

The first joint venture is ‘Swiss Hydrogen Power’, which is developing the stationary conversion of electricity to hydrogen and oxygen, and the safe decentralized storage of these gases. PSI is mainly involved in the second joint venture, in which the development of a fuel cell system is envisaged, to be used to supply passenger cars with electricity. The integration of the fuel cell system in a car will be carried out in collaboration with a car manufacturer.

A further joint venture is concerned with increasing the efficiency of photo-voltaic cells and systems, mainly through the application of thin-film technologies.

Another joint venture is dedicated to the development of advanced batteries. This technology also strengthens the application of fuel cells, since their combination in a car helps to improve the overall efficiency and use of energy.

The structure of the holding company is designed to be a very flexible way of integrating stakeholders willing to contribute towards the realisation of one form of cleaner mobility, based on lower fossil fuel consumption.

The first joint venture is ‘Swiss Hydrogen Power’, which is developing the stationary conversion of electricity to hydrogen and oxygen, and the safe decentralized storage of these gases. PSI is mainly involved in the second joint venture, in which the development of a fuel cell system is envisaged, to be used to supply passenger cars with electricity. The integration of the fuel cell system in a car will be carried out in collaboration with a car manufacturer.

A further joint venture is concerned with increasing the efficiency of photo-voltaic cells and systems, mainly through the application of thin-film technologies.

Another joint venture is dedicated to the development of advanced batteries. This technology also strengthens the application of fuel cells, since their combination in a car helps to improve the overall efficiency and use of energy.

The structure of the holding company is designed to be a very flexible way of integrating stakeholders willing to contribute towards the realisation of one form of cleaner mobility, based on lower fossil fuel consumption.

On the way to a more de-carbonized system for individual mobility, several elements have to be adapted. The whole chain is affected, starting with fuel production, followed by the whole supply logistics of the fuel, including delivery to the customer, and finally its application in transport vehicles. This process creates opportunities as well as threats to several industrial sectors. Even society itself may be influenced by the availability of new mobility concepts. To contribute within this arena, the Belenos Clean Power Holding and PSI are collaborating with a new business model.

The idea behind the concept of Belenos Clean Power (BCP) is to substitute a part of the fossil fuels used in the mobility sector with available renewable energy. Since an alternative fuel will be only used on a large scale if the fuel supply and the fuel converter are already in the vehicle, BCP is involved along the whole energy chain. The concept is visualized in Figure 1.

The business model consists of creating joint venture companies along the complete value chain, from the capture of the primary energy all the way to its use to generate mechanical power to propel passenger cars.

The shareholders in the BCP are, to date, The Swatch Group, Hayek Engineering, Deutsche Bank, group e and the Ammann Group. It is intended that the ETH domain, through PSI, also becomes a shareholder. The share capital is initially CHF 21 million.

The holding company, together with other partners, is interested in creating joint ventures in specific areas of this clean energy chain.

The first joint venture is ‘Swiss Hydrogen Power’, which is developing the stationary conversion of electricity to hydrogen and oxygen, and the safe decentralized storage of these gases. PSI is mainly involved in the second joint venture, in which the development of a fuel cell system is envisaged, to be used to supply passenger cars with electricity. The integration of the fuel cell system in a car will be carried out in collaboration with a car manufacturer.

A further joint venture is concerned with increasing the efficiency of photo-voltaic cells and systems, mainly through the application of thin-film technologies.

Another joint venture is dedicated to the development of advanced batteries. This technology also strengthens the application of fuel cells, since their combination in a car helps to improve the overall efficiency and use of energy.

The structure of the holding company is designed to be a very flexible way of integrating stakeholders willing to contribute towards the realisation of one form of cleaner mobility, based on lower fossil fuel consumption.

The first joint venture is ‘Swiss Hydrogen Power’, which is developing the stationary conversion of electricity to hydrogen and oxygen, and the safe decentralized storage of these gases. PSI is mainly involved in the second joint venture, in which the development of a fuel cell system is envisaged, to be used to supply passenger cars with electricity. The integration of the fuel cell system in a car will be carried out in collaboration with a car manufacturer.

A further joint venture is concerned with increasing the efficiency of photo-voltaic cells and systems, mainly through the application of thin-film technologies.

Another joint venture is dedicated to the development of advanced batteries. This technology also strengthens the application of fuel cells, since their combination in a car helps to improve the overall efficiency and use of energy.

The structure of the holding company is designed to be a very flexible way of integrating stakeholders willing to contribute towards the realisation of one form of cleaner mobility, based on lower fossil fuel consumption.

On the way to a more de-carbonized system for individual mobility, several elements have to be adapted. The whole chain is affected, starting with fuel production, followed by the whole supply logistics of the fuel, including delivery to the customer, and finally its application in transport vehicles. This process creates opportunities as well as threats to several industrial sectors. Even society itself may be influenced by the availability of new mobility concepts. To contribute within this arena, the Belenos Clean Power Holding and PSI are collaborating with a new business model.

The idea behind the concept of Belenos Clean Power (BCP) is to substitute a part of the fossil fuels used in the mobility sector with available renewable energy. Since an alternative fuel will be only used on a large scale if the fuel supply and the fuel converter are already in the vehicle, BCP is involved along the whole energy chain. The concept is visualized in Figure 1.

The business model consists of creating joint venture companies along the complete value chain, from the capture of the primary energy all the way to its use to generate mechanical power to propel passenger cars.

The shareholders in the BCP are, to date, The Swatch Group, Hayek Engineering, Deutsche Bank, group e and the Ammann Group. It is intended that the ETH domain, through PSI, also becomes a shareholder. The share capital is initially CHF 21 million.

The holding company, together with other partners, is interested in creating joint ventures in specific areas of this clean energy chain.

The first joint venture is ‘Swiss Hydrogen Power’, which is developing the stationary conversion of electricity to hydrogen and oxygen, and the safe decentralized storage of these gases. PSI is mainly involved in the second joint venture, in which the development of a fuel cell system is envisaged, to be used to supply passenger cars with electricity. The integration of the fuel cell system in a car will be carried out in collaboration with a car manufacturer.

A further joint venture is concerned with increasing the efficiency of photo-voltaic cells and systems, mainly through the application of thin-film technologies.

Another joint venture is dedicated to the development of advanced batteries. This technology also strengthens the application of fuel cells, since their combination in a car helps to improve the overall efficiency and use of energy.

The structure of the holding company is designed to be a very flexible way of integrating stakeholders willing to contribute towards the realisation of one form of cleaner mobility, based on lower fossil fuel consumption.

On the way to a more de-carbonized system for individual mobility, several elements have to be adapted. The whole chain is affected, starting with fuel production, followed by the whole supply logistics of the fuel, including delivery to the customer, and finally its application in transport vehicles. This process creates opportunities as well as threats to several industrial sectors. Even society itself may be influenced by the availability of new mobility concepts. To contribute within this arena, the Belenos Clean Power Holding and PSI are collaborating with a new business model.
The essential statistical data for the Paul Scherrer Institute for 2008 is presented on the following pages, giving the most important information about the Institute in a concise form. The largest proportion of the Institute's budget of CHF 300 million is provided by the Swiss federal government. However, the contribution of third-party revenue is of increasing importance. As a particular example of third-party support for the past year, the sum of 10 million Swiss Francs was donated by the Canton of Aargau as a contribution to the further development of the Proton Therapy facility.

In the field of education, a new figure has emerged to supplement the impressive numbers of PhD students and apprentices shown in previous years, as more than 1600 pupils visited iLab, PSI's newly founded school laboratory, during its first nine months of operation. The increasing number of external scientists performing experiments at PSI proves the institute's continued attractiveness as a multifarious User Facility. The rapidly growing number of publications in high-profile journals based on research performed at PSI shows that many of the most creative scientists choose the Institute when looking for a place to carry out their experiments.

The large number of users from abroad, and the majority of foreign members on PSI's scientific advisory bodies, are clear signs of the Institute's firm integration in the international scientific community. To illustrate this, complete lists of members of the PSI Research Commission and the Research Committees of the particular departments are included in this chapter.
The year 2008 in numbers

Finances

The total expenditure of PSI in 2008 amounted to CHF 300.4 million, with the Swiss government providing 80.4% of this amount, i.e. CHF 241.5 million. Investments totalled CHF 73.2 million (24.35% of the total expenditure). Third-party funding amounted to CHF 73.1 million, with 38.3% coming from private industry, 14.77% from Swiss federal research programmes and 9.85% from EU programmes. The Canton of Aargau made a once-off supporting contribution of CHF 10 million to the Proton Therapy facility.

PSI Financial Statement (in CHF millions)

<table>
<thead>
<tr>
<th>Expenditure</th>
<th>2008</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations¹</td>
<td>227.2</td>
<td>75.65%</td>
</tr>
<tr>
<td>Investments¹,²</td>
<td>73.2</td>
<td>24.35%</td>
</tr>
<tr>
<td>Total</td>
<td>300.4</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expenditure according to source of income</th>
<th>2008</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal government funding</td>
<td>241.5</td>
<td>80.4%</td>
</tr>
<tr>
<td>Third-party</td>
<td>58.9</td>
<td>19.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third-party revenue</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Private industry</td>
<td>28.0</td>
<td>38.30%</td>
</tr>
<tr>
<td>Federal research funding</td>
<td>10.8</td>
<td>14.77%</td>
</tr>
<tr>
<td>EU programmes</td>
<td>7.2</td>
<td>9.85%</td>
</tr>
<tr>
<td>Support by the Canton of Aargau for Proton Therapy</td>
<td>10.0</td>
<td>13.68%</td>
</tr>
<tr>
<td>Other</td>
<td>17.1</td>
<td>23.39%</td>
</tr>
<tr>
<td>Total</td>
<td>73.1</td>
<td>100%</td>
</tr>
</tbody>
</table>

1 Including personnel costs. Total personnel costs of CHF 181.5 million corresponded to 60.40% of total expenditure
2 Including CHF 18.4 million investment in buildings

Total budget distribution for 2008 across PSI Departments.

Research facilities allocated to the various departments. (Values for 2007 in brackets)

- Solid-State Research and Materials Science: 39% (35%)
- General Energy: 12% (14%)
- Nuclear Energy: 17% (15%)
- Particle Physics: 14% (18%)
- Life Sciences: 18% (20%)
- Technical and Engineering: 53.3%
- Information Technology: 7%
- Research: 33%
- Administration: 6.7%

The staffing structure reflects the importance of technical staff for successful research at large-scale facilities.

Employment

At the end of 2008, employment at PSI corresponded to 1300 full time equivalents; 22.3% of the employees were women and 42% were non-Swiss citizens.

Education

In addition to scientific research, the Paul Scherrer Institute sees education as one of its main tasks. Many PSI scientists give courses at the Swiss Federal Institutes of Technology, the Universities and the Universities of Applied Sciences. About 300 graduate students from the ETH and other universities are working at PSI for their degree. Out of those, 166 PhD students, including 44 women, were employed by PSI. Seventy-seven young people were undergoing vocational training in 13 different professions. In addition, PSI offered courses in radiation protection and reactor technology.

A particularly important event for educational activities was the opening of the iLAB – PSI’s school laboratory – on 4 April
At iLAB, pupils from secondary schools get the opportunity to perform a variety of physics experiments. The idea of the school lab is to spread interest in the natural sciences among the youth. In its first nine months of operation, iLAB hosted 75 classes, with 1600 young people attending from Switzerland and southern Germany.

User Service

In 2008, PSI kept its position as an attractive User Lab to scientists from all over the world. More than 2300 users visited the Institute and performed more than 1600 experiments at the 40 beamlines available at the large-scale facilities. The high demand is reflected by the overbooking that occurred, that was somewhere between 2 and 3 for most beamlines, and reached a value of 6.5 for the PXI beamline at SLS. The number of publications in high-profile journals, based on research within the departments Synchrotron Radiation and Nanotechnology (SYN) and Condensed Matter Research with Neutrons and Muons (NUM), reached a new high. SYN research produced 41 papers in Nature, Science, PRL or Cell, and research at NUM 33 papers.
Commission and committees
(status at the end of 2008)

Research Commission

External Members
- Prof. Dr. H.-R. Ott, President Laboratory for Solid-State Physics, ETH Zurich, CH
- Prof. Dr. G. Aeppli University College, London, UK
- Prof. Dr. F. Carré CEA, Gif-sur-Yvette, FR
- Prof. Dr. H.H. Coenen Institute for Nuclear Chemistry, Forschungszentrum Jülich, DE
- Prof. Dr. R.W. Falcone ALS, Lawrence Berkeley National Laboratory, Berkeley, USA
- Prof. Dr. Ø. Fischer Department of Condensed Matter, University of Geneva, CH
- Prof. Dr. R. Klanner Institute for Experimental Physics, University of Hamburg, DE
- Prof. Dr. S. Larsen European Synchrotron Radiation Facility, Grenoble, FR
- Prof. Dr. E. Leppävuori VTT Technical Research Centre of Finland, FI
- Prof. Dr. T. Mason Oak Ridge National Laboratory, USA
- Prof. Dr. J. Rossbach Institute for Experimental Physics, University of Hamburg, DE
- Prof. Dr. Th. Sattelmayer Chair of Thermodynamics, TU München, Garching, DE

Internal Members
- Prof. Dr. R. Horisberger, President Particles and Matter (TEM)
- Dr. M. Ammann Particles and Matter (TEM)
- Prof. Dr. K. Ballmer-Hofer Life Sciences (BIO)
- Dr. B. Delley Condensed Matter Research with Neutrons and Muons (NUM)
- Dr. R. Eichler Particles and Matter (TEM)
- Dr. P. Hasler, Secretary Life Sciences (BIO)
- Dr. I. Mantzaras General Energy (ENE)
- Dr. W. Pfingsten Nuclear Energy and Safety (NES)
- Dr. T. Schietinger Large Research Facilities (GFA)
- Dr. C. Schulze-Briese Synchrotron Radiation and Nanotechnology (SYN)
- Dr. U. Staub Synchrotron Radiation and Nanotechnology (SYN)
- Prof. Dr. H. Van Swygenhoven Condensed Matter Research with Neutrons and Muons (NUM)
- Dr. F. Vogel Nuclear Energy and Safety (NES)

Permanent Guest
- Prof. Dr. N. Spencer Department of Materials, ETH Zurich, CH
Research Committees

Synchrotron Radiation SYN

Scientific Advisory Committee (SAC)

Prof. Dr. G. Materlik, Chair
Diamond Light Source, Didcot, UK
Prof. Dr. T. Baer
University of North Carolina, Chapel Hill, USA
Prof. Dr. H. Brune
EPFL, Lausanne, CH
Prof. Dr. R. Claessens
University of Würzburg, DE
Prof. K. Diederichs
University of Constance, DE
Prof. J. Evans
University of Southampton, UK
Prof. J. Hastings
Stanford Linear Accelerator Center, Menlo Park, CA, USA
Prof. C.-C. Kao, Brookhaven National Lab, USA
Dr. P. Lagarde
Synchrotron Soleil, Gif-sur-Yvette, FR
Prof. G. Margaritondo
EPFL, Lausanne, CH
Prof. E. Ruehl
Freie Universität Berlin, DE
Prof. L. Schlapbach
EMPA, Dübendorf, CH
Prof. P. Schurtenberger
University of Fribourg, CH

Condensed Matter Research with Neutrons and Muons NUM

SINQ Scientific Committee

Prof. Dr. A. T. Boothroyd, Chairman
University of Oxford, UK
Dr. M. Balasko
KFKI Atomic Energy Research Inst., Budapest, HU
Prof. Dr. Ch. Bernhard
University of Fribourg, CH
Dr. Th. J. Buecherl
TU München, DE
Prof. Dr. R. G. M. Caciuffo
Institute for Transuranium Elements, Karlsruhe, DE
Prof. Dr. J. K. G. Dhont
Forschungszentrum Jülich, DE
Prof. Dr. J.-L. Garcia-Munoz
Inst. de Ciencia de Materiales de Barcelona-CSIC, ES
Prof. Dr. K. W. Kraemer
University of Bern, CH
Prof. Dr. S. L. Lee
University of St. Andrews, UK
Prof. Dr. M. Müller
GKSS, Geesthacht, DE
Prof. Dr. B. Schoenfeld
ETH Zurich, CH
PD Dr. A. Stradner
University of Fribourg, CH
Prof. Dr. W. Treimer
University of Applied Sciences (TFH) Berlin, DE

Muon Spin Spectroscopy

Prof. Dr. H. Keller, President
University of Zurich, CH
Prof. Dr. A. Baldereschi
EPFL, Lausanne, CH
Prof. Dr. S. J. Blundell
University of Oxford, UK
Prof. Dr. K. Chow
Univ. Alberta, CDN
Prof. Dr. R. De Renzi
University of Parma, IT
Prof. Dr. E. M. Forgan
University of Birmingham, UK
Prof. Dr. J. C. Gomez Sal
University of Cantabria, ES
Prof. Dr. J. Litters
Techn. Univ. Braunschweig, DE
Prof. Dr.Ph. Mendels
Univ. Paris XI, FR
Prof. Dr. J.-M. Triscone
University of Geneva, CH

Particles and Matter TEM

Experiments at the Ring Cyclotron

Dr. C. Hoffman, President
LAMPF, Los Alamos, USA
Prof. Dr. A. B. Blondel
University of Geneva, CH
Dr. D. Bryman
TRIUMF, Vancouver, CDN
Dr. P. Cenci
I.N.F.N. sez. di Perugia, IT
Prof. Dr. B. Filippone
California Institute of Technology, USA
Prof. Dr. St. Paul
TU München, DE
Prof. Dr. M. Pendlebury
University of Sussex, UK
Dr. R. Rosenfelder
PSI, CH

Life Sciences BIO

Prof. Dr. D. Neri, President
ETH Zurich, CH
Prof. Dr. Ch. Glanzmann
University Hospital Zurich, CH
Prof. Dr. M. Grütter
Biochemical Institute Univ. of Zurich, CH
Prof. Dr. U. Haberkorn
Universitätsklinikum Heidelberg, DE
Prof. Dr. S. Werner
ETH Zurich, CH

Nuclear Energy and Safety NES

Dr. Ch. McCombie, President
Gifr-Oberfrick, CH
Prof. Dr. M. Giot
Université Catholique de Louvain, BE
P. Hirt
Atel, Olten, CH
Dr. P. Miazza
Nuclear Power Plant Mühleberg, CH
Prof. Dr. K. L. Peddicord
Texas A&M University, College Station, USA
Dr. U. Schmoker
ENSI, Würenlingen, CH
Dr. J.-B. Thomas
CEA-Saclay, Gif-sur-Yvette, FR
Prof. Dr. S. Virtanen
University of Erlangen-Nürnberg, DE
Dr. P. Zuidema
Nagra, Wettingen, CH

General Energy ENE

Prof. Dr. T. Peter, President
ETH Zurich, CH
Dr. T. Kaiser
ALSTOM (Schweiz), Birr, CH
Prof. Dr. H. Müller-Steinhagen
DLR, Stuttgart, DE
Prof. Dr. Ph. R. von Rohr
ETH Zurich, CH
Prof. Dr. L. Schlappbach
EMPA, Dübendorf, CH
Prof. Dr. A. Voss
University of Stuttgart, DE
Dr. R. Schmitz
Swiss Federal Office of Energy, Berne, CH
Where to find what

On CD and online
The publication lists for all PSI departments can be found on the CD version of this report, which can be ordered at www.psi.ch (Media/Info Material) or by phone +41 (0)56 310 21 11.

The lists include the following:
• Peer-reviewed publications
• Invited talks
• Dissertations
• Conference Proceedings
• Lectures

Also included on the CD is the Annual Report (Jahresbericht) in German.

Links to other research not featured here can be found on our website: www.psi.ch (Research at PSI).

Elena Mengotti, PhD student at the Laboratory for Micro- and Nanotechnology, at the electron writer she uses to prepare nanosamples for her investigations.

CONFERENCE AND WORKSHOP CONTRIBUTIONS

Albertini F, Lomax A. Intensity Modulated Proton Therapy: influence of starting conditions on the optimized dose distribution. (SGSMP, Chur 2008)

Invited Talks:

E. Hug.
Particle Therapy in Europe: Present State and Near Future

E. Hug.
Technische Innovationen in der Strahlentherapie.

E. Hug.
Proton Therapy – What could be possible
E. Hug.
Proton Therapy in Switzerland
Ospedale Regionale Bellinzona e Valli, San Giovanni, April, 2008

E. Hug.
Protonen Therapie für Weichteilsarkome.

E. Hug.
Long Term Patient Outcomes Following Proton Beam Therapy for Skull Base Tumors.

E. Hug.
Spot Scanning based proton therapy – the next generation.
Jahreskongress, Children’s Oncology Group, Denver, USA, Oktober 2008

E. Hug.
Protontherapy: The Gold Standard for next Generation Clinical Trials?
18. Jahreskongress, AIRO Italienische Gesellschaft für Radioonkologie, Mailand, November 2008

E. Hug.
Technische Innovationen in der Strahlentherapie – Protonen.

E. Hug.
Proton Therapy – What could be possible.
5th Engadin Prostate Cancer Winter Symposium, März, 2008

E. Hug.
Neurologische Indikationen für die Protonen-Radiotherapie.
KSA, Neurozentrum, März 2008.

E. Hug.
Proton Therapy in Neurooncology: Indications and Results.
USZ, Klinik für Neurochirurgie, Mai 2008.

E. Hug and Manser, P. (2008),
Vorsitz: Principles and Perspectives.
6. Zuppinger Symposium der Bernischen Radium-Stiftung: Im Technorama der Radioonkologie, Bern, 25.06.08.

E. Hug.
Grundlagen der Protonentherapie und Fragen an den Radiologen.

E. Hug.
Protonentherapie von der Forschungseinklave zu akzeptierter Behandlungsmodalität.

E. Hug.
Protonentherapie für Patienten mit Sarkomen.
A.J. Lomax

Importance of starting conditions for optimising IMPT: Giving power to the planner?
Huangguoshu International workshop on Biomedical Mathematics, Huangguoshu, China, November, 2008

A.J. Lomax.

Clinical proton therapy: Planning, positioning and patients.
Invited seminar, Kantonsspital Aarau, October 2008

A.J. Lomax.

Range and robustness: The good and bad of proton therapy
Invited seminar, Varian Ltd, Daetwil, October 2008

A.J. Lomax.

Potential and challenges of Intensity Modulated Proton Therapy.
Invited Seminar, Institute for Bio-medical Technology, ETH, Zurich, October 2008

A.J. Lomax.

Future directions and current challenges of proton therapy.
European Science Foundation workshop, Oxford, UK, September 2008

A.J. Lomax.

Current challenges in hadron therapy.

A.J. Lomax.

Is there still a role for proton therapy?
BIR/IPEM Spring meeting, London, UK, June 2008

A.J. Lomax

Clinical aspects of proton therapy.
MD Anderson Hospital, Houston, USA, May 2008

A.J. Lomax

Practical aspects of proton therapy with scanned beams.
Invited seminar, MD Anderson Hospital, Houston, USA, May 2008

A.J. Lomax

Treatment planning for scanned proton beams and IMPT
PTCOG teaching course, Jacksonville, USA, May 2008

A.J. Lomax.

State-of-the-art Proton Therapy: The physicist’s perspective.
Keynote lecture, PTCOG, Jacksonville, USA, May 2008

A.J. Lomax

Current status of proton therapy at the Paul Scherrer Institute.
Radiation Biology Program Retreat, Stanford University, April 2008

A.J. Lomax

Strahlentherapie mit Protonen: Aktuelle Technik und neue Entwicklungen.
Physikalische Gesellschaft Zurich, Zurich, February 2008.
A.J. Lomax
State-of-the-art in proton therapy: modern delivery techniques and current challenges
MASSTRO, Maastricht, Holland, January 2008.

E. Pedroni
Hadrontherapy facilities worldwide
European Particle Accelerator Conference - EPAC
Genoa 24.06.2008

E. Pedroni.
Proton Beam Delivery Techniques and Commissioning Issues: Scanning
BeamsEducational Pre-Meeting – 19.05.2008
PTCOG 47 Jacksonville Florida, USA

Timmermann B.
Protonentherapie von Malignomen im Kindesalter am Paul Scherrer Institut: eine prospektive Untersuchung.
Wien, DEGRO 2008, Mai

Timmermann B., Maier S., Lomax A., Hug E.
Proton Beam Radiation Therapy of Childhood Malignancies at the Paul Scherrer Institute: A prospective Analysis.
Göteborg, ESTRO 2008, September

Timmermann B., Maier S., Grotzer M., Weiss, M., Bolsi A., Hug E.
Spot-Scanning Proton Therapy for Malignant Brain Tumours in early Childhood: First Experiences at PSI.

Timmermann B.: Maier S., Stadelmann O., Hug E.
Proton Radiation Therap for Childhood Cancer at PSI.

Timmermann B.
Modern Radiotherapy in Brain Tumours: techniques and Concepts.
SYRAD Workshop, ESFR, Grenoble 6/08

Timmermann B.
State of the Art lecture dedicated to Radiotherapy approaches in CNS tumours.
SIOP 2008, Berlin, 3. Oktober

Timmermann B.
Radiation Therapy for Childhood Malignancies.
Curso de Neuro-Oncologia Pediatrica. Barcelona 10/08

Teaching activities

E. Hug:

Co-Director and lecturer:
ESTRO Teaching Course on Protons and Ions, Heidelberg, 2008
T. Lomax:

Lecturer - ESTRO teaching course on Proton and Heavy-Ion Therapy
Co-director and Lecturer – PSI Winter School on Scanned Proton Therapy

Physics Option at ETH – ‘Physics in Medical Research – from Humans to Cells’
Physics Option at ETH – ‘Medical Physics III – New Trends in Radiotherapy’
UNIVERSITY LEVEL AND OTHER TEACHING

B.P. Andreasson
Physik für Informatiker, 402-0038-00 U
Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland 19.02-27.05.2008

B.P. Andreasson
Advanced Solid State Physics, 402-0257-00 U
Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland 02.10-11.12.2008

H. Dil
Electron Spectroscopy
Universität Zürich, Physik 1, FS 2008

J. Gobrecht, H. Schift
Nanotechnologie für Ingenieure
Fachhochschule Nordwestschweiz, Windisch, HS 2008

F. Gozzo
Non-conventional sources: X-ray powder diffraction using Synchrotron Radiation

L.J. Heyderman
Magnetic Imaging Techniques
Seminar in Lecture Series ‘Magnetism and Spin Dependent Transport’ (Prof. Rüdiger), Universität Konstanz, 7.7.2008

L.J. Heyderman
Magnetic Nanostructures and X-rays
Lecture at the Summer School on Condensed Matter Research (Probing the Nanometre Scale with Neutrons, Protons and Muons), Zuoz 16-22.08.2008

L.J. Heyderman
Magnetic Nanostructures and X-rays

M. Nachtegaal, M. Janousch
Cook and look: Synchrotron techniques
Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland, Kursnr. 701-1336-00L, FS 2008

C. Padeste
Preparation of Bio-Active Model Systems using Micro- and Nanolithographic Tools
Nanobiomat Workshop, Middle East Technical University, Ankara, Turkey 1-2.9.2008

S. A. Pauli
Physik-Kolloquium für Mediziner
University of Zürich, Switzerland, HS 2008

B. Patterson, C. Weyer, H. Sigg,
SLS Student ‘Praktikum’
Paul Scherrer Institut, Villigen, Switzerland, 24-27.8.2008

F. Pfeiffer
Coherent Imaging with X-rays and neutrons
PSI Summer School, Zuoz, 08.2008

F. Pfeiffer
Coherent Imaging with X-Rays and Neutrons

F. Pfeiffer
Coherent X-Ray Imaging for Life Science Applications
Graduate School for Laser Physics, DESY, Hamburg, Germany, 12.2008
F. Pfeiffer
X-Ray Imaging and Tomography
CIBM lecture, EPFL, 12.2008

C. Schulze-Briese
Protein Crystallography
CIMST Summer School on Biomedical Imaging, Zurich, Switzerland, 10.09.2008

H. Schift
LIGA technology
Seminar for Master of Micro- and Nanotechnology (MNT), Dornbirn, Austria 11.01.2008

H. Schift
Nanoreplication technology
Master of Engineering in Packaging Technology, International Packaging Institute (IPI), Neuenhausen, Switzerland 13.09.2008

M. Stampanoni
Micro and Nano-Tomography of Biological Tissues
ETHZ-Lecture: 227-0965-00G

M. Stampanoni
Aktuelle Forschung in der biomedizinischen Technik
ETHZ-Lecture: 227-0970-00L

M. Stampanoni
X-ray Tomographic imaging: a fascinating trip from macro to nano
CIMST: Interdisciplinary Summer School on Biomedical Imaging, 2-12.9.2008

M. Stampanoni
X-ray Tomographic Microscopy
7th PSI Summer School on Condensed Matter Research, 17-23.8.2008

J.F. van der Veen
Physik
Bachelorstudiengang Informatik, ETH Zürich, FS 2008

J.F. van der Veen
Materials research using synchrotron radiation
Masters course ETH Zürich, HS 2008

P. R. Willmott
Introduction to Synchrotron Radiation and Synchrotron Techniques
University of Zürich, Switzerland, Course No. CHE822, HS 2008

P. R. Willmott
Surface and Interface Analysis of In-situ Grown Thin Films
7th PSI Summer School on Condensed Matter Research, Zuoz, Switzerland, 16-22.08.2008

P. R. Willmott
Physik mit Photonen
ETHZ-Studenten Colloquium, PSI, Villigen, Switzerland, 21.05.2008

PUBLICATIONS WITH SYN AUTHOR(S) AND DESCRIBING AN SLS EXPERIMENT

Arenholz E, van der Laan G, Nolting F
Magnetic structure near the Co/NiO(001) interface
APPLIED PHYSICS LETTERS 93, 162506 (2008)

Large area arrays of metal nanowires
MICROELECTRONIC ENGINEERING 85, 1131 (2008)

Spatiotemporal stability of a femtosecond hard-x-ray undulator source studied by control of coherent optical phonons (vol 99, art no 174801, 2007)
PHYSICAL REVIEW LETTERS 100, 099901 (2008)
Bjorck M, Schleputz CM, Pauli SA, Martoccia D, Herger R, Willmott PR
Atomic imaging of thin films with surface x-ray diffraction: introducing DCAF
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 445006 (2008)

Manipulating the magnetic structure with electric fields in multiferroic ErMn2O5
PHYSICAL REVIEW LETTERS 100, 027201 (2008)

Boero G, Mouaziz S, Rusponi S, Bencok P, Notling F, Stepanow S, Gambardella P
Element-resolved x-ray ferrimagnetic and ferromagnetic resonance spectroscopy
NEW JOURNAL OF PHYSICS 10, 013011 (2008)

Pseudogap and charge density waves in two dimensions
PHYSICAL REVIEW LETTERS 100, 196402 (2008)

Thin Cr2O3 films for magnetoelectric data storage deposited by reactive e-beam evaporation
FERROELECTRICS 370, 147 (2008)

Molecular speciation of sulfur in solid oxide fuel cell anodes with X-ray absorption spectroscopy
JOURNAL OF POWER SOURCES 183, 564 (2008)

Breitwieser R, Marangolo M, Luning J, Jaouen N, Joly L, Eddrief M, Etgens VH, Sacchi M
Imaging the antiparallel magnetic alignment of adjacent Fe and MnAs thin films
APPLIED PHYSICS LETTERS 93, 122508 (2008)

Bressler C, Abela R, Cherghi M
Exploiting EXAFS and XANES for time-resolved molecular structures in liquids
ZEITSCHRIFT FUR KRISTALLOGRAPHIE 223, 307 (2008)

Buechi FN, Fliueckiger R, Tehlar D, Marone F, Stampalone M
Determination of Liquid Water Distribution in Porous Transport Layers
ELECTROCHEMISTRY 16, 587 (2008)

Concentration Profiles of Colloidal Fluids in One-Dimensional Confinement
CHIMIA 62, 789 (2008)

Electronic structure near the 1/8-anomaly in La-based cuprates
NEW JOURNAL OF PHYSICS 10, 103016 (2008)

Anisotropic quasiparticle scattering rates in slightly underdoped to optimally doped high-temperature La2-xSrxCuO4 superconductors
PHYSICAL REVIEW B 78, 205103 (2008)

Combining M- and L-edge resonant inelastic x-ray scattering for studies of 3d transition metal compounds
PHYSICAL REVIEW B 78, 245102 (2008)

Cusack M, Perez-Huerta A, Janousch M, Finch AA
Magnesium in the lattice of calcite-shelled brachiopods
CHEMICAL GEOLOGY 257, 59 (2008)

Dais C, Mussen G, Sigg H, Fromherz T, Auzelyte V, Solak H, Gruetzmacher D
Photoluminescence studies of SiGe quantum dot arrays prepared by templated self-assembly
EPL 84, 67017 (2008)
Dais C, Solak HH, Muller E, Grutzmacher D
Impact of template variations on shape and arrangement of Si/Ge quantum dot arrays
APPLIED PHYSICS LETTERS 92, 143102 (2008)

Degueldre C, Raabe J, Kuri G, Abolhassani S
Zircaloy-2 secondary phase precipitate analysis by X-ray microspectroscopy
TALANTA 75, 402 (2008)

Ptychography and lensless X-ray imaging
EUROPHYSICS NEWS 39, 22 (2008)

Dil JH, Meier F, Lobo-Checa J, Patthey L, Blilmayer G, Osterwalder J
Rashba-type spin-orbit splitting of quantum well states in ultrathin Pb films
PHYSICAL REVIEW LETTERS 101, 266802 (2008)

Surface trapping of atoms and molecules with dipole rings
SCIENCE 319, 1824 (2008)

Djerdj I, Sheptyakov D, Gozzo F, Arcon D, Nesper R, Niederberger M
Oxygen self-doping in hollandite-type vanadium oxyhydroxide nanorods
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 130, 11364 (2008)

Ekinici Y, Christ A, Agio M, Martin OJF, Solak HH, Loffler JF
Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs
OPTICS EXPRESS 16, 13287 (2008)

Ekinici Y, Solak HH, Loffler JF
Plasmon resonances of aluminum nanoparticles and nanorods
JOURNAL OF APPLIED PHYSICS 104, 083107 (2008)

Transport anisotropy in In0.75Ga0.25As two-dimensional electron gases induced by indium concentration modulation
PHYSICAL REVIEW B 77, 235307 (2008)

Pseudogap-driven sign reversal of the Hall effect
PHYSICAL REVIEW LETTERS 100, 236402 (2008)

Farquet P, Padeste C, Solak HH, Gursel SA, Scherer GG, Wokaun A
Extreme UV radiation grafting of glycidyl methacrylate nanostructures onto fluoropolymer foils by RAFT-mediated polymerization
MACROMOLECULES 41, 6309 (2008)

Felderer K, Groves M, Diez J, Pohl E, Witt S
Crystallization and preliminary X-ray analysis of the Thermoplasma acidophilum 20S proteasome in complex with protein substrates
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS 64, 899 (2008)

Fernandes PAL, Tzvetkov G, Fink RH, Paradossi G, Fery A
Quantitative analysis of scanning transmission X-ray microscopy images of gas-filled PVA based microballoons
LANGMUIR 24, 13677 (2008)

Froideval A, Degueldre C, Segre CU, Pouchon MA, Grolimund D
Niobium speciation at the metal/oxide interface of corroded niobium-doped Zircaloy's: A X-ray absorption near-edge structure study
CORROSION SCIENCE 50, 1313 (2008)

Magnetic and electronic Co states in the layered cobaltate GdBaCo2O5.5-x
PHYSICAL REVIEW B 78, 054424 (2008)

Garcia-Fernandez M, Staub U, Bodenthin Y, Lawrence SM, Mulders AM, Buckley CE,
Weyeneth S, Pomjakushina E, Conder K
Resonant soft x-ray powder diffraction study to determine the orbital ordering in A-site-ordered SmBaMn2O6
PHYSICAL REVIEW B 77, 060402 (2008)

Gostling NJ, Thomas CW, Greenwood JM, Dong X, Bengtson S, Raff EC, Raff RA, Degnan BM, Stampanoni M, Donoghue PCJ
Deciphering the fossil record of early bilaterian embryonic development in light of experimental taphonomy
EVOLUTION & DEVELOPMENT 10, 339 (2008)

Gu QF, Krauss G, Steurer W, Gramm F, Cervellino A
Unexpected high stiffness of Ag and Au nanoparticles
PHYSICAL REVIEW LETTERS 100, 045502 (2008)

Novel three-dimensional analysis tool for vascular trees indicates complete micro-networks, not single capillaries, as the angiogenic endpoint in mice overexpressing human VEGF(165) in the brain
NEUROIMAGE 39, 1549 (2008)

Herger R, Willmott PR, Schleputz CM, Bjorck M, Pauli SA, Martoccia D, Patterson BD, Kumah D, Clarke R, Yacoby Y, Dobeli M
Structure determination of monolayer-by-monolayer grown La1-xSrxMnO3 thin films and the onset of magnetoresistance
PHYSICAL REVIEW B 77, 085401 (2008)

Direct imaging of current-induced domain wall motion in CoFeB structures
JOURNAL OF APPLIED PHYSICS 103, 07D928 (2008)

Relationship between nonadiabaticity and damping in permalloy studied by current induced spin structure transformations
PHYSICAL REVIEW LETTERS 100, 066603 (2008)

Hoppler J, Stahn J, Bouyanif H, Malik VK, Patterson BD, Willmott PR, Cristiani G, Habermeier HU, Bernhard C
X-ray study of structural domains in the near-surface region of SrTiO3 substrates with Y0.6Pr0.4Ba2Cu3O7/La2/3Ca1/3MnO3 superlattices grown on top
PHYSICAL REVIEW B 78, 134111 (2008)

Ingold G, Abela R, Beaud P, Johnson SL, Staub U
Towards pump-probe resonant X-ray diffraction at femtosecond undulator sources
ZEITSCHRIFT FUR KRISTALLOGRAFIE 223, 292 (2008)

Jefimovs K, Vila-Comamala J, Stampanoni M, Kaulich B, David C
Beam-shaping condenser lenses for full-field transmission X-ray microscopy

Large scale synthesis of single crystal iron oxide magnetic nanoringS

Johnson I, Jefimovs K, Bunk O, David C, Dierolf M, Gray J, Renker D, Pfeiffer F
Coherent diffractive imaging using phase front modifications
PHYSICAL REVIEW LETTERS 100, 155503 (2008)

Nanoscale depth-resolved coherent femtosecond motion in laser-excited bismuth
PHYSICAL REVIEW LETTERS 100, 155501 (2008)

Kaegi R, Wagner T, Hetzer B, Sinnet B, Tzetkov G, Boller M
Size, number and chemical composition of nanosized particles in drinking water determined by analytical microscopy and LIBD
WATER RESEARCH 42, 2778 (2008)

Karg SF, Meijer GI, Bednorz JG, Rettner CT, Schrott AG, Joseph EA, Lam CH, Janousch M, Staub U, La Mattina F, Alvarado SF, Widmer D, Stutz R, Drechsler U, Caimi D
Transition-metal-oxide-based resistance-change memories
IBM JOURNAL OF RESEARCH AND DEVELOPMENT 52, 481 (2008)

Koch M, Diez J, Fritz G
Crystal structure of Ca2+-free S100A2 at 1.6-angstrom resolution
JOURNAL OF MOLECULAR BIOLOGY 378, 933 (2008)

Two-dimensional X-ray waveguides: fabrication by wafer-bonding process and characterization
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING 91, 6 (2008)

Krasniqi FS, Johnson SL, Beaud P, Kaiser M, Grolimund D, Ingold G
Influence of lattice heating time on femtosecond laser-induced strain waves in InSb
PHYSICAL REVIEW B 78, 174302 (2008)

Krempasky J, Strocov VN, Pattthey L, Willmott PR, Herger R, Falub M
Effects of three-dimensional band structure in angle- and spin-resolved photoemission from half-metallic La2/3Sr1/3MnO3
PHYSICAL REVIEW B 77, 165120 (2008)

Krug IP, Hillebrecht FU, Havekort AW, Tanaka A, Tjang LH, Gomonay H, Fraile-Rodríguez A, Nolting F, Cramm S, Schneider CM
Impact of interface orientation on magnetic coupling in highly ordered systems: A case study of the low-indexed Fe3O4/NiO interfaces
PHYSICAL REVIEW B 78, 064427 (2008)

Kumah DP, Riposan A, Cionca CN, Hussein NS, Clarke R, Lee JY, Millunchick JM, Yacoby Y, Schleputz CM, Bjork M, Willmott PR
Resonant coherent Bragg rod analysis of strained epitaxial heterostructures
APPLIED PHYSICS LETTERS 93, 081910 (2008)

Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry

Giant magneto-elastic coupling in multiferroic hexagonal manganites
NATURE 451, 805 (2008)

Levenson E, Lerch P, Martin MC
Spatial resolution limits for synchrotron-based spectromicroscopy in the mid- and near-infrared
JOURNAL OF SYNCHROTRON RADIATION 15, 323 (2008)

Levenson E, Lerch P, Martin MC
Spatial resolution limits for synchrotron-based infrared spectromicroscopy
INFRARED PHYSICS & TECHNOLOGY 51, 413 (2008)

Lobo-Checa J, Okuda T, Hengsberger M, Pattthey L, Greber T, Blaha P, Osterwalder J
Hidden surface states on pristine and H-passivated Ni(111): Angle-resolved photoemission and density-functional calculations
PHYSICAL REVIEW B 77, 075415 (2008)

Luo F, Heyderman LJ, Solak HH, Thomson T, Best ME
Nanoscale perpendicular magnetic island arrays fabricated by extreme ultraviolet interference lithography
APPLIED PHYSICS LETTERS 92, 102505 (2008)

Malojcic G, Owen RL, Grimshaw JP, Brozzo MS, Dreher-Teo H, Glockshuber R
A structural and biochemical basis for PAPS-independent sulfuryl transfer by aryld
sulfotransferase from uropathogenic Escherichia coli

Malojic G, Owen RL, Grimshaw JPA, Glockshuber R
Preparation and structure of the charge-transfer intermediate of the transmembrane redox catalyst DsbB
FEBS LETTERS 582, 3301 (2008)

Mantion A, Gozzo F, Schmitt B, Stern WB, Gerber Y, Robin AY, Fromm KM, Painsi M, Taubert A
Amino acids in iron oxide mineralization: (Incomplete) crystal phase selection is achieved even with single amino acids
JOURNAL OF PHYSICAL CHEMISTRY C 112, 12104 (2008)

Graphene on Ru(0001): A 25x25 supercell
PHYSICAL REVIEW LETTERS 101, 126102 (2008)

Meier F, Dil H, Lobo-Checa J, Patthey L, Osterwalder J
Quantitative vectorial spin analysis in angle-resolved photoemission: Bi/Ag(111) and Pb/Ag(111)
PHYSICAL REVIEW B 77, 165431 (2008)

Building blocks of an artificial kagome spin ice: Photoemission electron microscopy of arrays of ferromagnetic islands
PHYSICAL REVIEW B 78, 144402 (2008)

Mund SI, Stampanoni M, Schittny JC
Developmental alveolarization of the mouse lung
DEVELOPMENTAL DYNAMICS 237, 2108 (2008)

Natural gas hydrate investigations by synchrotron radiation X-ray cryo-tomographic microscopy (SRXCTM)
GEOPHYSICAL RESEARCH LETTERS 35, L23612 (2008)

Structure of confined fluids by x-ray interferometry using diffraction gratings
OPTICS EXPRESS 16, 20522 (2008)

Nygard K, Satapathy DK, Bunk O, Pfeiffer F, David C, van der Veen JF
Dynamical theory for diffractive x-ray imaging of one-dimensional periodic objects
APPLIED PHYSICS LETTERS 92, 214105 (2008)

Olliges S, Gruber PA, Orso S, Auzelyte V, Ekinci Y, Solak HH, Spolenak R
In situ observation of cracks in gold nano-interconnects on flexible substrates
SCRIPTA MATERIALIA 58, 175 (2008)

Pacile D, Papagno M, Rodriguez AF, Grioni M, Papagno L
Near-edge x-ray absorption fine-structure investigation of graphene
PHYSICAL REVIEW LETTERS 101, 066806 (2008)

Origins of large critical temperature variations in single-layer cuprates
PHYSICAL REVIEW B 78, 054523 (2008)

Pauli SA, Willmott PR
Conducting interfaces between polar and non-polar insulating perovskites
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 264012 (2008)

Crystal structure and stereochemical studies of KD(P)G aldolase from Thermoproteus tenax
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS 72, 35 (2008)
Perez-Dieste V, Tamai A, Greber T, Chiuzaian SG, Patthey L
Charge-transfer dynamics in one-dimensional C-60 chains
SURFACE SCIENCE 602, 1928 (2008)

Perez-Huerta A, Cusack M, Janousch M, Finch AA
Influence of crystallographic orientation of biogenic calcite on in situ Mg XANES analyses

Quittmann C, Raabe J, Buehler C, Buess M, Johnson S, Nolting F, Schrott V, Streun A
Measuring magnetic excitations in microstructures using X-ray microscopy
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-
ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 588, 494 (2008)

PolLux: A new facility for soft x-ray spectromicroscopy at the Swiss Light Source
REVIEW OF SCIENTIFIC INSTRUMENTS 79, 113704 (2008)

Embryo fossilization is a biological process mediated by microbial biofilms

Sarkar SS, Sahoo PK, Solak HH, David C, Van der Veen JF
Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B 26, 2160 (2008)

Colloidal monolayer trapped near a charged wall: A synchrotron X-ray diffraction study
PHYSICAL REVIEW LETTERS 101, 136103 (2008)

Scagnoli V, Staub U, Bodenthin Y, Garcia-Fernandez M, Mulders AM, Meijer GI, Hammerl G
Induced noncollinear magnetic order of Nd3+ in NdNiO3 observed by resonant soft x-ray diffraction
PHYSICAL REVIEW B 77, 115138 (2008)

Schittny JC, Mund SI, Stampanoni M
Evidence and structural mechanism for late lung alveolarization

Coherent d-wave superconducting gap in underdoped La2-xSrxCuO4 by angle-resolved photoemission spectroscopy
PHYSICAL REVIEW LETTERS 101, 047002 (2008)

The electronic structure of La1-xSrxMnO3 thin films and its T-c dependence as studied using angle-resolved photoemission
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 222001 (2008)

Resolving brain microvascular architecture with X-ray tomographic microscopy using vascular corrosion casting.

Polarization analysis in soft X-ray diffraction to study magnetic and orbital ordering
JOURNAL OF SYNCHROTRON RADIATION 15, 469 (2008)

Steinmetz MO, Gattin Z, Verel R, Ciani B, Stromer T, Green JM, Tittmann P, Schulze-Briese C, Gross H, van Gunsteren WF, Meier BH, Serpell LC, Muller SA, Kammerer RA
Atomic models of de novo designed cc beta-met amyloid-like fibrils

In situ characterization of block copolymer ordering on chemically nanopatterned surfaces by time-resolved small angle x-ray scattering
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B 26, 2504 (2008)

Thibault P, Dierolf M, Menzel A, Bunk O, David C, Pfeiffer F
High-resolution scanning x-ray diffraction microscopy
SCIENCE 321, 379 (2008)

Thrall M, Freer R, Martin C, Azough F, Patterson B, Cernik RJ
An in situ study of the formation of multiferroic bismuth ferrite using high resolution synchrotron X-ray powder diffraction

Tonnerre JM, De Santis M, Grenier S, Tolentino HCN, Langlais V, Bontempi E, Garcia-Fernandez M, Staub U
Depth magnetization profile of a perpendicular exchange coupled system by soft-x-ray resonant magnetic reflectivity
PHYSICAL REVIEW LETTERS 100, 157202 (2008)

Tsuda A, Filipovic N, Haberthur D, Dickie R, Matsuy, Stampanoni M, Schittny JC
Finite element 3D reconstruction of the pulmonary acinus imaged by synchrotron X-ray tomography
JOURNAL OF APPLIED PHYSIOLOGY 105, 964 (2008)

Turchanin A, Tinazli A, El-Desawy M, Grossann H, Schnietz M, Solak HH, Tampe R, Golzhauser A
Molecular self-assembly, chemical lithography, and biochemical tweezers: A path for the fabrication of functional nanometer-scale protein arrays
ADVANCED MATERIALS 20, 471 (2008)

Tzvetkov G, Fink RH
Temperature-dependent X-ray microspectroscopy of phase-change core?shell microcapsules
SCRIPTA MATERIALIA 59, 348 (2008)

Soft X-ray spectromicroscopy of phase-change microcapsules
MICRON 39, 275 (2008)

van der Veen RM, Milne CJ, Pham VT, El Nahhas A, Weinstein JA, Best J, Borca CN, Bressler C, Chengui M
EXAFS structural determination of the Pt-2(P2O5H2)(4)(4-) anion in solution
CHIMIA 62, 287 (2008)

Vaucher S, Nicula R, Catala-Civera JM, Schmitt B, Patterson B
In situ synchrotron radiation monitoring of phase transitions during microwave heating of Al-Cu-Fe alloys

Photoemission insight into heavy-fermion behavior in YbRh2Si2
PHYSICAL REVIEW LETTERS 100, 056402 (2008)

Welander AM, Kang HM, Stuen KO, Solak HH, Muller M, de Pablo JJ, Nealey PF,
Rapid directed assembly of block copolymer films at elevated temperatures
MACROMOLECULES 41, 2759 (2008)

The origin of S4+ detected in silicate glasses by XANES
AMERICAN MINERALOGIST 93, 235 (2008)

Zoller FA, Padeste C, Ekinci Y, Solak HH, Engel A
Nanostructured substrates for high density protein arrays
MICROELECTRONIC ENGINEERING 85, 1370 (2008)
PUBLICATIONS WITHOUT SYN AUTHOR(S) AND DESCRIBING AN SLS EXPERIMENT

Ahuja U, Rozhko A, Glockshuber R, Thony-Meyer L, Einsle O
Helix swapping leads to dimerization of the N-terminal domain of the c-type cytochrome maturation protein CcmH from Escherichia coli
FEBS LETTERS 582, 2779 (2008)

Andreka J, Lewis R, Bruckner F, Lehmann E, Cramer P, Michaelis J
Single-molecule tracking of mRNA exiting from RNA polymerase II

Arpiainen V, Zalogotny V, Kordyuk AA, Borisenko SV, Lindroos M
Angular dependence of circular dichroism in Pb-doped and pristine Bi2Sr2CaCu2O8+delta
PHYSICAL REVIEW B 77, 024520 (2008)

Balassone G, Mormone A, Rossi M, Bernardi A, Fisch M, Armbruster T, Malsy AK, Berger A
Crystal chemical and structural characterization of an Mg-rich osmiumite from Vesuvius volcano (Italy)
EUROPEAN JOURNAL OF MINERALOGY 20, in press (2008)

Balassone G, Rossi M, Boni M, Stanley G, Mcdermott P
Mineralogical and geochemical characterization of nonsulfide Zn Pb mineralization at Silvermines and Galmoy (Irish Midlands)
ORE GEOLOGY REVIEWS 33, 168-186 (2008)

Barends TRM, Domratcheva T, Kulik V, Blumenstein L, Niks D, Dunn MF, Schlichting I
Structure and mechanistic implications of a tryptophan synthase quinonoid intermediate
CHEMBIOCHEM 9, 1024 (2008)

The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation
EMBO JOURNAL 27, 1907 (2008)

Becker R, Lolli B, Meinhart A
Snapshots of the RNA processing factor SCAF8 bound to different phosphorylated forms of the carboxyl-terminal domain of RNA polymerase II
JOURNAL OF BIOLOGICAL CHEMISTRY 283, 22659 (2008)

Bihani S, Das A, Prashar V, Ferrer JL, Hosur MV
X-Ray structure of HIV-1 protease in situ product complex
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS 74, 594 (2008)

A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing
NATURE 452, 108 (2008)

X-Ray structure of a pentameric ligand-gated ion channel in an apparently open conformation
NATURE 457, 111 (2008)

Bohnet JA, Schuster S, Seeger MA, Faehnrich E, Pos KM, Kern WV
Site-Directed Mutagenesis reveals Putative Substrate Binding Residues in the Escherichia coli RND Efflux Pump AcrB
JOURNAL OF BACTERIOLOGY 190, 8225 (2008)

Brandstetter S, Derlet PM, Van Petegem S, Van Swygenhoven H
Williamson-Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations
ACTA MATERIALIA 56, 165 (2008)

Brosig A, Nesper J, Welte W, Diedrichs K
Expression, crystallization and preliminary X-ray analysis of an outer membrane protein from Thermus thermophilus HB27
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND
CRYSTALLIZATION COMMUNICATIONS 64, 533 (2008)

Brouns SJJ, Barends TRM, Worm P, Akerboom J, Turnbull AP, Salmon L, van der Oost J
Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate
dehydratase illustrates common mechanistic features of the FAH superfamily
JOURNAL OF MOLECULAR BIOLOGY 379, 357 (2008)

Brueckner F, Cramer P
Structural basis of transcription inhibition by alpha-amanitin and implications for RNA
polymerase II translocation

Großmund D, Borca C, Hill M, Gehrig R, Baltensperger U
X-ray fluorescence spectrometry for high throughput analysis of atmospheric aerosol samples:
The benefits of synchrotron X-rays
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY 63, 929 (2008)

Camnelli S, Deguelindre C, Kuri G, Bertsch J
Study of a neutron irradiated reactor pressure vessel steel by X-ray absorption spectroscopy
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM
INTERACTIONS WITH MATERIALS AND ATOMS 266, 4775 (2008)

Biogenic vs. abiogenic magnetite nanoparticles: A XMC study
AMERICAN MINERALOGIST 93, 880 (2008)

Cebe-Suarez P, Grunewald FS, Jaussi R, Li XJ, Claesson-Welsh L, Spillmann D, Mercer AA,
Prota AE, Ballmer-Hofer K
Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the
peptide RPPR
FASEB JOURNAL 22, 3074 (2008)

A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocation

Cramer P, Armache KJ, Baumli S, Benkert S, Brueckner E, Buchen C, Damsma GE, Dengl S,
Geiger SR, Jaslak AJ, Jawhari A, Jennebach S, Kamenski T, Kettenberger H, Kuhn CD,
Lehmann E, Leike K, Sydow JE, Vannini A
Structure of eukaryotic RNA polymerases
ANNUAL REVIEW OF BIOPHYSICS 37, 337 (2008)

Cryle MJ, Schlichting I
Structural insights from a P450 Carrier Protein complex reveal how specificity is achieved in the
P450(Biol) ACP complex
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES
OF AMERICA 105, 15696 (2008)

KK, Krug A, Hopfer KP
The C-terminal regulatory domain is the RNA 5′-triphasphate sensor of RIG-I
MOLECULAR CELL 29, 169 (2008)

Dammeyer T, Hofmann E, Frankenberg-Dinkel N
Phycocerythrobilin synthase (PebS) of a marine virus - Crystal structures of the biliverdin
complex and the substrate-free form
JOURNAL OF BIOLOGICAL CHEMISTRY 283, 27547 (2008)

Probing multilayer stack reflectors by low coherence interferometry in extreme ultraviolet
APPLIED OPTICS 47(12), 2109 (2008)

Dunford JE, Kwaasi AA, Rogers MJ, Barnett BL, Ebetino FH, Russell RGG, Oppermann U,
Kavanagh KL
Structure-activity relationships among the nitrogen containing bisphosphonates in clinical use
and other analogues: Time-dependent inhibition of human farnesyl pyrophosphate synthase
JOURNAL OF MEDICINAL CHEMISTRY 51, 2187 (2008)

Eidam O, Dworkowski FSN, Glockshuber R, Grutter MG, Capitani G
Crystal structure of the ternary FimC-FimF(I)-FimD(N) complex indicates conserved pilus chaperone-subunit complex recognition by the usher FimD
FEBS LETTERS 582, 651 (2008)
Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture
STRUCTURE 16, 115 (2008)
Eswaran J, Soundararajan M, Kumar R, Knapp S
UnPAKing the class differences among p21-activated kinases
TRENDS IN BIOCHEMICAL SCIENCES 33, 394 (2008)
Structural coupling of SH2-kinase domains links fes and Abl substrate recognition and kinase activation
CELL 134, 793 (2008)
Flank AM, Lagarde P, Itie JP, Polian A, Hearne GR
Pressure-induced amorphization and a possible polymorphism transition in nanosized TiO2: An x-ray absorption spectroscopy study
PHYSICAL REVIEW B 77, 224112 (2008)
Forsberg F, Mooser R, Arnold M, Hack E, Wyss P
3D micro-scale deformations of wood in bending: Synchrotron radiation CT data analyzed with digital volume correlation
Foster LC, Finch AA, Allison N, Andersson C, Clarke LJ
Mg in aragonitic bivalve shells: seasonal variations and mode of incorporation in Arctica islandica
CHEMICAL GEOLOGY 254, 113 (2008)
Frey D, Huber T, Pluckthun A, Grutter MG
Structure of the recombinant antibody Fab fragment f3p4
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGraphy 64, 636 (2008)
Geiger SR, Kuhn CD, Leidig C, Renkawitz J, Cramer P
Crystallization of RNA polymerase I subcomplex A14/A43 by iterative prediction, probing and removal of flexible regions
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS 64, 413 (2008)
Gerber S, Comellas-Bigler M, Goetz BA, Locher KP
Structural basis of trans-inhibition in a molybdate/tungstate ABC transporter
SCIENCE 321, 246 (2008)
Gertz M, Fischer F, Wolters D, Steegborn C
Activation of the life-span regulator p66(Shc) through reversible disulfide bond formation
Gertz M, Fischer F, Wolters D, Steegborn C
Activation of the lifespan regulator p66(Shc) through reversible disulfide bond formation
Gotthardt K, Weyand M, Kortholt A, Van Haastert PJM, Wittinghofer A
Structure of the Roc-COR domain tandem of C. tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase (vol 27, pg 2239, 2008)
EMBO JOURNAL 27, 2352 (2008)
Gotthardt K, Weyand M, Kortholt A, Van Haastert PJM, Wittinghofer A
Structure of the Roc-COR domain tandem of C-tepidum, a prokaryotic homologue of the human LRRK2 Parkinson kinase
EMBO JOURNAL 27, 2239 (2008)
Gremer L, Gilsbach B, Ahmadian MR, Wittinghofer A
Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGAP interaction
BIOLOGICAL CHEMISTRY 389, 1163 (2008)
Grimshaw JPA, Stirnimann CU, Brozzo MS, Malojcic G, Gruetter MG, Capitani G, Glockshuber R
Dsbl and Dsbl form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli
A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism
NATURE 452, 755 (2008)
Gronheid R, Van Roey F, Van Steenwinckel D
Using K-LUP for understanding trends in EUV resist performance
JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY 21, 429 (2008)
Grueninger D, Treiber N, Ziegler MO, Koetter JW, Schulze MS, Schulz GE
Designed protein-protein association
SCIENCE 319, 206 (2008)
Structures of RabGTTase-substrate/product complexes provide insights into the evolution of protein prenylation
EMBO JOURNAL 27, 2444 (2008)
Development of selective RabGTTase inhibitors and crystal structure of a RabGTTase-inhibitor complex
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 47, 3747 (2008)
Translational regulation via L11: Molecular switches on the ribosome turned on and off by thiostrepton and micrococcin
MOLECULAR CELL 30, 26 (2008)
Hartmann C, Chami M, Zachariae U, de Groot BL, Engel A, Grutter MG
Vacuolar protein sorting: Two different functional states of the AAA-ATPase Vps4p
Hernandez alvarez B, Hartmann MD, Albrecht R, Lupas AN, Zeth K, Linke D
A new expression system for protein crystallization using trimeric coiled-coil adaptors
PROTEIN ENGINEERING 21(1), 11 (2008)
Hilf RJC, Dutzler R
X-ray structure of a prokaryotic pentameric ligand-gated ion channel
NATURE 452, 375 (2008)
Hilf RJC, Dutzler R
Structure of a potentially open state of a proton-activated pentameric ligand-gated ion channel
NATURE 457, 115 (2008)
Hines J, Groll M, Fahnstock M, Crews CM
Hines J, Groll M, Fahnstock M and Crews CM
Hoffelner W, Froideval A, Pouchon M, Chen JC, Samaras M
Synchrotron X-rays for microstructural investigations of advanced reactor materials
Ignatov A, Kravchenko S, Rak A, Goody RS, Pylypenko O
A structural model of the GDP dissociation inhibitor rab membrane extraction mechanism
JOURNAL OF BIOLOGICAL CHEMISTRY 283, 18377 (2008)
Karcher A, Schele A, Hopfner KP
X-ray structure of the complete ABC enzyme ABCE1 from Pyrococcus abyssi
JOURNAL OF BIOLOGICAL CHEMISTRY 283, 7962 (2008)
Kirchner E, Guglielmi KM, Strauss HM, Dermody TS, Stehle T
Structure of Reovirus &\#93;1 in Complex with Its Receptor Junctional Adhesion Molecule-A
PLOS PATHOGENS 4, 1000235 (2008)
Klostermeier D, Rudolph MG
A novel dimerization motif in the C-terminal domain of the Thermus thermophilus DEAD box helicase Hera confers substantial flexibility
Kuhnel K, Ke N, Cryle MJ, Sligar SG, Schuler MA, Schlichting I
Crystal structures of substrate-free and retinoic acid-bound cyanobacterial cytochrome P450CYP120A1
BIOCHEMISTRY 47, 6552 (2008)
Lammers M, Meyer S, Kuhlmann D, Wittinghofer A
Specificity of Interactions between mDia Isoforms and Rho Proteins
JOURNAL OF BIOLOGICAL CHEMISTRY 283, 35236 (2008)
Structure-system correlation identifies a gene regulatory Mediator submodule
GENES & DEVELOPMENT 22, 872 (2008)
Lenz M, Van Hullebusch ED, Farges F, Nikitenko S, Borca CN, Grolimund D, Lens PNL
Selenium Speciation Assessed by X-Ray Absorption Spectroscopy of Sequentially Extracted Anaerobic Biofilms
ENVIRONMENTAL SCIENCE & TECHNOLOGY 42, 7587 (2008)
Lewis R, Durr H, Hopfner KP, Michaelis J
Conformational changes of a Swi2/Snf2 ATPase during its mechano-chemical cycle
NUCLEIC ACIDS RESEARCH 36, 1881 (2008)
Luberacki B, Weyand M, Seitz U, Koch W, Oecking C, Ottmann C
Purification, crystallization and preliminary X-ray diffraction analysis of an oomycete-derived Nep1-like protein
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS 64, 1178 (2008)
Lucarelli D, Vasil ML, Meyer-Klaucke W, Pohl E
The metal-dependent regulators FurA and FurB from Mycobacterium tuberculosis
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 9, 1548 (2008)
Ludwig C, Michiels PJA, Wu X, Kavanagh KL, Pilka E, Jansson A, Oppermann U, Gunther UL
SALMON: Solvent accessibility, ligand binding, and mapping of ligand orientation by NMR Spectroscopy
JOURNAL OF MEDICINAL CHEMISTRY 51, 1 (2008)
Structural and Functional Analysis of the E. coli NusB-S10 Transcription Antitermination Complex
MOLECULAR CELL 32, 791 (2008)
Structural basis for the substrate specificity of bone morphogenetic protein 1/tolloid-like metalloproteases
JOURNAL OF MOLECULAR BIOLOGY 384, 228 (2008)
Maier T, Leibundgut M, Ban N
The crystal structure of a mammalian fatty acid synthase
SCIENCE 321, 1315 (2008)
Similar biological activities of two isosstructural ruthenium and osmium complexes
CHEMISTRY-A EUROPEAN JOURNAL 14, 4816 (2008)
Marchand A, Winther AML, Holm PJ, Olesen C, Montigny C, Arnou B, Champeil P, Clausen JD,
Crystal structure of D351A and P312A mutant forms of the mammalian sarcoplasmic reticulum
Ca2+-ATPase reveals key events in phosphorylation and Ca2+ release
JOURNAL OF BIOLOGICAL CHEMISTRY 283, 14867 (2008)

Marcia NL, Prieto J, Redondo P, Nadra AD, Alibes A, Serrano L, Grizot S, Duchateau P,
Pauques F, Blanco FJ, Montoya G
Crystal structure of I-Dmol in complex with its target DNA provides new insights into
meganeuclease engineering
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES
OF AMERICA 105, 16888 (2008)

Maass R, Van Petegem S, Grolimund D, Van Swygenhoven H, Kiener D, Dehm G
Crystal rotation in Cu single crystal micropillars: In situ Laue and electron backscatter diffraction
APPLIED PHYSICS LETTERS 92, 071905 (2008)

Maass R, Van Petegem S, Zimmermann J, Borca CN, Van Swygenhoven H
On the initial microstructure of metallic micropillars
SCRIPTA MATERIALIA 59, 471 (2008)

Maul MJ, Barends TRM, Glas AF, Cryle MJ, Domratcheva T, Schneider S, Schlichting I, Carell T
Crystal Structure and Mechanism of a DNA (6-4) Photolyase
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 47, 10076 (2008)

Merz T, Wetzel SK, Firbank S, Pluckthun A, Guttert MG, Mittl PRE
Stabilizing ionic interactions in a full-consensus ankyrin repeat protein

Meyer S, Scrima A, Versees W, Wittinghofer A
Crystal structures of the conserved tRNA-modifying enzyme GidA: Implications for its interaction
with MnmE and substrate
JOURNAL OF MOLECULAR BIOLOGY 380, 532 (2008)

Michalczuk A, Kluter S, Rode HB, Simard JR, Guttert C, Rabiller M, Rauh D
Structural insights into how irreversible inhibitors can overcome drug resistance in EGFR
BIOORGANIC & MEDICINAL CHEMISTRY 16, 3482 (2008)

Miller ML, Jensen LJ, Diella F, Joergensen C, Tinti M, Li L, Hsiung M, Parker SA, Bordeaux J,
Linear motif atlas for phosphorylation-dependent signaling
SCIENCE SIGNALING (STKE) 1, ra2 (2008)

Mrozek M, Meier S, Von castelmuur E, Ucurum Z, Hedborn E, Grzesiek S, Labeit S, Mayans O
Structural analysis of the B-box 2 from MuRF1: Identification of a novel self-association pattern
in a RING-like fold
BIOCHEMISTRY 47, 10722 (2008)

Murray JW, Maghlaoui K, Kargul J, Ishida N, Lai TL, Rutherford AW, Sugiuara M, Boussac A,
Barber J
X-ray crystallography identifies two chloride binding sites in the oxygen evolving centre of
Photosystem II
ENERGY AND ENVIRONMENTAL SCIENCE 1, 161 (2008)

Murray JW, Maghlaoui K, Kargul J, Sugiuara M, Barber J
Analysis of xenon binding to photosystem II by X-ray crystallography
PHOTOSYNTHESIS RESEARCH 94, 1 (2008)

Nesper J, Brossig A, Ringler P, Patel GJ, Muller SA, Kleinschmidt JH, Boos W, Diederichs K,
Welle W
Omp85(Tt) from Thennus thermophilus HB27: an ancestral type of the omp85 protein family
JOURNAL OF BACTERIOLOGY 190, 4568 (2008)

Neu U, Woellner K, Gauglitz G, Stehle T
Structural basis of GM1 ganglioside recognition by simian virus 40
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES
OF AMERICA 105, 5219 (2008)

Neuville DR, Cormier L, De Ligny D, Roux J, Flank AM, Lagarde P
Environments around Al, Si, and Ca in aluninate and aluminosilicate melts by X-ray absorption spectroscopy at high temperature
AMERICAN MINERALOGIST 93, 228 (2008)

Neuville DR, De Ligny D, Cormier L, Flank AM, Lagarde P
Structure of silicate melts using in situ high temperature X-ray absorption on light elements (Mg, Si, Al, K, Ca)
GEOCHIMICA ET COSMOCHIMICA ACTA 72, A678 (2008)

Nicula R, Stir M, Ishizaki K, Catala-civera JM, Vaucher S
Rapid nanocrystallization of soft-magnetic amorphous alloys using microwave induction heating
SCRIPTA MATERIALIA 60, 120 (2008)

Ollier N, Lombard P, Farges F, Boizot B
Titanium reduction processes in oxide glasses under electronic irradiation
JOURNAL OF NON-CRYSTALLINE SOLIDS 354, 480 (2008)

Padavattan S, Schmidt M, Hoffman DR, Markovic-Housley Z
Crystal Structure of the Major Allergen from Fire Ant Venom, Sol i 3

Molecular basis of histone H3K4me3 recognition by ING4
JOURNAL OF BIOLOGICAL CHEMISTRY 283, 15956 (2008)

Pavkov T, Egelseer EM, Teszar M, Svergun DI, Sleytr UB, Keller W
The structure and binding behavior of the bacterial cell surface layer protein SbsC
STRUCTURE 16, 1226 (2008)

An arginine switch in the species B adenovirus knob determines high-affinity engagement of the cellular receptor CD46
JOURNAL OF VIROLOGY 83, 673 (2008)

Petrasch J, Schrader B, Wyss P, Steinfelder A
Tomography-Based Determination of the Effective Thermal Conductivity of Fluid-Saturated Reticulate Porous Ceramics

Pike ACW, Rellos P, Niesen FH, Turnbull A, Oliver AW, Parker SA, Turk BE, Pearl LH, Knapp S
Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites
EMBO JOURNAL 27, 704 (2008)

Placido D, Fernandes CG, Isidro A, Carrondo MA, Henriques AO, Archer M
Auto-induction and purification of a Bacillus subtilis transglutaminase (Tgl) and its preliminary crystallographic characterization
PROTEIN EXPRESSION AND PURIFICATION 59, 1 (2008)

Polier S, Dragovic Z, Hartl FU, Bracher A
Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding
CELL 133, 1068 (2008)

Posht NR, Hegler F, Konhauser KO, Kappler A
Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans
NATURE GEOSCIENCE 1, 703 (2008)

Generation and analysis of mesophilic variants of the thermostable archaeal I-Dmol homing endonuclease
JOURNAL OF BIOLOGICAL CHEMISTRY 283, 4364 (2008)

Puorger C, Eidam O, Capitani G, Erilov D, Grutter MG, Glockshuber R
Infinite kinetic stability against dissociation of supramolecular protein complexes through donor strand complementation
STRUCTURE 16, 631 (2008)
Rauch A, Leipelt M, Russwurm M, Steegborn C
Crystal structure of the guanyl cyclase Cya2

Molecular basis of xeroderma pigmentosum group C DNA recognition by engineered meganucleases
NATURE 456, 107 (2008)

High-pressure behavior of CsC8 graphite intercalation compound: Lattice structures and phase-transition mechanism
PHYSICAL REVIEW B 77, 125433 (2008)

Roujeinikova A
Cloning, purification and preliminary X-ray analysis of the C-terminal domain of Helicobacter pylori MotB
ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS n/a, n/a (2008)

Schiffer A, Parey K, Warkepentin E, Diederichs K, Huber H, Stetter KO, Kronke PMH, Ermel U
Structure of the dissipatory sulfite reductase from the hyperthermophilic archaean Archaeoglobus fulgidus
JOURNAL OF MOLECULAR BIOLOGY 379, 1063 (2008)

Schlegel ML, Battaillon C, Benhamida K, Blanc C, Menut D, Lacour JL
Metal corrosion and argilite transformation at the water-saturated, high-temperature iron-clay interface: A microscopic-scale study
APPLIED GEOCHEMISTRY 23, 2619 (2008)

Schicker C, Gertz M, Papaetheodorou P, Kachholz B, Becker CFW, Steegborn C
Substrates and regulation mechanisms for the human mitochondrial Siruins Sirt3 and Sirt5
JOURNAL OF MOLECULAR BIOLOGY 382, 790 (2008)

Schicker C, Rauch A, Hess KC, Kachholz B, Levin LR, Buck J, Steegborn C
Structure-based development of novel adenyl cyclase inhibitors
JOURNAL OF MEDICINAL CHEMISTRY 51, 4456 (2008)

The crystal structure of the Ran-Nup153ZnF2 complex: a general Ran docking site at the nuclear pore complex
STRUCTURE 16, 1116 (2008)

Structural basis of the Nic96 subcomplex organization in the nuclear pore channel
MOLECULAR CELL 29, 46 (2008)

Schwab T, Skegro D, Mayans O, Sterner R
A rationally designed monomeric variant of anthranilate phosphoribosyltransferase from Sulfolobus solfataricus is as active as the dimeric wild-type enzyme but less thermostable
JOURNAL OF MOLECULAR BIOLOGY 376, 506 (2008)

Scrima A, Thomas C, Deaconescu D, Wittinghofer A
The Rap-RapGAP complex: GTP hydrolysis without catalytic glutamine and arginine residues
EMBO JOURNAL 27, 1145 (2008)

Seeger MA, Diederichs K, Eicher T, Brandstatter L, Schiefer A, Verrey F, Pos KM

Seeger MA, von Ballmoos C, Eicher T, Brandstatter L, Verrey F, Diederichs K, Pos KM
Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB
NATURE STRUCTURAL & MOLECULAR BIOLOGY 15, 199 (2008)

Generating Highly Active Partially Oxidized Platinum during Oxidation of Carbon Monoxide over Pt/Al2O3: In Situ, Time-Resolved, and High-Energy-Resolution X-Ray Absorption Spectroscopy
ANGEWANDE CHEMIE-INTERNATIONAL EDITION 47, 9260 (2008)

Soundararajan M, Turnbull A, Fedorov O, Johansson C, Doyle DA
RibO can adopt a Mg2+ free conformation prior to GEF binding
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS 72, 498 (2008)

Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits

Sutter M, Boehringer D, Gutmann S, Guenther S, Prangishvili D, Loessner MJ, Stetter KO, Weber-Ban E, Ban N
Structural basis of enzyme encapsulation into a bacterial nanocompartment

Tao M, Casutt M, Diez J, Fritz G, Steuber J
Crystal structure of the NADH-oxidizing FAD domain from the Na+-translocating NADH : quinone oxidoreductase (Na+-NQR)
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1777, S39 (2008)

Tejeda A, Cortes R, Lobo-Checa J, Didiot C, Kierren B, Malterre D, Michel EG, Mascarena A
Structural origin of the sn 4d core level line shape in Sn/Ge(111)-(3 x 3)
PHYSICAL REVIEW LETTERS 100, 026103 (2008)

Thore S, Frick C, Ban N
Structural basis of thiamine pyrophosphate analogues binding to the eukaryotic riboswitch

Treiber N, Reinert DJ, Carpusca I, Aktories K, Schulz GE
Structure and mode of action of a mosquitoicidal holotoxin
JOURNAL OF MOLECULAR BIOLOGY 381, 150 (2008)

Treiber N, Schulz GE
Structure of 2,6-dihydroxypyridine 3-hydroxylase from a nicotine-degrading pathway
JOURNAL OF MOLECULAR BIOLOGY 379, 94 (2008)

Treier M, Ruffieux P, Schillinger R, Greber T, Mullen K, Fasel R
Living on the edge: A nanographene molecule adsorbed across gold step edges
SURFACE SCIENCE 602, L84 (2008)

An Unusual RNA Recognition Motif Acts as a Scaffold for Multiple Proteins in the Pre-mRNA Retention and Splicing Complex
JOURNAL OF BIOLOGICAL CHEMISTRY 283, 32317 (2008)

Electronic and atomic structure of Ti1-xAlxN thin films related to their damage behavior
JOURNAL OF APPLIED PHYSICS 103, 083524 (2008)

In situ characterization of gas-filled microbubbles using soft X-ray microspectroscopy
SOFT MATTER 4, 510 (2008)

Urzhumtsev A, von Castelmeur E, Mayans O
Ultralow-resolution ab initio phasing of filamentous proteins: crystals from a six-Ig fragment of titin as a case study
ACTA CRYystalLOGRAPHICA SECTION D-BIOLOGICAL CRYystalLOGRAPHY 64, 478 (2008)

Vasiljeva L, Kim M, Mutschler H, Buratowski S, Meinhart A
The NRd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain

Veltel S, Gasper R, Eisenacher E, Wittinghofer A
The retinitis pigmentosa 2 gene product is a GTPase-activating protein for Arf-like 3

Von castelnu E, Marino M, Svergun DI, Kreplak L, Ucurum Z, Urthumshev A, Konarev PV,
Labeit D, Labeit S, Mayans O
A regular pattern of Ig super-motifs defines segmental flexibility as the elastic mechanism of the
tilin chain.
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES
OF AMERICA 105, 1166 (2008)

Von balthazar M, Pedersen KR, Crane PR, Friis EM
Carpesella lacunata gen. et sp. nov., a new basal angiosperm flower from the Early Cretaceous
(Early to Middle Albian) of eastern North America

Bailmoos C
Arginine-induced conformational change in the c-ring/a-subunit interface of ATP synthase
FEBS JOURNAL 275, 2137 (2008)

Walti MA, Thore S, Aebi M, Kunzler M
Crystal structure of the putative carbohydrate recognition domain of human galectin-related
protein
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS 72, 804 (2008)

Walti MA, Walser PJ, Thore S, Grunler A, Bednar M, Kunzler M, Aebi M
Structural basis for chitotetraose coordination by CGL3, a novel galectin-related protein from
Coprognos cinerea
JOURNAL OF MOLECULAR BIOLOGY 379, 146 (2008)

Diffusion of HTO, Br-, I-, Cs+, Sr-85(2+) and Co-60(2+) in a clay formation: Results and
modelling from an in situ experiment in Opalinus Clay
APPLIED GEOCHEMISTRY 23, 678 (2008)

Wilson DN, Schluenzen F, Harms JM, Starosta AL, Connell SR, Fucini P
The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA
positioning
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES
OF AMERICA 105, 13339 (2008)

Witte G, Hartung S, Buettner K, Hopfner KP
Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity
regulated by DNA recombination intermediates
MOLECULAR CELL 30(2), 167 (2008)

Wu B, Droge P, Davey C
Site Selectivity of Platinum Anticancer Therapeutics
NATURE CHEMICAL BIOLOGY 4, 110 (2008)

Wu B, Droge P, Davey C
Research Highlight: Platinum Result
NATURE 451, 111 (2008)

Zaharko O, Gavilano JL, Straessle T, Miclea CF, Mota AC, Filinchuk Y, Chernyshov D, Deen
PP, Rahaman B, Saha-Dasgupta T, Valenti R, Matsushita Y, Doenni A, Kitazawa H
Structural and magnetic aspects of the nanotube system Na2-xV3O7
PHYSICAL REVIEW B 78, 214426 (2008)

Ziegler K, Benz R, Schulz GE
A putative alpha-helical porin from Corynebacterium glutamicum
JOURNAL OF MOLECULAR BIOLOGY 379, 482 (2008)

PUBLICATIONS WITH SYN AUTHOR(S) AND NOT DESCRIBING AN SLS
EXPERIMENT

Andreasen JW, Gevorgyan SA, Schleputz CM, Krebs FC
Applicability of X-ray reflectometry to studies of polymer solar cell degradation
SOLAR ENERGY MATERIALS AND SOLAR CELLS 92, 793 (2008)
Bartels-Rausch T, Huthwelker T, Joeri M, Gaeggeler H, Ammann M

Laboratory Investigation Interaction of mercury with snow

State of the Art and Perspectives of Biomedical Imaging at the ESRF

SYNCHROTRON RADIATION NEWS 21, 30 (2008)

Bech M, Bunk O, David C, Kraft P, Bronniman C, Eikenberry EF, Pfeiffer F

X-ray imaging with the PILATUS 100k detector

APPLIED RADIATION AND ISOTOPES 66, 474 (2008)

Performance of a single photon counting microstrip detector for strip pitches down to 10 μm

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 591, 163 (2008)

Bismaths LT, Joly L, Bourzami A, Scheurer F, Weber W

Morphology-induced oscillations of the electron-spin precession in Fe films on Ag(001)

PHYSICAL REVIEW B 77, 220405 (2008)

Crystal structure of glutamyl-queuosine tRNA(Asp) synthetase complexed with L-glutamate: Structural elements mediating tRNA-independent activation of glutamate and glutamylation of tRNA(Asp) anticondon

JOURNAL OF MOLECULAR BIOLOGY 381, 1224 (2008)

Bodenthin Y, Kurth DG, Schwarz G

On the memory chip of tomorrow? Spin-transitions in the supra-molecular structure

CHEMIE IN UNSERER ZEIT 42, 256 (2008)

Breiby DW, Bunk O, Andreasen JW, Lemke HT, Nielsen MM

Simulating X-ray diffraction of textured films

JOURNAL OF APPLIED CRYSTALLOGRAPHY 41, 262 (2008)

Bunk O, Dierolf M, Kynde S, Johnson I, Marti O, Pfeiffer F

Influence of the overlap parameter on the convergence of the pychographical iterative engine

ULTRAMICROSCOPY 108, 481 (2008)

Chrin J, Schmidt T, Streun A, Zimoch D

Local correction schemes to counteract insertion device effects

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 592, 141 (2008)

Electric-field control of local ferromagnetism using a magnetoelectric multiferroic

NATURE MATERIALS 7, 478 (2008)

NATURE MATERIALS 7, 678 (2008)

Snow physics as relevant to snow photochemistry

ATMOSPHERIC CHEMISTRY AND PHYSICS 8, 171 (2008)

Duda LC, Andersson J, Schmitt T, Jacobson S

Chemical modification in wear tracks of chemical vapor-deposited diamond surfaces studied with X-ray absorption spectroscopy

TRIBOLOGY LETTERS 32, 31 (2008)

Eltschka M, Klaeu M, Ruediger U, Kasama T, Cervera-Gontard L, Dunin-Borkowski RE, Luo F,
Heyderman LJ, Jia CJ, Sun LD, Yan CH
Correlation between magnetic spin structure and the three-dimensional geometry in chemically synthesized nanoscale magnetite rings
APPLIED PHYSICS LETTERS 92, 222508 (2008)

Engelhardt M, Kottler C, Bunk O, David C, Schroer C, Baumann J, Schuster M, Pfeiffer F
The fractional Talbot effect in differential x-ray phase-contrast imaging for extended and polychromatic x-ray sources

Farquett P, Padeste C, Boerner M, Youcef HB, Guersel SA, Scherer GG, Solak HH, Saile V, Wokaun A
Microstructured proton conducting membranes by synchrotron radiation induced grafting
JOURNAL OF MEMBRANE SCIENCE 325, 658 (2008)

Neutron decoherence imaging for visualizing bulk magnetic domain structures
PHYSICAL REVIEW LETTERS 101, 025504 (2008)

Bulk magnetic domain structures visualized by neutron dark-field imaging
APPLIED PHYSICS LETTERS 93, 112504 (2008)

Grunzweig C, Pfeiffer F, Bunk O, Donath T, Kuhne G, Frei G, Dierolf M, David C
Design, fabrication, and characterization of diffraction gratings for neutron phase contrast imaging
REVIEW OF SCIENTIFIC INSTRUMENTS 79, 053703 (2008)

Selective domain wall depinning by localized Oersted fields and Joule heating
APPLIED PHYSICS LETTERS 93, 132503 (2008)

Janouch M, Copping R, Tyliszczak T, Castro-Rodriguez I, Shuh DK
Scanning transmission x-ray spectromicroscopy of actinide complexes
MATERIALS RESEARCH SOCIETY SYMPOSIUM PROCEEDINGS 1104, 165 (2008)

Quantitative determination of vortex core dimensions in head-to-head domain walls using off-axis electron holography
APPLIED PHYSICS LETTERS 92, 112502 (2008)

Kaestner A, Lehmann E, Stampanoni M
Imaging and image processing in porous media research
ADVANCES IN WATER RESOURCES 31, 1174 (2008)

Kerbrat M, Pinzer B, Huthwelker T, Gaggeler HW, Ammann M, Schneebeli M
Measuring the specific surface area of snow with X-ray tomography and gas adsorption: comparison and implications for surface smoothness
ATMOSPHERIC CHEMISTRY AND PHYSICS 8, 1261 (2008)

Kim SO, Kim BH, Meng D, Shin DO, Koo CM, Solak HH, Wang Q
Novel complex nanostructure from directed assembly of block copolymers on incommensurate surface patterns (vol 19, pg 3271, 2007)
ADVANCED MATERIALS 20, 866 (2008)

Llanes-Pallas A, Matena M, Jung T, Prato M, Stohr M, Bonifazi D
Trimodular engineering of linear supramolecular miniatures on Ag(111) surfaces controlled by complementary triple hydrogen bonds
ANGEWANDE CHEMIE-INTERNATIONAL EDITION 47, 7726 (2008)

Matena M, Riehm T, Stohr M, Jung TA, Gade LH
Transforming surface coordination polymers into covalent surface polymers: Linked polycondensed aromatics through oligomerization of N-heterocyclic carbene intermediates
ANGEWANDE CHEMIE-INTERNATIONAL EDITION 47, 2414 (2008)

Mengotti E, Heyderman LJ, Nolting F, Craig BR, Chapman JN, Lopez-Diaz L, Matelon RJ,
Volkmann UG, Klaui M, Rudiger U, Vaz CAF, Bland JAC
Easy axis magnetization reversal in cobalt antidot arrays
JOURNAL OF APPLIED PHYSICS 103, 07D509 (2008)

Merino S, Retolaza A, Juarros A, Schift H
The influence of stamp deformation on residual layer homogeneity in thermal nanoimprint lithography
MICROELECTRONIC ENGINEERING 85, 1892 (2008)

Merino S, Retolaza A, Schift H, Trabadelo V
Stamp deformation and its influence on residual layer homogeneity in thermal nanoimprint lithography
MICROELECTRONIC ENGINEERING 85, 877 (2008)

Single shot Kerr magnetometer for observing real-time domain wall motion in permalloy nanowires
JOURNAL OF PHYSICS D-APPLIED PHYSICS 41, 164009 (2008)

Peth S, Horn R, Beckmann F, Donath T, Fischer J, Smucker AJM
Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL 72, 897 (2008)

Hard-X-ray dark-field imaging using a grating interferometer
NATURE MATERIALS 7, 134 (2008)

Region-of-Interest Tomography for Grating-Based X-Ray Differential Phase-Contrast Imaging
PHYSICAL REVIEW LETTERS 101, 168101 (2008)

Pierce MS, Chang KC, Hennessy DC, Komanicky V, Menzel A, You H
CO-induced lifting of Au(001) surface reconstruction
JOURNAL OF PHYSICAL CHEMISTRY C 112, 2231 (2008)

Samuely T, Liu SX, Wintjes N, Haas M, Decurtins S, Jung TA, Stohr M
Two-dimensional multiphase behavior induced by sterically hindered conformational optimization of phenoxy-substituted phthalocyanines
JOURNAL OF PHYSICAL CHEMISTRY C 112, 6139 (2008)

Schift H
Nanoimprint lithography: An old story in modern times? A review

Direct observation of t(2g) orbital ordering in magnetite
PHYSICAL REVIEW LETTERS 100, 026406 (2008)

Seo JW, Fullerton EE, Nolting F, Scholl A, Fompeyrine J, Locquet JP
Antiferromagnetic LaFeO3 thin films and their effect on exchange bias
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 264014 (2008)

Strobl M, Grunzweig C, Hilger A, Manke I, Kardjilov N, David C, Pfeiffer F
Neutron dark-field tomography
PHYSICAL REVIEW LETTERS 101, 123902 (2008)

Trabadelo V, Schift H, Merino S, Bellini S, Gobrecht J
Measurement of demolding forces in full wafer thermal nanoimprint
MICROELECTRONIC ENGINEERING 85, 907 (2008)

Tsujino S, Beaud P, Kirk E, Vogel T, Seh H, Gobrecht J, Wrulich A
Ultrafast electron emission from metallic nanotip arrays induced by near infrared femtosecond laser pulses
APPLIED PHYSICS LETTERS 92, 193501 (2008)

Vila-Comamala J, Jefimovs K, Raabe J, Kaulich B, David C
Silicon Fresnel zone plates for high heat load X-ray microscopy
MICROELECTRONIC ENGINEERING 85, 1241 (2008)

Wagner A, Diez J, Schulze-Briese C, Schluckebier G
Crystal structure of Ultralente-A microcrystalline insulin suspension.
PROTEINS-STRUCTURE FUNCTION AND GENETICS 74, 1018 (2008)

Weber T, Deloudi S, Kobas M, Yokoyama Y, Inoue A, Steurer W
Reciprocal-space imaging of a real quasicrystal. A feasibility study with PILATUS 6M
JOURNAL OF APPLIED CRYSTALLOGRAPHY 41, 669 (2008)

Weitkamp T, David C, Bunk O, Bruder J, Cloetens P, Pfeiffer F
X-ray phase radiography and tomography of soft tissue using grating interferometry

Wintjes N, Hornung J, Lobo-Checa J, Voigt T, Samuely T, Thilgen C, Stohr M, Diederich F, Jung TA
Supramolecular synthons on surfaces: Controlling dimensionality and periodicity of
tetraarylporphyrin assemblies by the interplay of cyano and alkoxy substituents
CHEMISTRY-A EUROPEAN JOURNAL 14, 5794 (2008)

Yaouanc A, de Reotier PD, Chapuis Y, Marin C, Lapertot G, Cervellino A, Amato A
Short-range magnetic ordering process for the triangular-lattice compound NiGa2S4: A positive
muon spin rotation and relaxation study
PHYSICAL REVIEW B 77, 092403 (2008)

BOOKS

H. Schift
NaPa Library of Processes – Nanopatterning and Applications, first edition with results of the
NaPa-Project, March 2008, ed. H. Schift, published by the NaPa-consortium represented by J.
Ahopetol, ISBN 978-3-00-024396-7

Resolving brain microvascular architecture with X-ray tomographic microscopy using vascular
corrosion casting, In J. H. Zhang, editor, Advancements in Neurological Research, Research

REPORTS

A. Menzel, P. Thibault, M. Dierolf. C.M. Kewish, O. Bunk, C. David, W. Leitenberger, F. Pfeiffer
Advances in Pyschographical Coherent Diffractive Imaging, in “Proceedings of the Society of
Photo-Optical Instrumentation Engineers (SPIE)”

A. Plech, A. Siems, V. Kotsidis, A. Menzel
Dynamics of laser-excited nanoparticles, in “Proceedings of the Society of Photo-Optical
Instrumentation Engineers (SPIE)”

V.N. Strocov, Th. Schmit, L. Patthey
Coma-Free Operation Mode of the SAXES spectrometer

DIPLOMAS

J. Gobrecht
- Spritzgussabformung kleinster Dimensionen
 Benjamin Keusch, Univ. of Appl. Sciences Nordwestschweiz, 2008
- Cantilever Array Chips aus Kunststoff
 Suryo Nedunkanal, Univ. of Appl. Sciences Nordwestschweiz, 2008
- Mikronadel-Biochip
 Jan Baumgartner, Univ. of Appl. Sciences Nordwestschweiz, 2008

L.J. Heyderman
- Magnetization reversal processes in coupled ferromagnetic nanoelements
 A. Bisig, ETH Zürich, 2008
C. Padeste, Master thesis coached
 – Formation of Metal Complexes and Nanoparticles in Micro- and Nanopatterned Polymer Brushes

H. Schiffl, Diploma thesis coached
 – Entwicklung eines Nanoimprint Prozesses mit breitem Prozessfenster für Nanoporen-
 Anordnungen
 C. Spreu, University of Applied Sciences Bremen, 2008

M. Shi, J. Mesot, Master thesis coached
 – ARPES studies of high temperature superconductor La$_2$CuO$_4$
 E. Razzoli, Politecnico di Milano, Italy, 2008

H. Sigg
 - Characterisierung von Quantenkaskadenstrukturen mittels IR Spektroskopie an der SLS
 C. Janssen, University of Zurich, 2008

M. Stampanoni, C. Hintermüller
 - A. Grigis, ENSPS – Strasbourg, Flat-field tracking correction for optimized tomographic
 reconstruction

M. Stampanoni, G. Mikuljan
 - M. Barendregt, BFH Berner Fachhochschule, Biel, Roboter für die Handhabung von
 Messproben

M. Stampanoni, C. Hintermüller
 - D. Haberthür, MAS Medical Physics ETH Zürich, Quality guided wide field x-ray
 tomographic imaging

INVITED TALKS

P. Beaud
Observing Femtosecond Dynamics in Solids with X-ray Diffraction
Seminar, Center for Applied Photonics, Universität Konstanz, Germany, 15.05.2008

R. Bingel-Erlenmeyer
Beamline X06DA - an automated protein crystallography beamline with an integrated
 crystallisation facility enabling in situ diffraction screening

O. Bunk
Scanning Transmission X-Ray Microscopy Meets Coherent X-Ray Diffraction: SXDM at the
cSAXS Beamline
Coherent X-ray Diffraction Workshop at NSLS-2, Brookhaven National Laboratory, Upton, New
York, USA, 14.03.2008

O. Bunk
Scanning SAXS: imaging the nanoscale structure of extended objects
EMPA, St. Gallen, Switzerland, 10.04.2008

O. Bunk
Recent developments in x-ray phase contrast imaging
10th International Workshop on Radiation Imaging Detectors, Helsinki, Finland, 29.6.-3.7.2008

O. Bunk
cSAXS at PSI: The coherent small angle x-ray scattering beamline at the Swiss Light Source
ID01 Upgrade Workshop, ESRF, Grenoble, France, 4-5.12.2008

A. Cervellino
Analysis of partially ordered (nano) materials through the Debye function method
IUCr2008 XXI Congress of the International Union of Crystallography, Osaka, Japan, 23-
31.8.2008
A. Cervellino
Debye function: nella cassetta degli attrezzi. Powder Diffraction Software Workshop „In the Toolchest“
Warsaw, Poland, 18.9.2008

A. Cervellino
The Debye equation: Powder diffraction patterns directly from atom clusters. What we can really do and when it is convenient

X. Cui
High-resolution angle-resolved photoemission spectroscopy on Fe intercalated TiSe2 and magnetic single crystals
Department of Physics, University of Neuchâtel, Neuchâtel, Switzerland, 29.02.2008

Formation and Properties of Si/Ge quantum dot crystals with lateral periodicities down to 35 nm
International Conference on the Physics of Semiconductors ICPS, Rio de Janeiro, Brazil, 27.7.-1.8.2008

C. David
Diffractive x-ray optics for the Micro/Nano-Probe at PETRA III
Workshop on "Hard X-ray Micro-/Nano-Probe beamline“ Hamburg, Germany 22-23.01.2008

C. David
X-ray Nano Optics
SNI Workshop on Nanoscience, Davos, Switzerland, 4-6.06.2008

C. David, J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Donath, C. Grünzweig, O. Bunk, F. Pfeiffer
Diffractive X-Ray Optics for Microscopy and Radiography Applications
404. WE-Heraeus Seminar "Matter in Coherent Light“ Bad Honnef, Germany, 17-20.03.2008

C. David
Phasenkontrastabbildung mit Röntgen- und Neutronenstrahlen
Physikalisches Institut der Universität Zürich, Zürich, Switzerland, 25.09.2008

C. David
Nano-focusing x-ray FEL beams

C. David
Nano-focusing hard x-rays at a long ID01
Meeting on the Upgrade Beamline ID01 of ESRF, Grenoble, France, 04-05.12.2008

M. Dierolf
Super-Resolution’ Coherent Scanning Diffraction Microscopy

H. Dil
Influence of the interface on electron confinement in thin metal films
EPF-Lausanne, Lausanne, Switzerland, 11.04.2008

H. Dil
QWS: textbook physics to SARPES
Solid state physics seminar University of Zuerich, Zuerich, Switzerland, 17.09.2008

A. Fraile-Rodriguez
X-ray spectromicroscopy: a powerful tool for the study of magnetic materials
CELLS-ALBA, Bellaterra, Barcelona, Spain, 13.05.2008

J. Gobrecht
Nanotechnologie am PSI und INKA
i-net, Basel, Switzerland, 10.04.2008
J. Gobrecht
Nano, Einführung in die Nano Technologie Grundlagen, Begriffe, Grenzen und Möglichkeiten
Kunststoff Verband Schweiz, Frühjahrstagung, PSI, Villigen, Switzerland, 15.04.2008

J. Gobrecht
Micro-/Nanofabrication at PSI: Recent Highlights
NanoNanoFabrication Annual Review Meeting, EPFL, Lausanne, Switzerland, 20.05.2008

J. Gobrecht
Zwischen Realität und Science – Fiction
ERFA-Vereinigung, Oberhasli, Switzerland, 04.06.2008

J. Gobrecht
Nanofabrication facility and Synchrotron radiation science
NFPA – 2nd Coordination Board Meeting, Diamond Light Source, Didcot, UK, 31.07.2008

J. Gobrecht
Micro- and Nanotechnology at the Paul Scherrer Institute
Karlsruhe Nano Micro Facility – Scientific Colloquium, Karlsruhe, Germany, 14.10.2008

J. Gobrecht
Röntgenoptik und Nanofabrikation
Laser-Laboratorium, Göttingen, Germany, 28.10.2008

J. Gobrecht
Prägen und Spritzguss kleinster Dimensionen
Kunststoff Verband Schweiz, Herbsttagung, PSI, Villigen, Switzerland, 04.11.2008

J. Gobrecht
Micro- / nanofabrication and ist impact on large scale science
Festvortrag anlässlich der Verleihung des Preises für Nanowissenschaften 2008 der Erwin Schrödinger Gesellschaft, Universität, Wien, Austria, 15.12.2008

F. Gozzo
High-resolution and time-resolved synchrotron radiation powder diffraction at the Swiss Light Source
SEMINAIRE HEBDOMADAIRE DES LABORATOIRE DE CRYSTALLOGRAPHIE EPFL – Lausanne, Switzerland, 17.03.2008

L.J. Heyderman
Patterned Magnetic Thin Films
Seminar at the Ångström Laboratory, Uppsala, Sweden, 17.10.2008

L.J. Heyderman
Patterned Magnetic Thin Films
Seminar at Sun Microsystems, Boulder, USA, 17.11.2008

L.J. Heyderman
Patterned Magnetic Thin Films
IEEE Chapter Seminar, Boulder, USA, 17.11.2008

T. Huthwelker
Keynote lecture: New experimental approached to the study of ices and aerosols

G. Ingold
Towards Pump-Probe Resonant Diffraction at Femtosecond Undulator Sources
Colloquium SPP 1134, Max-Born-Institut, Berlin, Germany, 22-23.10.2008

M. Janousch
Basic Principles and Recent Applications of XAS
Workshop on X-ray absorption spectroscopy and advanced XAS techniques, Paul Scherrer Institut, Switzerland, 6-10.10.2008

I. Johnson
Coherent X-rays for Imaging and Correlation Spectroscopy
38th Winter Colloquium on the Physics of Quantum Electronics; Snowbird, Utah, USA, 06.01.2008
S. L. Johnson
Femtosecond X-Ray Crystallography of Bismuth and Tellurium: Dynamics on the Time Scale of an Optical Phonon Period
Seminar, Photon Factory, Tsukuba, Japan, 01.09.2008

S. L. Johnson
Femtosecond X-Ray Crystallography of Elemental Solids: Coherent Dynamics in Bismuth and Tellurium
XXI Congress and General Assembly of the International Union of Crystallography, Osaka, Japan, 23-31.08.2008

S. L. Johnson
Femtosecond Diffraction in Bismuth and Tellurium: Dynamics on the Time Scale of an Optical Phonon Period

S. L. Johnson
Ultrafast X-ray Science
Lecture, PhD Workshop Photons and Matter, Hollum, The Netherlands, 29.06.-04.07.2008

S. L. Johnson
Structural Dynamics in Bismuth and Tellurium Studied by Femtosecond X-Ray Diffraction
Seminar, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA, 21.03.2008

S. L. Johnson
Ultrafast Solid State Dynamics
Second European XFEL User's Meeting, Hamburg, Germany 23.01.2008

T. A. Jung, A. Kaufmann, H. Burkard, H. Schifft
Bruchexperimente an Nanostrukturen mit dem Rasterkraftmikroskop
Nano-Argovia Industrie Tag, Muttenz, Switzerland, 26.2.2008

Addressable supramolecular assemblies at surfaces: from switches to rotors and devices
International Conference on Nanosciences and Technology, Keystone, USA, 07.2008

Supra-Molecular Self Assembly at Surfaces: Rational Architectures for Addressable Molecular Switches with Increased Complexity and Novel Functionality
International Conference on Nano-Molecular Electronics (INME), Kobe, Japan, 16–18.12.2008

Dry Supra-Molecular Self Assembly at Surfaces: Rational Architectures for Addressable Molecular Switches
Institute of Solid State Physics (ISSSP), Tokyo University, Japan, 16.12.2008

Supra-Molecular Self Assembly at Surfaces: Rational Architectures for Addressable Molecular Switches
National Institute of Metals, MANA, Tsukuba, Japan, 15.12.2008

Controlling structure and properties of surface supported functional materials by synergetic use of local and non-local probes
NFFA Workshop held at PSI, Villigen, Switzerland, 11.11.2008

Bio-Inspired (soft) condensed matter: Functional surfaces and Novel Materials
Workshop on "Ab initio Modelling in Applied Bio-Sciences: Structure, Dynamics & Function"
Uppsala University, Uppsala, Sweden, 11-12.12.2008

Supra-Molecular Self Assembly at Surfaces: Rational Architectures for Addressable Molecular Switches with Increased Complexity and Novel Functionality
25th European Conference on Surface Science (ECOSS), Liverpool, UK, 08.2008

Supra-Molecular Self Assembly at Surfaces: Biophysics in a Nutshell
From Solid State Physics to Biophysics, Cavtat, Kroatio, 6–13.06.2008

Molecular and Supra-Molecular Self Assembly at Surfaces: Towards Adressable Multi-stable Devices with Novel Functions
MONET, Autumn School on Molecular Organisation and Function at Surfaces, Fuglsøcentret, Denmark, 8–12.09.2008

‘Dry’ Molecular and Supra-Molecular Self Assembly at Surfaces: Towards Adressable Multi-stable Devices
University of Leuven, Belgium, 23.04.2008

Molecular and Supra-Molecular Self Assembly at Surfaces: Combining Physics and Chemistry towards Adressable Multi-stable Devices
Midterm Meeting of the EU Marie Curie RTN PRAIRIES, Stresa, Italy, 03.04.2008

Supra-molecular chemistry beyond the solution phase: Adressable, surface mounted supra-molecular architectures and their characterisation in view of future multistable devices
NANOMATCH Workshop, Supramolecular Nanostructured Organic/Inorganic Hybrid Systems, Nanomatch University of Zurich, Switzerland, 13.02.2008

T. A. Jung, M. Stoehr, N. Wintjes, M. Matena, J. Lobo-Checa, S. Boz, T. Samuely, M. Enache, S. Schintke, A. Baratoff, D. Bonifazi, L.H. Gade, F. Diederich,

Molecular and Supra-Molecular Self Assembly at Surfaces: Towards Adressable Multi-stable Devices
Science Department of the University of Fribouer, Switzerland, 29.02.2008

Supra-Molecular Self Assembly at Surfaces and Interfaces: Rational Architectures with Increased Complexity and Novel Functionality
2008 Swiss Workshop on Basic Research in Nanoscience, Davos, Switzerland, 04-06.06.2008

A. Kaufmann
Nano fracture mechanics for studying adhesion and corrosion on interfaces and grain boundaries
EMPA Seminar talk, Thun, Switzerland, 04.11.200

C.M. Kewish
2-D Membrane Protein Crystallography at Future XFELs
C.M. Kewish
2-D Membrane Protein Crystallography at Future XFELs
PSI-XFEL Science Workshop on Coherent Diffraction by Nanostructures, Schweizerischer Nationalfonds, Bern, Switzerland, 27.11.2008

Molecular Layers on the Nanometer Scale Explored by Photons and Local Probes
2008 Swiss Workshop on Basic Research in Nanoscience, Davos, Switzerland, 04-06.06.2008

F. Luo, L. J. Heyderman, H. H. Solak
Patterned Nanoscale Perpendicular Magnetic Dot Arrays
Seminar at Bochum University, Bochum, Germany, 16.05.2008

F. Marone
Synchrotron-based X-ray Microtomography in the Geosciences

S. A. McDonald
Phase contrast activities at TOMCAT
CIBM Research Day, Université de Lausanne, Lausanne, Switzerland, 26.11.2008

A. Menzel
Imaging, Scattering, and Diffraction at the Swiss Light Source
Seminar, BESSY, Berlin, Germany, 04.08.2008

A. Menzel
Scanning X-Ray Diffraction Microscopy
Materials Science Seminar, Argonne National Laboratory, USA, 08.08.2008

K. Müller, A. Scheybal, R. Bertschinger, T. Kim, A. Bendounan, M. Wahl, P. Aebi, T.A. Jung
Molecular Self-Assembly and Electronic Coupling of Pentacene on Cu(110)
SLS Symposium on low dimension systems, PSI, Villigen, Switzerland, 01.07.2008

F. Nolting
Magnetic Imaging
5th International School on Magnetism and Synchrotron Radiation, Mittelwirr, France, 19-24.10.2008

F. Nolting
Seeing the "invisible" with X-rays – A close look at magnetic multilayers and individual nanocrystals with spectromicroscopy
Symposium, Physics Institute, University Basel, Switzerland, 10.-11.09.2008

F. Nolting
A close Look at Nanomagnets Using Spectromicroscopy
Seminar, Physics Institute, University Basel, Switzerland, 05.05.2008

F. Nolting
Seeing the "invisible" with X-rays – Probing antiferromagnets and individual nanoclusters with spectromicroscopy
Colloquium, Max-Planck-Institut für Metallforschung, Stuttgart, Germany, 28.04.2008

F. Nolting
A close Look at Nanomagnets Using Spectromicroscopy

V. Olieric
Specific and global radiation damage in nucleic acid crystals at 90K and 5K
Fifth International Workshop on X-ray Damage to Biological Crystalline Samples, Villigen PSI, Switzerland, 03-05.03.2008

V. Olieric
Advantages of the PILATUS 6M pixel detector
2008 Meeting of the American Crystallographic Association, 31.05-05.06.2008
C. Padeste
Functionalization of polymer surfaces with nanoscale resolution by EUV radiation induced polymer grafting.
4th International Symposium on Nanostructured and Polymer-Based Materials and Nanocomposites. Rome, Italy, 16-18.04.2008

C. Padeste
Surface nanopatterning and functionalization using extreme ultraviolet interference lithography.
Bilkent University, Ankara, Turkey, 04.09.2008

L. Patthey
ARRES and RIXS spectroscopies at Swiss Light Source
IBM, Rüschlikon, Switzerland, 08.09.2008

S. A. Pauli, P. R. Willmott, C. M. Schlepütz, D. Martoccia, M. Björck
Surface X-Ray Diffraction of Complex Metal Oxide Interfaces and Surfaces - A New Era
SXNS-10, 10th International Conference on Surface X-ray and Neutron Scattering, Paris, France, 02-05.07.2008

S. A. Pauli, C. M. Schlepütz, M. Björck, D. Martoccia, P. R. Willmott
Structural Studies of the Interfaces between Insulating Metal Oxides
Villa Conference on Complex Oxide Heterostructures, Clermont, USA, 02-06.11.2008

S. A. Pauli, C. M. Schlepütz, M. Björck, D. Martoccia, P. R. Willmott
Structural Studies of the Interfaces between Insulating Metal Oxides
53rd Annual Conference on Magnetism and Magnetic Materials, Austin, USA, 10-14.11.2008

F. Pfeiffer
Biomedical X-Ray Phase Contrast Imaging
International Interdisciplinary Conference on Biomedical Mathematics, Anshun City, Guizhou Province, China, 2008

F. Pfeiffer
Coherent X-ray Imaging at Future Hard X-Ray FEL Sources
International Workshop: Application of Coherent X-rays at the LCLS, Stanford Linear Accelerator, Stanford University, USA, 2008

F. Pfeiffer
Super-Resolution' Coherent Scanning X-Ray Microscopy
9th Biannual Conference on High Resolution X-Ray Diffraction and Imaging (XTOP 2008), Linz, Austria, 2008

F. Pfeiffer
Super-Resolution' Coherent Scanning X-Ray Microscopy
Congress of the International Union of Crystallography, Osaka, Japan, 2008

F. Pfeiffer
Super-Resolution' Coherent Scanning X-Ray Microscopy
Advanced Light Source User Meeting, Berkeley, USA, 2008

F. Pfeiffer
Coherent X-Ray Imaging and Microscopy for Life Science Applications
The Zurich Physics Colloquium, ETH Zurich, Switzerland, 2008

F. Pfeiffer
X-Ray Phase Contrast Imaging for Life Science Applications
Colloquium, University of Goettingen, Germany, 2008

F. Pfeiffer
Coherent X-Ray Imaging for Life Science Applications
Colloquium for Laser Physics, DESY, Hamburg, Germany, 2008

F. Pfeiffer
X-Ray Phase Contrast Imaging for Life Science Applications
ANKA Seminar, Forschungszentrum Karlsruhe, Germany, 2008

F. Pfeiffer
Phase-Contrast and Dark-Field Imaging with X-Ray Synchrotron and Tube Sources
SPIE International Symposium on Optical Engineering + Applications, San Diego, USA, 2008
F. Pfeiffer
Introduction to X-ray Focusing
SPIE International Symposium on Optical Engineering + Applications, San Diego, USA, 2008

F. Pfeiffer
Coherent X-ray Scanning Diffraction Microscopy
Heraeus-Seminar ‘Matter in Coherent Light’, Bad Honnef, Germany, 2008

F. Pfeiffer
Coherent Diffractive Imaging and future Free-Electron Laser Sources
2nd European X-ray Free-Elektron Laser Users’ Meeting, DESY, Hamburg, Germany, 2008

C. Piamonteze
X-ray absorption spectroscopy at the Swiss Light Source
Group Of Inorganic Chemistry and Catalysis, University Of Utrecht, Utrecht, The Netherlands, 04.11.2008

C. Piamonteze
Absorption Spectroscopy by use of polarized X-rays
Workshop on X-ray absorption spectroscopy and advanced XAS techniques, 08.10.2008

C. Quitmann
NanoScience with Synchrotron Radiation
CCMX Industry Day, EMPA Dübendorf, Switzerland, 02.10.08

C. Quitmann
The Dance of the Domains
Colloquium, Univ. Würzburg, Germany, 26.05.2008

C. Quitmann
Doing Science with Light
Summer school of the MaMaSelf Programm, Rigi, Switzerland, 15.05.2008

C. Quitmann
PEEM - Photo Emission Electron Microscopy
Maxlab summer school, Lund, Sweden, 01.06.2008

C. Quitmann
Dynamics of mesoscopic magnetic structures
International Workshop on Time-Resolved X-Ray Dynamics, Dresden, Germany, 05.08.2008

C. Quitmann
Time resolved X-Ray Microscopy
Vth International School on Magnetism and Synchrotron Radiation, Mittelwihr, France, 23.10.2008

H. Schift
Nanofabrication with polymers at PSI – from grafting to molding
University of Michigan, Ann Arbor, MI, USA, 07.08.2008

H. Schift
Nanoimprint lithography – stamps (templates), processes and applications
Workshop on Nanoimprint Lithography, Osaka Prefecture University, Osaka, Japan, 16.10.2008

H. Schift
3D visualization of mold filling stages in thermal nanoimprint

H. Schift
Visualization of mold filling in thermal nanoimprint
Nanolith08, Second Spanish Workshop on Nanolithography, Bellaterra, Barcelona, Spain, 10-12.11.2008

C. M. Schleputz
Surface X-Ray Diffraction of Complex Metal Oxide Surfaces and Interfaces - A New Era
SRMS-6, 6th International Conference on Synchrotron Radiation in Materials Science, Campinas, Brazil, 21-23.07.2008
T. Schmitt, V. Strocov, L. Patthey

Construction and First Results of the ADRESS beamline for Resonant Inelastic X-Ray Scattering and Angular Resolved Photoemission Experiments at the Swiss Light Source
SOLEIL, Paris, France, 06.06.2008

T. Schmitt, V. Strocov, L. Patthey

Construction and First Results of the ADRESS beamline for Resonant Inelastic X-Ray Scattering and Angular Resolved Photoemission Experiments at the Swiss Light Source
Laboratoire de Chimie Physique Matière et Rayonnement, Université Pierre et Marie Curie, Paris, France, 09.06.2008

T. Schmitt

New Opportunities and Perspectives in Soft X-Ray RIXS

T. Schmitt

Scientific opportunities for the new soft X-ray beamline at ESRF – Example: Low dimensional magnetic materials

C. Schulze-Briese

The PILATUS 6M pixel detector - The first year of regular user operation

C. Schulze-Briese

The PILATUS 6M - Protein Crystallography with 6 millions detectors
Annual meeting of the Swiss Society for Crystallography, Zurich, Switzerland, 09.09.2008

C. Schulze-Briese

Fine data from SLS - the PILATUS 6M
9th international school on the crystallography of macromolecular biomolecules, Como, Italy, 30.09.2008

C. Schulze-Briese

Current limitations on Synchrotron based Protein Crystallography
PSI-XFEL Science Workshop on Coherent Diffraction by Nanostructures, Bern, Switzerland, 27.11.2008

M. Shi, J. Mesot

Various Energy Scales in the Electronic Excitation Spectra of HTS as studies by ARPES
Internal Workshop on Superconductivity, unconventional mechanisms and novel materials, Neuchâtel, Switzerland, 15.01.2008

M. Shi, J. Mesot

Electronic and Magnetic Excitations of HTCs Probed by ARPES and Neutron Scattering
22nd General Conference of the Condensed Matter Division of the European Physical Society, Roma, Italy, 25–29.08.2008

H. Sigg

Prospects of Si-based opto electronics exploring interband and intersubband transitions in strained Ge/SiGe/Si quantum structures
4th. Int. SiGe technology and Device Meeting, ISTDM-2008, Hsinchu, Taiwan, 11–14.05.2008

H. Sigg

Si-based opto using strained Ge/SiGe/Si quantum structures
Department of Electrical Engineering, National Taiwan University, Taiwan, 16.05.2008

H. H. Solak

Extreme ultraviolet interference lithography - a tool for extreme nanostructuring
Nano Europe 2008, St Gallen Switzerland, 16-17.09.2008

M. Stampanoni

TOMCAT goes nano nano:broadband phase contrast imaging at a broadband phase contrast imaging at a superbend
Second International Symposium on X-ray Phase Contrast Imaging, Yellow Mountain, Anhui, China, 24-28.03.2008
M. Stampanoni
X-ray Tomographic Imaging at the Swiss Light Source
Shanghai Synchrotron Radiation Facility Seminar, Shanghai, China, 31.03.2008

M. Stampanoni
TOMCAT at SLS: a high-throughput X-ray Tomographic Microscopy beamline
IMAGE Workshop Forschungszentrum Karlsruhe, Germany 28.04.2008

M. Stampanoni
High resolution, sensitivity and throughput X-ray Tomographic Microscopy: can we make it?
SCANCO Users Meeting 2008 - SCANCO'S 20th Birthday, Appenzell, Switzerland, 15–18.05.2008

M. Stampanoni
Phase contrast imaging at TOMCAT
SOLEIL 's Tomography Advisory Meeting, Gif sur Yvette, France, 03.09.2008

M. Stampanoni
Novel approaches towards High-sensitivity and High-resolution X-ray Tomographic Microscopy
2008 Annual Meeting Swiss Society for Biomedical Engineering, Muttenz, Switzerland, 05.09.2008

M. Stampanoni
Cutting-edge synchrotron-based tomographic imaging: the TOMCAT experience
NINA & MIA Brainstorming, ESRF, Grenoble, France, 13-14.11.2008

M. Stampanoni
Inside-Out: what can synchrotron-based tomographic microscopy do for you
Seminar Series on Advances in Materials, EPFL, Lausanne, Switzerland, 17.11.2008

M. Stampanoni
The TOMCAT beamline of the Swiss Light Source
CIBM Research Day, Université de Lausanne, Lausanne, Switzerland, 26.11.2008

P. Thibault
High-resolution scanning X-ray diffraction microscopy
Swiss Federal Institute of Technology (ETHZ) Zurich, Switzerland, 25.11.2008

P. Thibault
Ptychography at XFEL sources: wavefront and focal spot characterization
International Workshop on Diffraction Imaging at the European XFEL. Uppsala, Sweden, 21.11.2008

P. Thibault
High-resolution scanning X-ray diffraction microscopy
European Synchrotron Radiation Facility, France, 17.11.2008

P. Thibault
High-resolution scanning X-ray diffraction microscopy
SOLEIL Synchrotron, France, 07.11.2008

P. Thibault
Microscopie à balayage par diffraction de rayons X
9ème Colloque sur les Sources Cohérentes et Incohérentes UV, VUV et X. Dourdan, France, 08.10.2008

P. Thibault
High-resolution scanning X-ray diffraction microscopy
9th International Conference on X-ray Microscopy. ETH, Zurich, Switzerland, 22.07.2008

P. Thibault
Problème des phases et algorithmes itératifs
Université de Montréal, Canada, 07.06.2008

P. Thibault
Phase problem and iterative algorithms
McGill University, Canada, 06.06.2008

P. Thibault
Scanning X-ray diffraction microscopy
2nd Symposium on X-ray phase contrast imaging. Huangshan, China, 25.03.2008
P. Thibault
Scanning X-ray diffraction microscopy
École polytechnique de Lausanne, Switzerland, 03.03.2008

P. Thibault
Récents développements en algorithmes de reconstruction
Journée d'étude sur la recherche en rayons X cohérents en France. ESRF, Grenoble, France, 23.01.2008

J. F. van der Veen
Fluids in confinement – how fluid are they?
Oesterreichische Akademie der Wissenschaften, Graz, Austria, 12-14.2.2008

J. F. van der Veen
Confined fluids – structure and dynamics
Research course ,new materials in new light, Hasylab DESY, Hamburg, Germany, 05-07.3.2008

P. R. Willmott, S. A. Pauli, C. M. Schlepütz, M. Björck
Structural basis for the conducting interface between SrTiO$_3$ and LaAlO$_3
Swiss Physics Society and MaNEP Meeting, Geneva, Switzerland, 26-27.03.2008

P. R. Willmott, S. A. Pauli, C. M. Schlepütz, D. Martoccia, M. Björck
Surface X-Ray Diffraction of Complex Metal Oxide Interfaces and Surfaces - A New Era
ICSOS-9, 9th International Conference on the Structure of Surfaces, Salvador, Brazil, 03-08.08.2008

ORAL PRESENTATIONS

B. P. Andreasson, M. Janousch, U. Staub, G. I. Meijer
Spatial evolution of oxygen vacancies in Cr-doped SrTiO$_3$ during the insulator-to-metal transition in electric fields
Annual Meeting of the Swiss Physical Society, Geneva, Switzerland, 26-27.03.2008

B. P. Andreasson, M. Janousch, U. Staub, G. I. Meijer
In situ defect microscopy during the electric-field-driven insulator-to-metal transition in Cr: SrTiO$_3$
33rd European Conference on X-Ray Spectrometry, Cavtat, Dubrovnik, Croatia, 16-20.06.2008

V. Azelyte, P. Sahoo, M. Saidani, A. Weber, H.H. Solak
Advances in resist testing at PSI EUV-IL exposure tool
2008 International EUVL Symposium, Lake Tahoe, California, USA, 28.09.–01.10.2008

P. Beaud, S. L. Johnson, C. J. Milne, F. Krasniqi, E. Vorobeva, G. Ingold
Atomic Motion in Laser Excited Bismuth Studied with Femtosecond X-ray Diffraction
XVI International Conference on Ultrafast Phenomena, Stresa, Italy, 9-13.06.2008

A. Bergamaschi, A. Cervellino, R. Dinapoli, F. Gozzo, B. Henrich, I. Johnson, P. Kraft, A. Mozzanica, B. Schmitt, X. Shi
Photon counting microstrip detector for time resolved powder diffraction experiments
8th International Conference on Position Sensitive Detectors PSD8, University of Glasgow, Scotland, 01-05.09.2008

M. Björck
A new direct method for surface x-ray diffraction
“Scattering weekend in the Rhine Valley”, St. Goarshausen, Germany, 24-25.05.2008

Y. Bodenthin, U. Staub, M. García-Fernández
Exciting magnetic moments by an electric field in multiferroic ErMn$_2$O$_5
XRMOS 2008 Workshop, Hamburg, Germany, 23.-24.01.2008

Manipulating the magnetic structure by electric fields in multiferroic ErMn$_2$O$_5
Highly Frustrated Magnetism 2008, Braunschweig, Germany, 07-12.09.2008

Controlled engineering of patterned surfaces via self-assembly of organic building blocks in UHV

Midterm Meeting of the EU Marie Curie RTN PRAIRIES, Stresa, Italy, 04.2008

O. Brunke, K. Brockdorf, S. Drews, B. Müller, T. Donath, J. Herzen, F. Beckmann

Comparison between x-ray tube-based and synchrotron radiation-based μCT

SPIE 7078 - Developments in X-Ray Tomography VI, San Diego, USA 12-14.08.2008

J. Chang, M. Shi

Study of low- and high-electronic responses in high-temperature superconductors

Annual Meeting of the Swiss Physical Society, Geneva, Switzerland, 26–27.03.2008

Photoluminescence studies of SiGe quantum dot arrays prepared by templated self assembly

Nanoelectronic Days, Aachen, Germany, 13-16.05.2008

C. David, K. Jefimovs, J. Vila-Comamala, T. Pilvi, M. Ritala, G. Tzvetkov, J. Raabe, R. Fink

Fabrication of line-doubled optics for ultra-high resolution x-ray microscopy

C. David, K. Jefimovs, J. Vila-Comamala, T. Pilvi, M. Ritala, G. Tzvetkov, J. Raabe

Towards 10 nm resolution in x-ray microscopy

A. Diaz, C. Mocuta, J. Stangl, V. Chamard, J. Vila-Comamala, C. David, T. H. Metzger, G. Bauer

Towards coherent diffraction imaging of single epitaxial nanostructures

A. Diaz, C. Mocuta, J. Stangl, V. Chamard, J. Vila-Comamala, C. David, T. H. Metzger, G. Bauer

Applications of Coherent Diffraction to Semiconductor Nanostructures

PSI-XFEL Science Workshop on Coherent Diffraction by Nanostructures, Bern, Switzerland, 27.11.2008

H. Dil, F. Meier, J. Lobo-Checa, L. Patthey and J. Osterwalder

Understanding and tuning the electron spin at surfaces

3S08 - SYMPOSIUM ON SURFACE SCIENCE 2008, St. Christoph, Austria, 07.03.2008

H. Dil

Measuring the local electrostatic potential in nanostructures with PAX

tolCHsurf Ill, Bern, Switzerland, 10.06.2008

H. Dil, F. Meier, J. Lobo-Checa, L. Patthey, G. Bihlmayer and J. Osterwalder

Rashba type spin orbit splitting in Pb QWS

ECOSS 25 Liverpool, UK, 28.07.2008

T. Donath, F. Pfeiffer, O. Bunk, W. Groot, M. Bednarzik, C. Grünzweig, E. Hempel, S. Popescu, M. Hoheisel, C. David

Phase-contrast imaging and tomography at 60 keV using a conventional x-ray tube

SPIE 7078 - Developments in X-Ray Tomography VI, San Diego, USA 12-14.08.2008

Control over supramolecular assemblies by rational modification of alkoxy substituents on phthalocyanine derivatives

SAOG meeting, Fribourg, Switzerland, 01.2008

Ordered 2D assemblies of phenoxy substituted phthalocyanines as hosts for further guest molecules

25th European Conference on Surface Science (ECOSS), Liverpool, UK, 08.2008

M. Enache, N. Wintjes, J. Lobo-Checa, J. Hornung, T. Samuely, F. Diederich, T.A. Jung

Bimolecular porphyrin systems on metallic substrates

Workshop of the EU Marie Curie RTN PRAIRIES, Ciudad Real, Spain, 09.2008

Nanoscale Observation of Order Parameter Coupling in Multiferroic BiFeO3 Thin Films

Annual Meeting of the Swiss Physical Society 2008, Genève, Switzerland, 26-27.03.2008

A. Fraile Rodríguez, F. Nolting, A. Kleibert, J. Bansmann

Application of x-ray spectromicroscopy to the study of magnetic properties of single nanoparticles

6th International Workshop on LEEM-PEEM (LEEMPEEM6), Trieste, Italy, 07-11.09.2008

A. Fraile Rodríguez, A. Kleibert, F. Nolting, J. Bansmann

Application of x-ray spectromicroscopy to the study of magnetic properties of single nanoparticles

M. R. Fuchs

The SLS experience with cryogenic sample mounting and in-situ screening with the CATS sample changer

Photo-field emission source for free electron laser applications

The 7th International Vacuum Electron Sources Conference, London, UK, 03-06.08.2008

Three dimensional Si/Ge quantum dot crystals with small periodicities

International conference on superlattices, nanostructures and nanodevices, Natal, Brazil, 03-08.08.2008

S. M. Gutmann

Optimal data collection temperature for macromolecular crystallography

RD5: Fifth International Workshop on X-ray Damage to Biological Crystalline Samples, PSI, Villigen, Switzerland, 03-05.03.08

SRT study of crack propagation within laser-welded aluminum-alloy T-joints

SPIE 7078 - Developments in X-Ray Tomography VI, San Diego, USA 12-14.08.2008

L.J. Heyderman, E. Mengottia, A. Fraile Rodríguez, Frithjof Nolting, A. Bisig, H.-B. Braun

Magnetic configurations in artificial kagome ice structures

53rd Annual Conference on Magnetism and Magnetic Materials, MMM 2008, Austin, USA, 10-14.11.2008

The XAS beamlines at the SLS. XAS workshop

PSI, Villigen, Switzerland, 07-08.10.2008

S.L. Johnson, P. Beaud, G. Ingold, U. Staub

Pump-Probe Resonant X-ray Diffraction: Possibilities for FLASH

FLASH User Workshop, Hamburg, Germany, 08-10.09.2008

M. Kerbrat, T. Huthwelker, M. Ammann

Interaction de l’acide nitreux (HONO) avec la glace : Adsorption à la surface et diffusion dans le volume

Conférence annuelle de cinétique et de Photochimie, Strasbourg, France, 09-10.06.2008

M. Kerbrat, T. Huthwelker, M. Ammann

Co-adsorption of nitrous and acetic acid on ice

M. Kerbrat, T. Huthwelker and M. Ammann
Co-Adsorption of gaseous acids on ice: nitrous and acetic acid
AICI-HiT Workshop "Ice and Halogens: Laboratory Studies to Improve the Modelling of Field Data". British Antarctic Survey, Cambridge, UK, 16-18.06.2008

M. Kerbrat, M. Pinzer, T. Huthwelker, M. Schneebeili, M. Ammann
Laboratory studies of the diffusivity of NOx and HONO in Snow
Atmospheric Chemical Mechanisms, University of California, Davis, USA, 10-12.12.2008

M. Kerbrat, M. Pinzer, B., T. Huthwelker, T. Schneebeili, M. Ammann
Laboratory studies of the diffusivity of NOx and HONO in Snow

M. Kobas
The PILATUS 6M detector: a powerful instrument for advanced diffraction studies
16. Jahrestagung der Deutschen Gesellschaft für Kristallographie, Erlangen, Deutschland, 03-06.03.08

P. Kraft, A. Bergamaschi, Ch. Broennimann, R. Dinapoli, E. F. Eikenberry, B. Henrich, I. Johnson, A. Mozzonica, B. Schmitt
Characterization and Calibration of PILATUS II Detectors
Symposium on Radiation Measurements and Applications SORMA WEST 2008, Berkeley, California, USA, 02-05.06.2008

J. Krempasky
Effects of Three-Dimensional Band Structure in Angle- and Spin Spin-Resolved Photoemission from Half-Metallic \(\text{La}_{2/3}\text{Sr}_{1/3}\text{MnO}_3 \)
CMD22, Roma, Italy, 20-25.08.2008

A. Křepelová, M. Ammann, J.T. Newberg, H. Bluhm, T. Huthwelker
Influence of HNO\(_3\) on ice surface melting studied by X-ray photoelectron spectroscopy
Seminar PSI/Uni Bern, Switzerland, 09.05.2008

A. Křepelová, M. Ammann, J.T. Newberg, H. Bluhm, T. Huthwelker
Influence of nitric acid on ice surface melting studied by X-ray photoelectron spectroscopy

A. Llanes-Pallás, M. Matena, M. Stoehr, T. Jung, M. Prato, D. Bonifazi
Design & Synthesis of Molecular Modules for the Construction of H-Bonding-mediated Organic Nanostructures on Metallic Surfaces
EMRS-2008 Strasbourg, France, 05.2008

F. Luo, L. J. Heyderman, H. H. Solak
Nanoscale Perpendicular Magnetic Dot Arrays Fabricated by Extreme Ultraviolet Interference Lithography
IEEE International Magnetics Conference, INTERMAG 2008, Madrid, Spain, 04-08.05.2008

F. Marone
Towards real-time tomography: Fast reconstruction algorithms and GPU implementation

D. Martoccia, M. Björck, C. M. Schlepütz, P. R. Willmott, S. A. Pauli, B. D. Patterson, T. Brugger, S. Berner, T. Greber, J. Osterwalder
Surface X-Ray Diffraction on nanomeshes
Group meeting, Prof. H. Over, Giessen, Germany, 14.02.2008

D. Martoccia, M. Björck, C. M. Schlepütz, P. R. Willmott, S. A. Pauli, B. D. Patterson, T. Brugger, S. Berner, T. Greber, J. Osterwalder
Surface X-Ray Diffraction on nanomeshes
Group meeting, Prof. J. Osterwalder, Zürich, Switzerland, 27.02.2008

D. Martoccia, M. Björck, C. M. Schlepütz, P. R. Willmott, S. A. Pauli, B. D. Patterson, T. Brugger, S. Berner, T. Greber, J. Osterwalder
Surface X-Ray Diffraction on nanomeshes
Group meeting, Prof. W. Moritz, Munich, Germany, 10.06.2008

M. Matena, J. Lobo-Checa, M. Stoehr, K. Müller, T.A. Jung, T. Riehm, L.H. Gade
Thermally induced polymerization of molecules on surfaces
Spring meeting of the DPG, Berlin, Germany, 02.2008
M. Matena, J. Lobo-Checa, M. Stoeehr, K. Müller, T.A. Jung, T. Riehm, L.H. Gade
Polymerization of a perylene derivative on a metal surface
APS March meeting, New Orleans, USA, 03.2008

Reactions on surfaces for the creation of hierarchic structures
International Conference on Nanoscience and Technology, Keystone, USA, 07.2008

M. Matena, J. Lobo-Checa, M. Stoeehr, K. Müller, T.A. Jung, T. Riehm, L.H. Gade
Thermally induced polymerization of a perylene derivative on a Cu surface
International Conference on Nanoscience and Technology, Keystone, USA, 07.2008

M. Matena, J. Lobo-Checa, M. Stoeehr, K. Müller, T. A. Jung, L. H. Gade
Thermally induced polymerization of a perylene derivative on the surface of Cu(111)
25th European Conference on Surface Science (ECOSS), Liverpool, UK, 08.2008

M. Matena, J. Lobo-Checa, M. Stoeehr, K. Müller, T.A. Jung, T. Riehm, L.H. Gade
Thermally induced polymerization of a perylene derivative on Cu(111)
Trends in NanoTechnology (TNT), Oviedo, Spain, 09.2008

F. Meier, H. Dil, J. Lobo-Checa, L. Patthay and J. Osterwalder
Understanding and tuning the electron spin at surfaces
ECOSS 25, Liverpool, UK, 30.07.2008

S. A. McDonald
Phase contrast X-ray tomographic microscopy for biological and materials science applications
1st Conference on 3D-Imaging of Materials and Systems, Carcans-Maubuisson, France, 2008

E. Mengotti, L. J. Heyderman, A. Fraile Rodríguez, F. Nolting, H.B. Braun, A. Bisig
Frustration in dipolar coupled nanoscale ferromagnetic elements
Annual Swiss Physical Society Meeting, Geneva, Switzerland, 26-27.03.2008

E. Mengotti, L. J. Heyderman, A. Fraile Rodríguez, F. Nolting, A. Bisig, H.B. Braun
Magnetic configurations in artificial kagome spin ice structures
Joint European Magnetic Symposia JEMS08, Dublin, Ireland, 14-19.09.2008

A. Menzel, P. Thibault, M. Dierolf, C.M. Kewish, O. Bunk, C. David, W. Leitenberger, F. Pfeiffer
Advances in Ptychographical Coherent Diffractive Imaging
Image Reconstruction from Incomplete Data V, San Diego, USA, 11-12.08.2008

Femtosecond X-Ray Absorption Spectroscopy of a Photoinduced Spin-Crossover Process
XVI International Conference on Ultrafast Phenomena, Stresa, Italy, 09-13.06.2008

Three-dimensional Ge/Si quantum dot crystals with small periodicities
35th International Symposium on Compound Semiconductors, Rust, Germany, 21-24.09.2008

K. Müller, A. Kara, A. Scheybal, R. Bertschinger, T.K. Kim, J. Osterwalder, T. A. Jung
Coverage Dependent Phase Behavior of Pentacene Monolayers on Cu (110)

K. Nygard, D.K. Satapathy, O. Bunk, F. Pfeiffer, C. David, J.F. van der Veen
Dynamic effects in diffractive x-ray imaging of confined colloidal suspensions
Liquid Meets Solid – 24th Annual SAOG Meeting, Fribourg, Switzerland, 25.01.2008

C. Padeste, A. Savouchkina, P. Farquet, A. Foiselle, E. Müller
Formation of structured metal-containing nanocomposite films from radiation grafted polymer brushes.
7th International Symposium on Polyelectrolytes, Coimbra, Portugal, 16-19.06.2008

S. Peth, R. Horn, F. Beckmann, T. Donath, A. J. M. Smucker
The interior of soil aggregates investigated by synchrotron-radiation-based microtomography
SPIE 7078 - Developments in X-Ray Tomography VI, San Diego, USA 12-14.08.2008
C. Pradervand
Diamond Detectors at the SLS
4th BIOXHIT Annual Meeting, EMBL Hamburg, Germany, 17.04.2008

C. Pradervand
Motion Control & CVD Diamond Sensors
SSRF, Shanghai, China, 10.10.2008

C. Quitmann
Status of the NanoXAS Project
CCMX Review Meeting, Bern, Switzerland, 03.12.08

C. Quitmann
Ideas for XFEL Science – Magnetization Dynamics
PSI-XFEL Science Workshop on Nanoscale Magnetization Dynamics, Bern Switzerland, 05.06.2008

M. Ritala, T. Plivi, K., Jefimovs, J. Vila-Comamala, J. Raabe, C. David
ALD in Preparation of Ultra-high-Resolution Fresnel Zone Plate Lenses for X-ray Microscopy
8th International Conference on Atomic Layer Deposition ALD 2008, Bruges, Belgium, 29.06.-02.07.2008

Ordered 2D assemblies of phenoxy substituted phthalocyanines as hosts for further guest molecules
Spring meeting of the DPG, Berlin, Germany, 02.2008

Guest-host interaction of C$_{60}$ adsorbed on an ordered layer of phthalocyanine derivatives
APS March meeting, New Orleans, USA, 03.2008

Ordered 2D assemblies of phenoxy substituted phthalocyanines as hosts for further guest molecules
International Conference on Nanoscience and Technology, Keystone, USA, 07.2008

Phthalocyanine derivatives on Ag(111) – multiphase behavior and capability of hosting other molecules
Trends in NanoTechnology (TNT), Oviedo, Spain, 09.2008

Resonant inelastic soft x-ray scattering on the spin-ladder / spin-chain system Sr$_{14}$Cu$_{24}$O$_{44}$
DPG Frühjahrstagung der Sektion Kondensierte Materie, Berlin, Germany, 25-29.02.2008

Spin excitations in Cu L$_{3}$ and O K edge RIXS on Sr$_{14}$Cu$_{24}$O$_{44}$
X08 - 21st International Conference on X-Ray and Inner-Shell Processes, Paris, 22-27.06.2008

First Results of the Resonant Inelastic X-Ray Scattering Station at the ADRESS Beamline at the Swiss Light Source
DPG Frühjahrstagung der Sektion Kondensierte Materie, Berlin, Germany, 25-29.02.2008

H. H. Solak
Extreme ultraviolet interference lithography for patterned magnetic media and other applications
NSTI Nanotechnology Conference, Boston, USA, 01-05.06.2008

M. Stampanoni
Hierarchical, multimodal tomographic X-ray imaging at a superbend
SPIE 2008 – Developments in X-ray Tomography VI, San Diego, CA-USA, 11-14.08.2008

M. Stampanoni
Broad Band Nanoimaging: the TOMCAT Hard X-Ray Nanoscope
Workshop on X-ray micro imaging of materials, devices and organisms, Dresden, Germany, 22-24.10.2008
In Situ Characterization Of Block Copolymer Ordering On Chemically Nanopatterned Surfaces By Time-Resolved SAXS
The 52nd International conference on electron, ion and photon beam technology and nanofabrication, Portland, Oregon, USA, 27–30.05.2008

P. Thibault, M. Dierolf, F. Pfeiffer, A. Menzel, O. Bunk
Scanning X-ray diffraction microscopy
Annual congress of the Canadian Association of Physicists. Québec, Canada, 10.06.2008

V. Trabadelo, A. Retolaza, S. Merino, A. Cruz, P. Heredia, H. Schift, C. Padeste
Protein patterning by thermal nanoimprint lithography and NH2-plasma functionalization of polystyrene

S. Tsujino, P. Beaud, E. Kirk, T. Vogel, H. Sehr, J. Gobrecht, A. Wurlich
Ultrafast single-photon photoemission from metallic field-emitter arrays excited by near infrared femtosecond laser pulses

J.F. van der Veen
The Swiss Light Source
Visit ETH Ratspräsident Schiesser, PSI, Villigen Switzerland, 04.02.2008

J.F. van der Veen
The Swiss Light Source
Visit Prof. T. Rizzo, dean of EPFL, PSI, Villigen, Switzerland, 03.03.2008

J.F. van der Veen
Introduction to the SLS
Visit Mr. M. van der Rest, CEO of French Synchrotron SOLEIL, PSI, Villigen, Switzerland, 28.04.2008

J. F. van der Veen
Introduction to the SLS
Visit Mauro Dell’Ambrogio, Staatssekretär und Jean-Pierre Ruder, Ressortleiter Multilaterale Forschungszusammenarbeit Staatssekretariat für Bildung und Forschung SBF, PSI, Villigen, Switzerland, 13.05.2008

J.F. van der Veen
Introduction to the SLS
SAAB (Prof. Dr. Billy Fredriksson, Dr. Magnus Ahlström), PSI, Villigen, Switzerland, 26.05.2008

J.F. van der Veen
Introduction to the SLS
IBM (Scientific Director Paul Seidler and Science and Technology managers), PSI, Villigen, Switzerland, 04.06.2008

J.F. van der Veen
Welcome address
The International Summer School on Structure Solution from Powder Diffraction Data, PSI, Villigen, Switzerland, 18.06.2008

J.F. van der Veen
Welcome address
Inauguration of PILATUS 6M, PSI, Villigen, Switzerland, 02.07.2008

J.F. van der Veen
Introduction to the SLS
Prof. Hong Ding, Institute of Physiks, Beijing, PSI, Villigen, Switzerland, 15.09.2008

J.F. van der Veen
Introduction to the SLS
Delegation of the Chinese Academy of Sciences, Beijing, PSI, Villigen, Switzerland, 20.10.2008

J.F. van der Veen,
Introduction to the SLS,
Visit of physics students ETHZ, Villigen PSI, Switzerland, 18.12.2008

Advanced x-ray diffractive optics
9th International Conference on X-Ray Microscopy XRM 2008, Zürich, Switzerland, 21-25.07.2008

J. Vila-Comamala, K. Jefimovs, T. Pilvi, J. Raabe, M. Ritala, C. David

A zone-doubling technique for high resolution Fresnel zone plates

M. Wang

Automation at SLS beamlines
Rhine-Knee Regio Meeting on the structural biology of biological macromolecules, Freudenstadt, Germany, 10-12.09.2008

Molecular recognition on surfaces: controlling dimensionality and periodicity of supramolecular tetraarylporphyrin assemblies by the interplay of cyano and alkoxy substituents
Spring meeting of the DPG, Berlin, Germany, 02.2008

Supramolecular synthons on surfaces: controlling dimensionality and periodicity of tetraarylporphyrin assemblies by the interplay of cyano and alkoxy substituents
Annual meeting of the Swiss Physical Society (SPS), Geneva, Switzerland, 3.2008

V. Zelenay, A. Křepelová, M. Ammann, M.G.C. Vernooij, M. Birrer, G. Tzvetkov, J. Raabe, T. Huthwelker

X-Ray Microscopy to Aerosol Particles
Seminar Institute for Atmosphere and Climate, ETH, Zürich, Switzerland, 14.03.2008

V. Zelenay, A. Křepelová, M. Ammann, M.G.C. Vernooij, M. Birrer, R. Chirico, G. Tritscher, G. Tzvetkov, J. Raabe, T. Huthwelker

X-ray Microscopy to Aerosol Particles
Seminar PSI/Uni Bern, PSI, Villigen, Switzerland, 09.05.2008

V. Zelenay, A. Křepelová, M. Ammann, M.G.C. Vernooij, M. Birrer, G. Tzvetkov, J. Raabe, T. Huthwelker

X-Ray Microscopy to Aerosol Particles
Seminar ETH, Zürich, Zürich, Switzerland, 15.08.2008

V. Zelenay, A. Křepelová, A. Ammann, M.G.C. Vernooij, M. Birrer, R. Chirico, R. Tritscher, G. Tzvetkov, J. Raabe, T. Huthwelker

Observations on water uptake in soot particles using X-ray microspectroscopy
CCEM/NEADS Workshop, Zürich, Switzerland, 04.11.2008

POSTERS

M. Ammann, A. Křepelová, T. Huthwelker, J.T. Newberg, H. Bluhm

The effect of strong acids on the ice - air interface probed by photoelectron spectroscopy
IGAC International Conference, Annecy, France, 07-12.09.2008

B. P. Andreasson, M. Janousch, U. Staub, G. I. Meijer, T. Todorova, B. Delley

In situ monitoring of oxygen defects to understand resistive switching in Cr: SrTiO3
Annual Meeting of the Swiss Physical Society, Geneva, Switzerland, 26-27.03.2008

B. P. Andreasson, M. Janousch, U. Staub, G. I. Meijer

In situ defect microscopy during the electric-field-driven insulator-to-metal transition in Cr: SrTiO3
9th International Conference on X-ray Microscopy, Zürich, Switzerland, 21-25.07.2008

T. Bartels-Rausch, M. Jöhi, T. Huthwelker, H. W. Gängeler, M. Ammann

Interaction of gaseous, elemental mercury with snow surfaces: Laboratory Investigations
AICl-HiT Workshop "Ice and Halogens: Laboratory Studies to Improve the Modelling of Field Data". British Antarctic Survey, Cambridge, UK, 16-18.06.2008
T. Bartels-Rausch, T. Huthwelker, I.T. Zimmermann, M. Ammann

Interaction of peroxynitrile acid with ice surfaces

M. Bednarzlik, M. Saidani, B. Keusch, H. H. Solak, H. Schift, C. Spreu, J. Gobrecht

Stitching Free High Resolution Stamps for Molding Techniques with EUV Interference Lithography

N. Baumann, C. Vanoni, S. Tsujino and T.A. Jung

Doping of few monolayers thin film transistors: charge carrier density and injection properties

SPS Annual Meeting 2008, Geneva, Switzerland, 26-27.03.2008

N. Baumann, C. Vanoni, S. Tsujino, T.A. Jung

Doping of few Monolayer Pentacene Thin Film Transistors

Swiss Workshop in Basic Research in Nanoscience, Davos, Switzerland, 04-06.06.2008

Manipulating the magnetic structure by electric fields in multiferroic ErMn$_2$O$_5$

Annual Meeting of the Swiss Physical Society, Geneva, Switzerland, 16-17.03.2008

J. J. Boon, J. van der Horst, E. S.B. Ferreira, F. Marone, M. Stampanoni

3D X-ray tomographic microscopy and SEM of rough and ion polished cross sections of the Cassoway egg shell

Gordon Research Conference on Biominalisation, New London, NH, USA, 10-15.08.2008

F. N. Büchi, R. Flückiger, D. Tehlar, F. Marone, M. Stampanoni

Determination of Liquid Water Distribution in Porous Transport Layers

214th Meeting of Electrochemical Society, PEM Fuel Cells 8 Symposium, Honolulu, Hawaii, USA, 12-17.10.2008

M. Björck, C. M. Schleypütz, S. A. Pauli, D. Martoccia, R. Herger, P. R. Willmott

A new direct method for SXRD: Introducing DCAF

SXNS-10, 10th International Conference on Surface X-ray and Neutron Scattering, Paris, France, 02-05.07.2008

M. Björck, C. M. Schleypütz, S. A. Pauli, D. Martoccia, R. Herger, P. R. Willmott

Atomic imaging with surface x-ray diffraction

L. Carroll, M. Scheinert, C. Janssen, H. Sigg, A. Wittmann, J Faist

Gain/Loss measurements in Ge/SiGe quantum structures and AllnAs/GalanAs heterostructure laser devices

X-ray Synchrotron Studies of Pitting Corrosion

214th Meeting of Electrochemical Society, PEM Fuel Cells 8 Symposium, Honolulu, Hawaii, USA, 12-17.10.2008

Coherence characterization of a channel-cut monochromator using a double grating interferometer

404. WE-Heraeus Seminar "Matter in Coherent Light" Bad Honnef, Germany, 17-20.03.2008

M. Dierolf, I. Johnson, O. Bunk, S. Kynde, O. Marti, F. Pfeiffer

Ptychographic Iterative Diffraction Microscopy with Laser Light

404. WE-Heraeus-Seminar, "Matter in Coherent Light", Bad Honnef, Germany, 17-20.03.2008

Lensless Scanning X-Ray Diffraction

9th International Conference on X-Ray Microscopy, Zurich, Switzerland, 21-25.07.2008
M. Dierolf, P. Thibault, C. M. Kewish, A. Menzel, O. Bunk, K. Jefimovs, C. David, F. Pfeiffer
Hard X-Ray Phase Contrast Scanning Microscopy
CIMST Interdisciplinary Summer School on Biomedical Imaging, Zurich, Switzerland, 01-12.09.2008

Image Reconstruction from Ptychographic X-ray Data
7th PSI Summer School on Condensed Matter Research, Zuoz, Switzerland, 16-22.08.2008

M. Dierolf, P. Thibault, C. M. Kewish, A. Menzel, O. Bunk, K. Jefimovs, J. Vila-Comamala, C. David, F. Pfeiffer
Ptychographic Coherent Diffractive Imaging

M. Dierolf, P. Thibault, C. M. Kewish, A. Menzel, O. Bunk, K. Jefimovs, J. Vila-Comamala, C. David, F. Pfeiffer
Ptychographic Coherent Diffractive Imaging

M. Dierolf, P. Thibault, C. M. Kewish, A. Menzel, O. Bunk, K. Jefimovs, J. Vila-Comamala, C. David, F. Pfeiffer
Ptychographic Coherent Diffractive Imaging

H. Dil, F. Meier, J. Lobo-Checa, L. Patthey, G. Bihlmayer and J. Osterwalder
Rashba in Pb QWS
Annual Meeting of the Swiss Physical Society, Geneva, Switzerland, 26.03.2008

Controlling dimensionality and periodicity of supramolecular assemblies on surfaces by rational modifications of alkoxy substituents
Swiss Workshop on Basic Research in Nanoscience, Davos, Switzerland, 04-06.6.2008

Controlling dimensionality and periodicity of supramolecular assemblies on surfaces by rational modifications of alkoxy substituents
3rd International workshop on energy dissipation at surfaces, Bad Honnef, Germany, 08.2008

P. Farquet, G. G. Scherer, C. Padeste, H. H. Solak, S. A. Gürsel, A. Wokaun
Influence of the solvent viscosity on surface graft-polymerization reactions
POLY-2008, IIT New Delhi, India 28-31.01.2008

A. Fraile Rodríguez, F. Nolting, A. Kleibert, J. Bansmann
Application of x-ray spectromicroscopy to study magnetic properties of individual nanocrystals
9th International Conference on X-Ray Microscopy (XRM 2008), Zürich, Switzerland, 21-25.07.2008

E. Fuchsberger, T. Balmer, O. Bunk, D. K. Satapathy, M. Dierolf, F. Pfeiffer, C. David, M. Heuberger, J. F. van der Veen
X-ray reflectivity and surface force studies of ordering phenomena in confined fluids
SAOG, 24th Annual Meeting, Fribourg, Switzerland, 23.01.2008

B. Henrich, A. Bergamaschi, Ch. Broennimanna, R. Dinapoli, E. F. Eikenberry, I. Johnson, M. Kobasa, P. Kraft, A. Mozzonica, B. Schmitt
Pilatus: a single photon counting Pixel detector for x-ray applications
10th International Workshop on Radiation Imaging Detectors 2008, Helsinki, Finland, 30.06-03.07.2008

J. Herzen, F. Beckmann, A. Haibel, A. Schreyer, F. Pfeiffer, T. Donath, C. David
Differential phase contrast – new imaging method for HARWI-II beamline at DESY using hard x-ray grating interferometer
Annual conference of Swiss Society of Biomaterials SSB2008, Basel, Switzerland, 08.05.2008
J. Herzen, F. Beckmann, A. Haibel, A. Schreyer, F. Pfeiffer, T. Donath, C. David
Differential phase contrast – new imaging method for HARWI-II beamline at DESY using hard x-ray grating interferometer

Morphometric Evaluation of Structural Changes in Brain Micro Vasculature after heavy Particle Irradiation
CIMST Symposium 2008, Imaging: Pushing the Limits in Biomedical Research, Zürich, Switzerland, 21-22.01.2008

Assessment of radiation induced alteration in brain microvasculature using X-ray Tomographic Microscopy
19th Annual NASA Space Radiation Investigators’ Workshop, Philadelphia, USA, 01-04.07.2008

3D Quantification of brain microvessels exposed to heavy particle radiation
9th International Conference on X-Ray Microscopy, Zurich, Switzerland, 21-25.07.2008

L. Holzer, B. Muench, P. Tritik, F. Marone, M. Stampanoni
SRnCT versus FIB-nanotomography – Comparison of 3D particle analyses from densely packed granular samples

T. Huthwelker, A. Krepelová, V. Zelenay, M. Janousch, M. Ammann
Is NaCl in a frozen solution in a solid or liquid state?
Faraday Discussion 141: From Interfaces to the Bulk. Heriot-Watt University, Edinburgh, UK, 27.-29.08.2008

Femtosecond X-ray Science at the Swiss Light Source
XXI Congress and General Assembly of the International Union of Crystallography, Osaka, Japan, 23-31.08.2008

D. K. Kalantaryan, G. A. Amatuni, V. M. Tsakanov, P. Beaud, G. Ingold, A. Streun
Laser-Beam Interaction and Calculation of the Sliced Bunch Radiation Spectra for the SLS Femto Beamlne
EPAC’08, Genoa, Italy, 23-27.06.2008

A.N. Kaufmann, S. Gubser, L. Heyderman, H. Schift, H. Burkard, E. Meyer, T.A. Jung
Interface strengths and fracture behavior of nanotowers
NanoEurope, St.Gallen, Switzerland, 16-17.09.2008

M. Kerbrat, T. Bartels-Rausch, T. Huthwelker, M. Ammann
Recent results on the uptake of HNO$_2$ and HNO$_3$ on ice surfaces from laboratory studies
Annual Meeting of the EU FP6 project SCOUT-O3, Alfred-Wegener-Institut für Polar- und Meeresforschung (AWI), Potsdam, Germany, 21-23.04.2008

E. Kirk, S. Tsujino, T. Vogel, J. Gobrecht, A. Wurlich
Development of metallic field emitter arrays with individual focusing electrodes for high-brightness, low-emittance cathode

J. Köser, J. Gobrecht, U. Pieles, F. M. Battiston, B. Müller
Detection of the Forces and Modulation of Cell-Substrate Interactions
14th Swiss Conference on Biomaterials, Basel, Switzerland, 08.05.2008

J. Köser, J. Gobrecht, U. Pieles, F. M. Battiston, B. Müller
Nanomechanical Detection of the Forces Involved in Cell-Substrate Interactions
NanoEurope 2008, St. Gallen, Switzerland, 16-17.09.2008

Influence of Lattice Heating Time on Strain Wave Dynamics in InSb
XVI International Conference on Ultrafast Phenomena, Stresa, Italy, 09-13.06.2008
A. Křepelová, M. Ammann, J.T. Newberg, H. Bluhm, T. Huthwelker
Impact of HNO3 and HCl on ice surface melting
Faraday Discussion 141: From Interfaces to the Bulk. Heriot-Watt University, Edinburgh, UK, 27.-29.08.2008

Environmental studies using XAS
Workshop on X-ray absorption spectroscopy and advanced XAS techniques, Paul Scherrer Institut, Villigen, Switzerland, 06-10.10.2008

Single Cell Proteomics
Swiss workshop on Basic Research in Nanoscience, Davos, Switzerland, 04-06.06.2008

F. Luo, L. J. Heyderman, H. H. Solak, T. Thomson, M. E. Best
Fabrication of Arrays of Nanoscale Magnetic Islands by Extreme Ultraviolet Interference Lithography
34th Micro and Nano Engineering Conference MNE08, Athens, Greece, 15-18.09.2008

K. Mader, R. Müller, J.P. Thiran, M. Stampanoni
Assessment of Genetic Basis of Bone Ultrastructure using High-throughput Tomography
EMPA PhD Symposium, St. Gallen, Switzerland, 13.11.2008

F. Marone, C. Hintermüller, S. McDonald, R. Abeal, G. Mikuljan, A. Isenegger, M. Stampanoni
Tomographic bio-imaging at TOMCAT
CIMST Symposium 2008, Imaging: Pushing the Limits in Biomedical Research, Zürich, Switzerland, 21-22.01.2008

F. Marone, C. Hintermüller, S. McDonald, R. Abela, G. Mikuljan, A. Isenegger, M. Stampanoni
X-ray tomographic microscopy at TOMCAT
SPIE Tomography Conference, San Diego, California, USA, 12-14.08.2008

F. Marone, C. Hintermüller, S. McDonald, R. Abela, G. Mikuljan, A. Isenegger, M. Stampanoni
X-ray tomographic microscopy at TOMCAT
9th International Conference on X-Ray Microscopy, Zurich, Switzerland, 21-25.07.2008

D. Martoccia, M. Björck, C. M. Schleputz, P. R. Willmott, S. A. Pauli, B. D. Patterson, T. Brugger, S. Berner, T. Greber, J. Osterwalder
Surface X-Ray Diffraction study on h-BN/Rh(111)
Swiss Physical Society - MaNEP meeting, Geneva, Switzerland, 26-27.03.2008

D. Martoccia, M. Björck, C. M. Schleputz, P. R. Willmott, S. A. Pauli, B. D. Patterson, T. Brugger, S. Berner, T. Greber, J. Osterwalder
Surface X-Ray Diffraction study on h-BN/Rh(111)
ICSOS-9, 9th International Conference on the Structure of Surfaces, Salvador, Brazil, 03-08.08.08

D. Martoccia, M. Björck, C. M. Schleputz, P. R. Willmott, S. A. Pauli, B. D. Patterson, T. Brugger, S. Berner, T. Greber, J. Osterwalder
Surface X-Ray Diffraction study on h-BN/Rh(111)
7th PSI Summer School on Condensed Matter Research, Zuoz, Switzerland, 16-22.08.2008

S. A. McDonald, F. Marone, J.C. Bensadoun, P. Aebischer, M. Stampanoni
Phase contrast microtomography for high-sensitivity visualization of cells and soft tissue
CIMST Symposium 2008, Imaging: Pushing the Limits in Biomedical Research, Zürich, Switzerland, 21-22.01.2008

S. A. McDonald, F. Marone, C. Hintermüller, J.C. Bensadoun, P. Aebischer, M. Stampanoni
High-throughput, high-resolution X-ray phase contrast tomography for high-sensitivity visualisation of soft tissue
9th International Conference on X-Ray Microscopy, Zurich, Switzerland, 21-25.07.2008

S. A. McDonald, F. Marone, C. Hintermüller, J.C. Bensadoun, P. Aebischer, M. Stampanoni
High-throughput, high-resolution X-ray phase contrast tomographic microscopy for visualisation of soft tissue
CIBM Science day, Lausanne, Switzerland, 26.11.2008
F. Meier, H. Dil, J. Lobo-Checa, L. Patthey and J. Osterwalder
Quantitative vectorial spin analysis in spin and angle resolved photoemission: Bi/Ag(111) and Pb/Ag(111)
Annual Meeting of the Swiss Physical Society, Geneva, Switzerland, 26.03.2008

E. Mengotti, L. J. Heyderman, A. Fraile Rodríguez, F. Nolting, A. Bisig, H.B. Braun
Frustration in dipolar coupled nanoscale ferromagnetic elements
9th International Conference on X-Ray Microscopy, XRM 2008, Zürich, Switzerland, 21-25.07.2008

A. Menzel, C.M. Kewish, M. Dierolf, P. Thibault, P. Kraft, O. Bunk, K. Jefimovs, J. Vila Comamala, C. David, F. Pfeiffer
Quantitative Absorption and Phase Contrast in Hard X-Ray Scanning Transmission Microscopy
9th International Conference on X-Ray Microscopy, Zürich, Switzerland, 21-25.07.2008

S. Merino, A. Retolaza, A. Juarros, H. Schift, V. Sirotkin, A. Svintsov, S. Zaitsev
Refined coarse-grain modeling of stamp deformation in nanoimprint lithography
EIPBN2008, Int. Conf. on electron, ion and photon beam technology and nanofabrication, Portland, Oregon, USA, 27.-29.05.2008

R. Mokso, F. Marone, M. Stampanoni
Towards real-time Tomography: Fast Data Acquisition Schemes at TOMCAT beamline, SLS
CIBM Science day, Lausanne, Switzerland, 26.11.2008

R. Mokso, M. Stampanoni
Preliminary Study of the Possibilities to Perform Propagation Based Phase Contrast Imaging at the TOMCAT Beamline
CIBM Science day, Lausanne, Switzerland, 26.11.2008

R. Mokso, F. Marone, M. Stampanoni
Towards Real-time Tomography: Fast Data Acquisition Schemes

A. Mozzanica A. Bergamaschi, R. Dinapoli, F. Gozzo, B. Henrich, P. Kraft, B. Patterson, B. Schmitt
MythenII: a 128 channel single photon counting readout chip
10th International Workshop on Radiation Imaging Detectors 2008, Helsinki, Finland, 30.06-03.07.2008

Three-dimensional Ge/Si quantum dot crystals with small periodicities
Nanoelectronic Days, Aachen, Germany, 13-16.05.2008

K. Nygard, D. K. Satapathy, O. Bunk, F. Pfeiffer, C. David, and J. F. van der Veen
Dynamic effects in diffractive x-ray imaging of confined colloidal suspensions
SAOG, 24th Annual Meeting, Fribourg, Switzerland, 23.01.2008

K. Nygard, D.K. Satapathy, O. Bunk, F. Pfeiffer, C. David, J.F. van der Veen
Structure determination of confined fluids by holographic x-ray diffraction
10th Conference on Surface X-Ray and Neutron Scattering SXNS10, Paris, France, 02-05.07.2008

V. Olieric, K. Lang, R. Micura, P. Dumas, E. Ennifar, C. Schulze-Briese
Specific and global radiation damage in nucleic acid crystals at 90 K and 5 K
The 9th International School on the Crystallography of Biological Macromolecules, Como, Italy, 29.09.-03.10.2008

Near-edge x-ray absorption fine structure investigation of graphite
6th International Workshop on LEEM-PEEM (LEEMPEEM6), Trieste, Italy, 07-11.09.2008

S. A. Pauli, P. R. Willmott, R. Herger, C. M Schleputz, D. Martoccia, B. D. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, Y. Yacoby
Structural basis for the conducting interface between LaAlO3 and SrTiO3
Swiss Physical Society - MaNEP meeting, Geneva, Switzerland, 26-27.03.2008
S. A. Pauli, C. M. Schlepütz, M. Björck, D. Martoccia, S. Thiel, C. W. Schneider, J. Mannhart, P. R. Willmott
Sub-Angstrom Resolved Atomic Structure of the Conducting Interface between LaAlO_3 and SrTiO_3
SXNS-10, 10th International Conference on Surface X-ray and Neutron Scattering, Paris, France, 02-05.07.2008

S. A. Pauli, P. R. Willmott, R. Herger, C. M. Schlepütz, D. Martoccia, B. D. Patterson, B. Delley, R. Clarke, D. Kumah, C. Cionca, and Y. Yacoby
Structural basis for the conducting interface between LaAlO_3 and SrTiO_3
7th PSI Summer School on Condensed Matter Research, Zuoz, Switzerland, 16-22.08.2008

C. Quietmann, J. Raabe, I. Schmidt, H. Hug, S. Vrankovic
Status of the CCMX NanoXAS Project
CCMX Review Meeting, Bern, Switzerland, 03.12.08

Magnetization Dynamics in Permalloy Micro-Structures
International Workshop on X-ray Spectroscopy of Magnetic Solids (XRMS 2008), DESY, Hamburg, Germany, 23.01.2008

A. Retolaza, S. Merino, V. Trabadelo, P. Heredia, C. Morales, J.A. Alduncín, D. Mecerreyes, H. Schift, C. Padeste
Protein patterning by thermal nanoimprint lithography on functionalized polymers

Investigations of Confined Domain Walls in Nanoscale Constrictions
DPG-Spring Meeting, Berlin, Germany, 25-29.02.2008

Current-induced domain wall motion and vortex core displacements
9th International Conference on X-Ray Microscopy, XRM 2008, Zürich, Switzerland, 21-25.07.2008

B. Rousseau, H. Gomart, D. Zanghi, P. Ecudget, F. Marone, M. Stampanoni, P. Van der Linden, E. Boller, J. Baruchel
Interest of Synchrotron X-Ray μ-Tomography for the modeling of the radiative properties of porous ceramics
Journées Soleil Région Centre - 6, Orléans, France, 31.03-01.04.2008

M. Saidani, H. Solak
High diffraction-efficiency molybdenum gratings for EUV lithography

S. S. Sarkar, P. K. Sahoo, H. H. Solak, C. David, J. F. van der Veen
Fabrication of Fresnel zone plates by holography in the extreme ultraviolet region
The 52nd International conference on electron, ion and photon beam technology and nanofabrication, Portland, Oregon, USA, 27–30.05.2008

S. S. Sarkar, P. K. Sahoo, H. H. Solak, C. David, J. F. van der Veen
Fresnel zone plates made by holography in the extreme ultraviolet region
9th International conference on x-ray microscopy, Zurich, Switzerland, 21-25.07.2008

Electrostatic trapping of a colloidal monolayer in confinement
SAOG, 24th Annual Meeting, Fribourg, Switzerland, 23.01.2008

D. K. Satapathy, O. Bunk, K. Nygård, K. Jefimovs E. Fuchsberger, H. Guo, F. Pfeiffer, C. David, G. H. Wegdam, J. F. van der Veen
Trapping of a colloidal monolayer near a charged dielectric wall
Polycoll 2008, Fribourg, Switzerland, 13.06.2008
D. K. Satapathy, K. Nygård, O. Bunk, K. Jefimovs, E. Perret, H. Guo, F. Pfeiffer, C. David, G. H. Wegdam, J. F. van der Veen
Charged colloidal fluid in a planar slit: a small angle X-ray scattering study,
SXSNS-10, Paris, France, 02-05.07.2008

C. M. Schleputz, P. R. Willmott, R. Herger, S. A. Pauli, D. Martoccia, M. Björck, M. Radovic, F. Miletto Granozo, E. Koller
Structure Determination of YBa2Cu3O7-δ Thin Films
Swiss Physical Society - MaNEP meeting, Geneva, Switzerland, 26-27.03.2008

C. M. Schleputz, M. Björck, D. Martoccia, S. A. Pauli, P. R. Willmott, E. Koller, M. Radovic, F. Miletto Granozo, Y. Yacoby
Atomic structure of ultra-thin YBa2Cu3O7-δ films studied with SXRD
ICSOS-9, 9th International Conference on the Structure of Surfaces, Salvador, Brazil, 03-08.08.2008

C. M. Schleputz, M. Björck, D. Martoccia, S. A. Pauli, P. R. Willmott, E. Koller, M. Radovic, F. Miletto Granozo, Y. Yacoby
Atomic structure of ultra-thin YBa2Cu3O7-δ films studied with SXRD
7th PSI Summer School on Condensed Matter Research, Zuoz, Switzerland, 16-22.08.2008

A. C. Scott, S. Y. Smith, M. E. Collinson, M. Stampanoni, F. Marone
Unlocking the potential of fossil charcoal: The use of Synchrotron Radiation X-ray Tomographic Microscopy
2008 Joint Meeting of The Geological Society of America, Soil Science Society of America, American Society of Agronomy, Crop Science Society of America, Gulf Coast Association of Geological Societies with the Gulf Coast Section of SEPM, Houston, USA, 05-09.10.2008

Synchrotron Radiation X-ray Tomographic Microscopy of Mississippian charcoalified pteridosperm fertile organs
Symposium on "Methods and benefits of 3D reconstruction of fossil plants", Bonn, Germany, 30.08.-05.09.2008

3D techniques for virtual taphonomy of small plant organs
8th International Organisation of Paleobotany, Bonn, Germany, 30.08-05.09.2008

H.H. Solak, M. Saidani, Ch. Spreu, K. Vogelsang, H. Schift, J. Gobrecht
Fabrication of a stitching free 38 nm half-pitch NIL template with EUV interference lithography

Charge and orbital order in multiferroic LuFe2O4
Highly Frustrated Magnetsim Conference, Braunschweig, Germany, 07-12.09.2008

Charge and orbital order in multiferroic LuFe2O4
Annual Meeting of the Swiss Physical Society, Genf, Switzerland, 26-27.03.2008

Broadband X-ray full field microscopy at a superbend
9th International Conference on X-Ray Microscopy, Zurich, Switzerland, 21-25.07.2008

P. Trtik, L. Holzer, B. Muench, F. Marone, M. Stampanoni
Synchrotron computed nanotomography (SRnCT) of unhydrated cement and hardened cement paste - pilot investigation

Development of Metallic Nano-tip Array Field-Emitters as High-Brightness & Low-Emittance Cathodes for X-ray Free Electron Lasers
Swiss Workshop in Basic Research in Nanoscience, Davos, Switzerland, 04-06.06.2008

Development of metallic field-emitter arrays fabricated by molding for high-current and low-emittance applications

The 7th International Vacuum Electron Sources Conference, London, UK, 03-06.08.2008

J. Vila-Comamala, K. Jefimovs, M. Stampanoni, B. Kaulich, C. David

Beamshaping condenser optics for full-field TXM

9th International Conference on X-Ray Microscopy XRM 2008, Zürich, Switzerland, 21-25.07.2008

Molecular recognition on surfaces: controlling dimensionality and periodicity of supramolecular tetraarylporphyrin assemblies by the interplay of cyano and alkoxy substituents

25th European Conference on Surface Science (ECOSS), Liverpool, UK, 08.2008

V. Zelenay, A. Křepelová, M. Birrer, M.G.C. Vernooij, M. Ammann, G. Tzvetkov, J. Raabe, T. Huthwelker

A new device for the Study of water uptake and release in aerosol particles using x-ray microspectroscopy

European Aerosol Conference, Thessaloniki, Greece, 25-29.08.2008

V. Zelenay, A. Křepelová, M. Ammann, M.G.C. Vernooij, M. Birrer, R. Chirico, G. Tritschler, G. Tzvetkov, J. Raabe, T. Huthwelker

Water uptake experiments with combustion particles using X-ray microspectroscopy XRM

ETH, Zürich, Switzerland, 21-25.07.2008

V. Zelenay, A. Křepelová, T. Huthwelker, M. Birrer, G. Tzvetkov, J. Raabe, M. Ammann

Development of an environmental cell to study phase changes in aerosol particles using X-ray microspectroscopy

9th International Conference on X-Ray Microscopy, ETH Zürich, Switzerland, 21-25.07.2008

V. Zelenay, A. Křepelová, M. Ammann, M., Birrer, M.G.C. Vernooij, G.Tzvetkov, J. Raabe, T. Huthwelker

Water uptake on aerosol particles studied by X-ray microspectroscopy

XAS workshop, PSI, Villigen, Switzerland, 07-08.10.2008

Highly Selective DARPins and Nanostructured Arrays for Functional Single Cell Proteomics

3rd International Workshop on Approaches to Single-Cell Analysis, Zürich, Switzerland, 11-12.09.2008

WORKSHOPS AND CONFERENCES

A. Fraile Rodríguez

Co-organization of a Special Session on Multiferroics at the Annual meeting of the Swiss Physical Society 2008

Genève, Switzerland, 26-27.03.2008

F. Gozzo

Structure Determination from Powder Diffraction Data: A Hands-on Workshop on X-Rays, Synchrotron Radiation and Neutron Techniques

Paul Scherrer Institute, Switzerland, 18-22.06.2008

F. Gozzo

MS-12 Mycrosymposium “Instrumentation: synchrotron, neutron and Laboratory”

11th European Powder Diffraction International Conference (EPDIC-11)

Warsaw, Poland, 21-23.09.2008

C. Quitmann, C. David, F. Nolting, M. Stampanoni, F. Pfeiffer

9th International Conference on X-Ray Microscopy (XRM2008)

Zürich, Switzerland, 21-25.07.2008

C. Schulze-Briese

Workshop on X-ray Damage to Biological Crystalline Samples

Paul Scherrer Institut, Villigen, Switzerland, 03-05.03.2008
U. Staub
Co-organization of a Special Session on Multiferroics at the Annual meeting of the Swiss Physical Society 2008
Genève, Switzerland, 26-27.03.2008

PUBLIC RELATIONS

R. Abela
- SLS - Ein riesiges Mikroskop: Wie funktioniert die SLS: brillantes Licht aus beschleunigten Elektronen, Oral Presentation for the 20 years of PSI, Baden, Switzerland, 22.08.2008

A. Fraile Rodriguez
- Presentation at the "Showstation 1 Bühne" during the "Tage der offenen Türe", Paul Scherrer Institut, Villigen, Switzerland, 25.-26.10.2008

J. Gobrecht
- Project reports on applied nanoscience, Industry day 2008, Swiss Nanoscience Institute, Mutteln, Switzerland, 26.02.2008
- Physik zwischen Atomen und Alltagswelt, Forscher im Zelt, Waldshut, Germany, 27–31.08.2008
- Science Fiction wird Realität – dank Nanotechnologie?, TecDay@Kanti Baden, Kantonsschule, Baden, Switzerland, 09.10.2008
- Science Fiction wird Realität – dank Nanotechnologie?, TecDay@KME, Zürich, Switzerland, 13.11.2008

T.A. Jung
- “Stoff für Forscher und Science-Fiction-Autoren”, Beate Peiseler Sutter, Beitrag über das Swiss Nanoscience Institute in der Chemischen Rundschau, Ausgabe Nr. 10, 10.2008

F. Marone
- Nanostrukturen: Physik zwischen Atomen und Alltagswelt, Forschende im Zelt, Aarau, Switzerland, 22.08.2008
- Unsichtbares sichtbar machen: brillantes Licht aus beschleunigten Elektronen, Tag der Offene Türen, Paul Scherrer Institut, Villigen, 26.10.2008

L. Patthey
- SLS - Ein riesiges Mikroskop: Wie funktioniert die SLS: brillantes Licht aus beschleunigten Elektronen, Oral Presentation for the 20 years of PSI, Aarau, Switzerland, 22.08.2008

F. Pfeiffer
- Ein Super-Mikroskop aus Schweizer Hand, TV-documentary in 'Schweizer Tagesschau', broadcasted on SF1, 19:30, 18.07.2008
- Des images rayons X nouvelle génération, Isabelle Ruchet, Tribune Médicale, Nr. 6, 2, 08.02.2008
- Röntgenbilder mit mehr Details, Frankfurter Allgemeine Zeitung, Vol. 25, N2, 30.01.2008
- Dark field X-rays reveal bodies in new detail, Tom Simonite, New Scientist, 21.01.2008
- Schärfere Röntgenbilder helfen, Brustkrebs und Alzheimer zu entdecken, Jan Oliver Löfken, Welt der Physik, 21.01.2008

C. Quitmann
- A Highlight for Science in Switzerland, Ambassador Club Aegerital, 22.11.2008

H. Schift
- *A precious envelope for budding scientists - an educational film on new fabrication techniques at the nanometric scale*, Animation movie in the framework of the European NaPa project, duration 16 min, director F. Grimal, author C. Cartaillec, production Héladon (Toulouse, France), Multilingual DVD (French, English, German), compiled by H. Schift; available in PSI Forum

M. Stampanoni
- Un viaggio al Paul Scherrer Institut, Live guest at the “Il giardino di Albert”, Televizione della Svizzera Italiana, 07.01.2008

DISSERTATIONS

L.J. Heyderman
- Spin structure of domain walls and their behaviour in applied fields and currents
 D. Backes, University of Konstanz, Germany, (2008)

C. Padeste
- Synchrotron Radiation Grafting: a lithographic method to create polymer micro- and nanostuctures.
 P. Farquett, ETH Zürich, Switzerland, (2008)

L. Patthey
- Angle- and spin-resolved photoemission on La23Sr10MnO3
 J. Krempasky, Université de Cergy-Pontoise, France, (2008)

AWARDS

F. Pfeiffer, National Latsis Award of Switzerland, 2008

P. Thibault, Werner Meyer-Ilse Memorial Award, X-ray Microscopy Conference, 23.07.2008

MEMBERSHIPS IN EXTERNAL COMMITTEES

R. Abela
- Chairman of the Scientific Advisory Committee, ESRF, France
- Chairman of the Council of the Swiss Norwegian Foundation for Research with X-Rays
- Member of the Scientific Advisory Committee of Diamond, UK

C. David
- Member of the International Program Committee of the Micro- and Nano-Engineering Conference 2007
- Member of the International Consortium for Coherent X-ray Diffractive Imaging (ICCDXI)
- Member of the Scientific Advisory Board of the Courant Research Centre "Nano-Spectroscopy and X-ray Imaging", University of Göttingen, Germany
- Member of the Editorial Board of the Journal of X-ray Optics and Instrumentation
- Member of the International Program Committee of the X-Ray Microscopy Conference Series
- Member of the International Advisory Committee of the Photon Conference Series

J. Gobrecht
- Head of the Institute of Polymer Nanotechnology, University of Applied Sciences Nordwestschweiz, Brugg/Windisch, Switzerland
- Vice Director Technology of the Swiss Nanoscience Institute at the University of Basel
- Member of the board of the Swiss Micro- and Nanotechnology Network
- Member of the nomination committee for the Nano Argovia professorship on quantum optics at the University of Basel
- Member of the management team of the Matlife ERU, CCMX Program of the ETH domain
- Member of the Scientific Advisory Board, HeiQ Materials AG, Bad Zurzach, Switzerland
- External thesis reviewer and member of the board of examiners for the PhD of Dirk Backes, Physics dept., University of Konstanz, 2008
- External thesis reviewer and member of the board of examiners for the PhD of Jean Baptiste Orhan, Microtechnology dept., EPFL Lausanne, 2008
- Member of the advisory board of the Nano-Europe Conference, St. Gallen, Switzerland, Sept. 16-17, 2008
- Member of the board of directors, Eulitha AG, 5232 Villigen PSI
- Member of the jury for the “Nano-Prize 2008” of the “Erwin Schrödinger Gesellschaft für Nanowissenschaften”, Vienna, Austria
- Member of the jury for the “Förderpreis für Jungunternehmen” of the “W. A. de Vigier Foundation”, Solothurn, Switzerland

F. Gozzo
- Powder Diffraction beamline Expert – Beamlines Coordinator Meeting, SESAME (Synchrotron light for Experimental Sci. & Appl. in the Middle East) Project, c/o UNESCO Amman Office, Amman, Jordan
- Member of the Commission of Instrumentation and Computing, Italian Crystallography Association

L.J. Heyderman
- Intermag 2008 Program Committee
- Member of the Technical Committee of the IEEE Magnetics Society
- MNE2008, International Program Committee

T.A. Jung
- Jung Zukunft Bildung Schweiz Thinktank der Akademien Schweiz, 2008

F. Nolting
- Member of the Proposal Review Committee of Soleil, France
- Member of DEIMOS beamline review committee, Soleil, France
- Scientific Committee of the 5th International school on Synchrotron Radiation and Magnetism 2008, Mittelwirh (France)
- Member of the organisation team for the 9th International Conference on X-ray Microscopy, Zürich, 21-25.7.2008
- Member of the PhD Thesis committee, Loic Le Guyader, University of Nijmegen, The Netherlands, 2.4.2008

L. Patthey
- Chairman of the Local Organisation Committee, CORPES-09 workshop
- Member of the International Program Committee, CORPES-09 workshop

F. Pfeiffer
- Member of the scientific advisory committee for the first International Workshop on Single Particle Diffractive Imaging at the future EU-XFEL sources, Uppsala, Sweden, November 2008
- Member of the scientific proposal review committee for the European Synchrotron Radiation Facility (Grenoble/ France), the National Synchrotron Light Source in Taiwan, and the Spallation Neutron Source (Oak Ridge/US)

C. Quitmann
- Member of the Diamond Scientific Advisory Committee
- Member of the Editorial Board, Journal of Physics Condensed Matter, Surface and Interface section
- Member Nanoscience Beamline Review Panel, Diamond

H. Schift
- AVS American Vacuum Society, NSTD Nanometer-scale Science and Technology Division, elected board and executive committee member

C. Schulze-Briese
- APS Renewal Workshop, APS, ANL, USA
- ESRF Upgrade Programme - UPBL brainstorming session, Grenoble, France
- ESRF Beamline Review Committee (ID11), Grenoble, France
- ESRF Methods & Instrumentation Proposal Review Committee, Grenoble, France
- EMBL@PETRA3 Scientific Advisory Board, Hamburg, Germany
- IUCR 2008, Chairman of ‘Recent Progress in Data Collection Session, Osaka, Japan

U. Staub
- Member of the Executive Committee of the Swiss Physical Society representing condensed Matter

M. Stamparoni
- Member of the steering committee of the Zurich Center for Imaging Science and Technology (CIMST)

J. F. van der Veen
- Science Advisory Committee of Elettra, Trieste
- Scientific Committee for Inorganic and Analytical Chemistry, Science Foundation, Flanders, Belgium
- Chairman of Programme Committee of PSI Summer School on Condensed Matter Research, Zuoz, Switzerland
- Scientific Advisory Committee of HERCULES, Grenoble.
- Chairman of Science Advisory Committee of the Advanced Light Source, Berkeley, USA
- International Advisory Committee of the International Conference Series on Synchrotron Radiation Instrumentation
- Science Advisory Committee of Synchrotron SOLEIL, Gif-sur-Yvette, France
- Advisory Committee of the International Conference Series on Surface X-Ray and Neutron Scattering
- Steering Committee CCMX, Competence Centre for Materials Science and Technology, ETH, Switzerland
- Steering Committee NCCBI, National Competence Center in Biomedical Imagine, ETH, Switzerland
- Science Advisory Committee for the Van der Waals-Zeeman Instituut, University of Amsterdam, The Netherlands
- Advisory Board ‘Structure of Matter’, Forschungszentrum Karlsruhe, Germany
- Member of Committee advising the Bundesministerium für Bildung und Forschung (BMBF) on research with photons in Germany
- Science Advisory Committee of National Synchrotron Radiation Research Center, Hsinchu, Taiwan

P. R. Willmott
- Member of the Committee of the Future of the SNBL Beamline, ESRF

PATENTS

C. David, T. Donath, E. Hempel, M. Hoheisel, F. Pfeiffer, S. Popescu
Röntgen CT-System zur Röntgen Phasenkontrast- und/oder Röntgen-Dunkelfeld-Bildgebung
European Patent Application No. 08017240.6

D. Chrastina, H. Sigg, T. Soichiro, H. von Känel
Semiconductor quantum well structure for optoelectronic device
Patent # WO2008017457-A1
LIST OF PUBLICATIONS (PEER REVIEWED)

Carter DJ, Gale JD, Delley B, Stampfl C
Geometry and diameter dependence of the electronic and physical properties of GaN nanowires from first principles
PHYSICAL REVIEW B 77, 115349 (2008)

Chamon C, Hou CY, Jackiw R, Mudry C, Pi SY, Schnyder AP
Irrational versus rational charge and statistics in two-dimensional quantum systems
PHYSICAL REVIEW LETTERS 100, 110405 (2008)

Chamon C, Hou CY, Jackiw R, Mudry C, Pi SY, Semenoff G
Electron fractionalization for two-dimensional Dirac fermions
PHYSICAL REVIEW B 77, 235431 (2008)

Electronic structure near the 1/8-anomaly in La-based cuprates
NEW JOURNAL OF PHYSICS 10, 103016 (2008)

Anisotropic quasiparticle scattering rates in slightly underdoped to optimally doped high-temperature La2-xSrxCuO4 superconductors
PHYSICAL REVIEW B 78, 205103 (2008)

K. Clausen
Fission, Spallation or Fusion-based neutron sources,

Cui XY, Medvedeva JE, Delley B, Freeman AJ, Stampfl C
Built-in electric field assisted spin injection in Cr and Mn delta-layer doped AlN/GaN(0001) heterostructures from first principles
PHYSICAL REVIEW B 78, BX10721 (2008)

Delley B
DFT study of crystalline nitrosyl compounds
ZEITSCHRIFT FUR KRISTALLOGRAPHIE 223, 329 (2008)

Evidence for coupling between charge density waves and phonons in two-dimensional rare-earth tritellurides
PHYSICAL REVIEW B 78, 201101 (2008)

Mesot J, Mudry C
Does T* - the temperature that defines the onset of the pseudogap regime in underdoped cuprates - correspond to a phase transition or a crossover?
JOURNAL CLUB FOR CONDENSED MATTER PHYSICS June 3, (2008)

Morales EH, He Y, Vinnichenko M, Delley B, Diebold U
Surface structure of Sn-doped In2O3 (111) thin films by STM
NEW JOURNAL OF PHYSICS 10, 125030 (2008)
Nomura K, Ryu S, Koshino M, Mudry C, Furusaki A
Quantum Hall effect of massless Dirac fermions in a vanishing magnetic field
PHYSICAL REVIEW LETTERS 100, 246806 (2008)

Obuse H, Furusaki A, Ryu S, Mudry C
Boundary criticality at the Anderson transition between a metal and a quantum spin Hall insulator in two dimensions
PHYSICAL REVIEW B 78, 115301 (2008)

Ryzhkov MV, Ivanovskii AL, Delley B
Geometry, electronic structure and energy barriers of all possible isomers of Fe2C3 nanoparticle
THEORETICAL CHEMISTRY ACCOUNTS 119, 313 (2008)

Cu-63,Cu-65 NMR and NQR evidence for an unusual spin dynamics in PrCu2 below 100 K
PHYSICAL REVIEW B 77, 144404 (2008)

Schaniel D, Woike T, Delley B, Boskovic C, Gudel HU
PHYSICAL CHEMISTRY CHEMICAL PHYSICS 10, 5531 (2008)

Coherent d-wave superconducting gap in underdoped La2-xSrxCuO4 by angle-resolved photoemission spectroscopy
PHYSICAL REVIEW LETTERS 101, 047002 (2008)

Soon A, Wong L, Delley B, Stampfl C
Morphology of copper nanoparticles in a nitrogen atmosphere: A first-principles investigation
PHYSICAL REVIEW B 77, 125423 (2008)

Tabei SMA, Vernay F, Gingras MJP
Effective spin-1/2 description of transverse-field-induced random fields in dipolar spin glasses with strong single-ion anisotropy
PHYSICAL REVIEW B 77, 014432 (2008)

Todorova T, Delley B
Wetting of paracetamol surfaces studied by DMol3-COSMO calculations
MOLECULAR SIMULATION 34, 1013 (2008)

Todorova T, Delley B
The Creutz-Taube Complex Revisited: DFT Study of the Infrared Frequencies
INORGANIC CHEMISTRY 47, 11269 (2008)

Vernay F, Moritz B, Elfimov IS, Geck J, Hawthorn D, Devereaux TP, Sawatzky GA
CuK-edge resonant inelastic x-ray scattering in edge-sharing cuprates
PHYSICAL REVIEW B 77, 104519 (2008)

Zhang H, Soon A, Delley B, Stampfl C
Aluminium adsorption on Ir(111) at a quarter monolayer coverage: A first-principles study
APPLIED SURFACE SCIENCE 254, 7655 (2008)

Zhang H, Soon A, Delley B, Stampfl C
Stability, structure, and electronic properties of chemisorbed oxygen and thin surface oxides on Ir(111)
PHYSICAL REVIEW B 78, 045436 (2008)
CONFERENCE, WORKSHOP AND SEMINAR CONTRIBUTIONS

Chr. Mudry
Delocalization Transitions and Multifractality
A Satellite Meeting at Gregynog Hall, University of Wales, November 2-6, 2008.

Chr. Mudry
Mathematics and Physics of Anderson localization: 50 Years After Delocalization Transitions and Multifractality,

Chr. Mudry
Exact Results in Low-Dimensional Quantum Systems:
2nd INSTANS Summer Conference, Galileo Galilei Institute for Theoretical Physics, University of Florence, September 08 - 12, 2008.

Chr. Mudry
Probing the Nanometer Scale with Neutrons, Photons and Muons
7th PSI Summer School on Condensed Matter Research, 16-22 August 2008, Lyceum Alpinum Zuoz, Switzerland.

Chr. Mudry

PROCEEDINGS

The Cu/ZnO(0001) Surface under Oxidative and Reducing Conditions: A First-principles Study
APS March meeting New Orleans Mar 12
BAPS: P21.00007

B. Delley and T. Todorova
Molecular Crystals, a Test System for Weak Bonding
APS March meeting New Orleans Mar 12
BAPS: Q13.00005

INVITED TALKS

Kurt Clausen
Fission, Spallation or Fusion-based neutron sources
International symposium of Neutron scattering, Mumbai, India, 15-18 January 2008

Kurt Clausen
Neutron scattering: properties, status and perspectives

B. Delley
Quantum mechanics for molecules, surfaces and solids
Feb 5 Chemisches Colloquium Uni. Hamburg

B. Delley
An overview of electronic structure calculations with DMol³
Apr 3 Colloquium Nanotek Institute, Bangkok
B. Delley
DMol³ applications from molecules to surfaces and solids
Aug 26 FPLO-Workshop Dresden

B. Delley
An overview of electronic structure calculations with DMol³
Mar 30 Thailand Electronic Structure Workshop, at University Ubon Rachathani

B. Delley
An overview of electronic structure calculations with DMol³
Apr 15 ETHZ

Chr. Mudry
Quantum transport of 2D Dirac fermions: The case for a topological metal, Delocalization Transitions and Multifractality
Satellite Meeting at Gregynog Hall, University of Wales, 2008

Chr. Mudry
Electron fractionalization in two-dimensional graphene-like structures
National Seminar Condensed Matter Physics, Dutch Research School of Theoretical Physics, 2008

Chr. Mudry
Electron fractionalization in two-dimensional graphene-like structures
Workshop on Exact Results in Low-Dimensional Quantum Systems: 2nd INSTANS Summer Conference, Galileo Galilei Institute for Theoretical Physics, University of Florence, 2008

Chr. Mudry
Introduction to the physics of graphene
7th PSI Summer School on Condensed Matter Research, 16-22 August 2008 Lyceum alpinum Zuoz, Switzerland

Chr. Mudry
Quantum transport of 2D Dirac fermions: The case for a topological metal
WE Heraeus Seminar: Network Models in Quantum Physics, at Jacobs University Bremen, 2008

Chr. Mudry
Quantum transport of 2D Dirac fermions: The case for a topological metal

Chr. Mudry
Electron fractionalization in two-dimensional graphene-like structures
University of Warwick, October 2008.

Chr. Mudry
Freezing transition in a problem of Anderson localization
Cambridge University, October 2008

Chr. Mudry
Electron fractionalization in two-dimensional graphene-like structures
Instituto de Ciencia de Materiales de Madrid (ICMM), March 2008.

LECTURES AND COURSES

Dr. Christopher Mudry
- Visiting Fellowship, Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK.
- Visiting Research Scholar, Boston University, USA.
MEMBERSHIP IN EXTERNAL COMMITTEES

Dr. K. Clausen
- Member of the ESS-Scandinavia Science Group (since 2004)
- Member of the Board of NMI3 (since 2004)
- Member of the Scientific Selection Panel of the Berlin Neutron Scattering Centre (since 2005)
- Member of the Science Program Advisory Council for Condensed Matter Physics and Nanoelectronics at Research Centre Jülich, Germany (since 2006)
- Chairman of the BENSC Instrument Committee (since 2006)
- International Advisory Committee for The RIKEN-RAL Muon Facility

Dr. B. Delley
- Advisory Board Electronic Structure Theory, EMRS conference series
- Psi-K network local orbital topical group
- PSI-Forschungs Komission
Condensed Matter Research with Neutrons and Muons

Spallation Neutron Source Division (ASQ)

LIST OF PUBLICATIONS (PEER REVIEWED)

Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and
comparison to experimental data and a morphological pore network model
ADVANCES IN WATER RESOURCES 31, 1151 (2008)

Appleby GA, Vontobel P
Optimisation of lithium borate-barium chloride glass-ceramic thermal neutron imaging plates
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-
ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 594,
253 (2008)

Aswal VK, Van den Brandt B, Hautle P, Kohlbrecher J, Konter JA, Michels A, Piegsa FM,
Stahn J, Van Petegem S, Zimmer O
Characterisation of the polarised neutron beam at the small angle scattering instrument
SANS-I with a polarised proton target
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-
ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 586,
86 (2008)

Bitzek E, Brandl C, Derlet PM, Van Swygenhoven H
Dislocation cross-slip in nanocrystalline fcc metals
PHYSICAL REVIEW LETTERS 100, 235501 (2008)

Bitzek E, Derlet PM, Anderson PM, Van Swygenhoven H
The stress-strain response of nanocrystalline metals: A statistical analysis of atomistic
simulations
ACTA MATERIALIA 56, 4846 (2008)

A, Shin Y, Tortorella D, Wohlmuther M, Young AR, Zejma J, Zsigmond G
Cold Neutron Energy Dependent Production of Ultracold Neutrons in Solid Deuterium
(vol 99, art no 262502, 2007).
PHYSICAL REVIEW LETTERS 101, 189902 (2008)

Tasaki Y, Shinohara K
In situ observation of the water distribution across a PEFC using high resolution neutron
radiography
ELECTROCHEMISTRY COMMUNICATIONS 10, 546 (2008)

Transient observation of H-2 labeled species in an operating PEFC using neutron radiography
ELECTROCHEMISTRY COMMUNICATIONS 10, 1311 (2008)
Brandstetter S, Derlet PM, Van Petegem S, Van Swygenhoven H
Williamson-Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations
ACTA MATERIALIA **56**, 165 (2008)

Brandstetter S, Zhang K, Escuadro A, Weertman JR, Van Swygenhoven H
Grain coarsening during compression of bulk nanocrystalline nickel and copper
SCRIPTA MATERIALIA **58**, 61 (2008)

Unsaturated water flow across soil aggregate contacts
ADVANCES IN WATER RESOURCES **31**, 1221 (2008)

Cnudde V, Dierick M, Vlassenbroeck J, Masschaele B, Lehmann E, Jacobs P, Van Hoorebeke L
High-speed neutron radiography for monitoring the water absorption by capillarity in porous materials
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS **266**, 155 (2008)

Conesa HM, Moradi AB, Robinson BH, Kuehne G, Lehmann E, Schulin R
Response of native grasses and Cicer arietinum to soil polluted with mining wastes: Implications for the management of land adjacent to mine sites
ENVIRONMENTAL AND EXPERIMENTAL BOTANY in press, - (2008)

Dai Y, Egeland GW, Long B
Tensile properties of EC316LN irradiated in SINQ to 20 dpa

Dai Y, Gavillet D, Restani R
Stressed capsules of austenitic and martensitic steels irradiated in SINQ Target-4 in contact with liquid lead-bismuth eutectic

Dai Y, Long B, Tong ZF
Tensile properties of ferritic/martensitic steels irradiated in STIP-I

Dementjev S, Groeschel F, Jekabsons N
MEGAPIE project, experience of electromagnetic pumps operation in the swiss spallation neutron source.
MAGNETOHYDRODYNAMICS **44**, 97 (2008)

Diaconis P, Lehmann E
On Student's 1908 article - "The Probable Error of a Mean" - Comment

Dudarev SL, Bullough R, Derlet PM
Effect of the alpha-gamma phase transition on the stability of dislocation loops in bcc iron
PHYSICAL REVIEW LETTERS **100**, 135503 (2008)

Elsener A, Politano O, Derlet PM, Van Swygenhoven H
A local chemical potential approach within the variable charge method formalism
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING **16**, 025006 (2008)

Grotzbach G, Milenkovic R, Latge C, Knebel JU
The MEGAPIE-TEST project: Supporting research and lessons learned in first-of-a-kind spallation target technology
NUCLEAR ENGINEERING AND DESIGN 238, 1471 (2008)

Gavillet D, Martin M, Dai Y
SIMS investigation of the spallation and transmutation products production in lead

Gilbert MR, Dudarev SL, Derlet PM, Pettifor DG
Structure and metastability of mesoscopic vacancy and interstitial loop defects in iron and tungsten
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 345214 (2008)

Giller L, Filges U, Kuehne G, Wohlmuther M, Zanini L
Validation of Monte-Carlo simulations with measurements at the ICON beam-line at SINQ
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 586, 59 (2008)

Quantification of hydrogen uptake of steam-oxidized zirconium alloys by means of neutron radiography
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 104263 (2008)

Grosse M, Steinbrueck M, Lehmann E, Vontobel P
Kinetics of hydrogen absorption and release in zirconium alloys during steam oxidation
OXIDATION OF METALS 70, 149 (2008)

Neutron decoherence imaging for visualizing bulk magnetic domain structures
PHYSICAL REVIEW LETTERS 101, 025504 (2008)

Bulk magnetic domain structures visualized by neutron dark-field imaging
APPLIED PHYSICS LETTERS 93, 112504 (2008)

Grunzweig C, Pfeiffer F, Bunk O, Donath T, Kuhne G, Frei G, Dierolf M, David C
Design, fabrication, and characterization of diffraction gratings for neutron phase contrast imaging
REVIEW OF SCIENTIFIC INSTRUMENTS 79, 053703 (2008)

Henry J, Averty X, Dai Y, Pizzanelli JP
Tensile behaviour of 9Cr-1Mo tempered martensitic steels irradiated up to 20 dpa in a spallation environment
JOURNAL OF NUCLEAR MATERIALS 377, 80 (2008)

Kaestner A, Lehmann E, Stampanoni M
Imaging and image processing in porous media research
ADVANCES IN WATER RESOURCES 31, 1174 (2008)

Assessment of structural evolution of aggregated soil using neutron tomography
WATER RESOURCES RESEARCH 44, W00C07 (2008)

Kurizlach J, Melikhova O, Hou M, Van Petegem S, Zhurkin E, Sob M
Positron annihilation in vacancies at grain boundaries in metals
APPLIED SURFACE SCIENCE 255, 128 (2008)

Lehmann E
Recent improvements in the methodology of neutron imaging
PRAMANA-JOURNAL OF PHYSICS 71, 653 (2008)

Impact of geometrical properties on permeability and fluid phase distribution in porous media
ADVANCES IN WATER RESOURCES 31, 1188 (2008)

Long B, Dai Y
Investigation of LBE embrittlement effects on the fracture properties of T91
JOURNAL OF NUCLEAR MATERIALS 376, 341 (2008)

Long B, Tong Z, Groschel F, Dai Y
Liquid Pb-Bi embrittlement effects on the T91 steel after different heat treatments

Maass R, Van Petegem S, Grolimund D, Van Swygenhoven H, Kiener D, Dehm G
Crystal rotation in Cu single crystal micropillars: In situ Laue and electron backscatter diffraction
APPLIED PHYSICS LETTERS 92, 071905 (2008)

Maass R, Van Petegem S, Zimmermann J, Borca CN, Van Swygenhoven H
On the initial microstructure of metallic micropillars
SCRIPTA MATERIALIA 59, 471 (2008)

Direct TEM observation of nanometric-sized defects in neutron-irradiated MgB2 bulk and their effect on pinning mechanisms
SUPERCONDUCTOR SCIENCE & TECHNOLOGY 21, 012001 (2008)

Probing the electron-phonon coupling in MgB2 through magnetoresistance measurements in neutron irradiated thin films
EPL 81, 67006 (2008)

Moradi AB, Conesa HM, Robinson BH, Lehmann E, Kuehne G, Kaestner A, Schulin R
Neutron radiography as a tool for revealing root development in soil: capabilities and limitations
PLANT AND SOIL in press, - (2008)

Oswald SE, Menon M, Carminati A, Vontobel P, Lehmann E, Schulin R
Quantitative imaging of infiltration, root growth, and root water uptake via neutron radiography
VADOSE ZONE JOURNAL 7, 1035 (2008)

From the pore scale to the lab scale: 3-D lab experiment and numerical simulation of drainage in heterogeneous porous media
ADVANCES IN WATER RESOURCES 31, 1253 (2008)

Peterson AA, Vontobel P, Vogel F, Tester JW
In situ visualization of the performance of a supercritical-water salt separator using neutron radiography
JOURNAL OF SUPERCRITICAL FLUIDS 43, 490 (2008)

Podofillini L, Dang VN, Thomsen K
Scoping-level Probabilistic Safety Assessment of a complex experimental facility: Challenges and first results from the application to a neutron source facility (MEGAPIE)
NUCLEAR ENGINEERING AND DESIGN 238, 2726 (2008)
Measuring the effect of structural connectivity on the water dynamics in heterogeneous porous media using speedy neutron tomography
ADVANCES IN WATER RESOURCES 31, 1233 (2008)

Robin Schäublin, Jean Henry, Yong Dai
Helium and point defect accumulation: (i) microstructure and mechanical behaviour
C. R. Physique 9 (2008) 389

Sevillano JG, Alkorta J, Gonzalez D, Van Petegem S, Stuhr U, Van Swygenhoven H
In situ Neutron Diffraction Study of Internal Micro-Stresses Developed by Plastic Elongation in < 110 > Textured BCC Wires
ADVANCED ENGINEERING MATERIALS 10, 951 (2008)

Shokri N, Lehmann P, Vontobel P, Or D
Drying front and water content dynamics during evaporation from sand delineated by neutron radiography
WATER RESOURCES RESEARCH 44, W06418 (2008)

Magnetization decay in neutron irradiated MgB2 bulk samples
JOURNAL OF APPLIED PHYSICS 104, 013903 (2008)

Thomsen K
Liquid metal leak detection for spallation neutron sources
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 592, 476 (2008)

Knud Thomsen
Advanced on-target beam monitoring for spallation sources
NIM (2008) in press

Van Swygenhoven H
Footprints of plastic deformation in nanocrystalline metals

Drainage in heterogeneous sand columns with different geometric structures
ADVANCES IN WATER RESOURCES 31, 1205 (2008)

Wagner W, Groschel F, Thomsen K, Heyck H
MEGAPIE at SINQ - The first liquid metal target driven by a megawatt class proton beam

Wagner W, Seidel M, Morenzoni E, Groschel F, Wohlmuther M, Daum M
PSI status 2008 - Development at the 590 MeV proton accelerator facility
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 11, 18 (2008)

Yoshizawa K, Ikezoe K, Tsubaki Y, Kramer D, Lehmann EH, Scherer GG
Analysis of gas diffusion layer and flow-field design in a PEMFC using neutron radiography

Zhang H, Long B, Dai Y
Metallography studies and hardness measurements on ferritic/martensitic steels irradiated in STIP
LIST OF PUBLICATIONS

The UCN Source at PSI
Proc. of the 18th Meeting of the International collaboration on Advanced Neutron Sources, ICANS-XVIII, April 2007 (printed 2008)

Measurements of Ultracold Neutron Production and Cold Neutron Transmission for Deuterium, Oxygen and Heavy Methane
Proc. of the 18th Meeting of the International collaboration on Advanced Neutron Sources, ICANS-XVIII, April 2007 (printed 2008)

B. Blau

Cryogenic System of the Swiss Ultra-cold neutron source

K. Thomsen

Experience with VIMOS during the Irradiation Phase of MEGAPIE
Proc. of the 18th Meeting of the International collaboration on Advanced Neutron Sources, ICANS-XVIII, April 2007 (printed 2008)

K. Thomsen

Heat Exchange and Operating Gas Flow Influence on Radiation Resistant Pressure Sensor Properties

W. Wagner, G. Kühne, P. Tregenna-Piggott, M. Wohlmuther

Status and Development of the Swiss Spallation Neutron Source SINQ
Proc. of the 18th Meeting of the International collaboration on Advanced Neutron Sources, ICANS-XVIII, April 2007 (printed 2008)

INVITED TALKS

C. Brandl

Dislocation activity within nanocrystalline metals: A molecular dynamics study

C. Brandl

Atomistic Simulations of Interface Dominated Metals
Technology Aperitif, CCMX, Competence Centre for Materials Science and Technology, 3rd December, Bern, Switzerland

Y. Dai, F. Gröschel, W. Wagner

Materials research at the Paul Scherrer Institute for developing high-power spallation targets
P. M. Derlet
Atomistic simulations of nanocrystalline metals: dislocation, activity in confined volumes
International Workshop on the Plasticity of Nanocrystalline Metals, Lake Bostal, Germany, September 28-October 1 2008

P. M. Derlet
Plasticity in Nanocrystalline Metals: A Molecular Dynamics Study
8th World Congress on Computational Mechanics, Venice, Italy, 2008

E. H. Lehmann
Neutron Imaging in the conflict between neutron physics, applied research and industrial utilization
Seminar Talk at HMI Berlin, 12 March 2008

E. H. Lehmann
Neutron imaging methods for studies of soil-water-plant interactions
Seminar Talk, Helmholtz Centre Leipzig for Environmental Studies, 14 July 2008

Helena Van Swygenhoven
Nano- and micro-scale materials: mechanical behaviour under extreme conditions
MRS Fall meeting Boston, November 2008

Helena Van Swygenhoven
Small scale plasticity using X-rays and neutrons
Max-Planck Institut für Eisenforschung (MPIE) Duesseldorf, October 2008

Helena Van Swygenhoven
Laboratoire de PHYsique des MATériaux (PHYMAT), Université de Poitiers UMR CNRS 6630, France, June 2008

Helena Van Swygenhoven
Modelling and Simulation (Keynote lecture)
Materials Science and Engineering, symposium, 1 – 4 September 2008, Nürnberg, Germany

Helena Van Swygenhoven
Grenzflächen und Grenzflächendominierte Prozesse

Helena Van Swygenhoven
A different view on microcompression

Helena Van Swygenhoven
Contractors' Meeting of the "Mechanical Behavior and Radiation Effects" Core Research Area (CRA) of the Office of Basic Energy Sciences (DOE), Washington, April 13th, 2008 (Plenary opening lecture)

Helena Van Swygenhoven
Invited discussion leader in the International Workshop on the Plasticity of Nanocrystalline Metals held at Lake Bostal, Germany, September 28 to October 1, 2008
S. Van Petegem
Mechanical behavior and deformation mechanisms of nanocrystalline f.c.c. metals
2nd Workshop on Nanomaterials: microstructural and mechanical characterizations, simulations (December 11-12, 2008)

S. Van Petegem
Deformation mechanisms in nanocrystalline Ni and NiFe studied by in-situ x-ray diffraction’
Nanoplasticity 2008, Lake Bostal, Germany (September 28 - October 1 2008)

S. Van Petegem
In-situ Laue diffraction and two-dimensional mapping during compression of micron-sized pillars (Keynote lecture)
MSE08, Materials Science and Engineering, Nuernberg, Germany (September 1-4, 2008)

W. Wagner
The PSI large scale accelerator facilities: Techniques and applications in materials science

W. Wagner
PSI Status – Operation and Utilization of the Proton Accelerator Facility
IPS08: International Symposium on Pulsed Neutron and Muon Sciences, Mito, Japan, March 5-8, 2008

W. Wagner
Status and Developments of the Swiss Spallation Neutron Source SINQ
IAEA Consultants Meeting on Applications of accelerators in real time studies of materials Vienna, A, April 28-30, 2008

W. Wagner
Post-MEGAPIE developments at SINQ – PSI’s strategy towards an optimized MW(+)

CONFERENCE, WORKSHOP AND SEMINAR CONTRIBUTIONS

G. Frei, E. H. Lehmann, P. Boillat
The neutron micro-tomography stub at PSI and its use for research purposes and engineering applications
Int. Topical Meeting on Neutron Radiography, Kobe, Sept. 2008

G. Frei, E. Lehmann, L. Josic, P. Vontobel
Investigations of welding joints by means of energy resolved imaging
NEUWAVE-1 Workshop on energy selective neutron imaging, Munich-Garching, April 2008

G. Frei, E. H. Lehmann
Zerstörungsfreie Materialuntersuchung mittels Neutronen am Paul Scherrer Institut- Lösungen und Schweißungen
Industrie-Workshop Böhler-Welding, Nov. 2008

Cold neutron imaging near Bragg edges as tool for material research
Int. Topical Meeting on Neutron Radiography, Kobe, Sept. 2008

L. Josic, P. Vontobel, E. Lehmann
Nuclear data for neutron interaction with structural materials verification (and improvement) with neutron transmission measurements
NEUWAVE-1 Workshop on energy selective neutron imaging, Munich-Garching, April 2008
E. H. Lehmann
Non-destructive testing with neutrons (and X-rays) for industrial and scientific use at the imaging beam lines at PSI
Consultancy Meeting IAEA, Vienna, 26-28 Nov. 2008

E. H. Lehmann
Recent improvements in the methodology of neutron imaging: higher spatial resolution, energy selective investigations
Int. Conf. on Neutron Scattering, Mumbay, Jan. 2008

E. H. Lehmann, P. Boillat, G. Scherrer, G. Frei
Fuel cell studies with neutrons at the imaging facilities at PSI
Int. Topical Meeting on Neutron Radiography, Kobe, Sept. 2008

E. H. Lehmann, G. Frei, L. Josic, P. Vontobel
The energy selective option in neutron imaging
NEUWAVE-1 Workshop on energy selective neutron imaging, Munich-Garching, April 2008

E. H. Lehmann, D. Mannes, P. Cerubini, P. Niemz
Neutron transmission imaging with imaging plates detectors as competitive method for tree ring determination
EURODENDRO, Hallstadt, May 2008

D. Mannes, M. Grabner, E. H. Lehmann, P. Niemz
Imaging with cold neutrons for the determination of tree rings in deteriorated wood
EURODENDRO, Hallstadt, May 2008

S. Van Petegem
In-situ x-ray diffraction study of nanocrystalline metals
ICRS-8 - DXC2008, The eight International Conference on Residual Stress - Denver X-ray Conference, Denver, USA (August 4-8, 2008)

S. Van Petegem
From microstructures to mechanical behaviour - neutrons and x-rays
Metallurgy day, Lausanne, Switzerland (September 11, 2008)

S. Van Petegem
In-situ mechanical testing at the time-of-flight neutron diffractometer POLDI
DN2008, Deutsche Neutronentagung, Garching

LECTURES AND COURSES

P. M. Derlet
Defects, dynamics and diffraction patterns: a computational synergy
7th PSI Summer School on Condensed Matter Research, Probing the Nanometer Scale with Neutrons, Photons and Muons, Zuoz, Switzerland, August 16-22 2008

H. Van Swygenoven
Small scale plasticity using in-situ mechanical techniques
7th PSI Summer School on Condensed Matter Research, Probing the Nanometer Scale with Neutrons, Photons and Muons, Zuoz, Switzerland, August 16-22 2008

H. Van Swygenoven
Five research lectures at the International Centre for Mechanical Sciences (CISM) on „Mechanical Size-Effects of Materials: Processing, Characterizing and Modelling”, May 12-16, 2008, Udine, Italy.
"Grains and deformation" a research course on "New Materials in New Light" is the 7th course in a series on "New X-Ray Sciences" organized by Prof. Prof. Robert Feidenhans', Niels Bohr Institute, University of Copenhagen at DESY, Hamburg, March 5-7, 2008.

MEMBERSHIP IN EXTERNAL COMMITTEES

Dr. W. Wagner
- Technical Advisory Group, ESS Scandinavia
- International Advisory Committee of ICANS: International Collaboration on Advanced Neutron Sources
- International Technical Committee of the "Fifth edition of the International Workshop on Materials for Heavy Liquid Metal Cooled Reactors and Related Technologies"
- Technical Programme Committee of the "International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators"

Dr. H. Van Swygenhoven
- Member of the reviewing commission of the proposals for beam time at the instruments at FRM II
- Member of the hiring commission for the Professor in Experimental Condensed Matter Physics at ETHZ and Head of Laboratory for Neutron Scattering at PSI (2008)
- Elected by the EC-commission as an expert and member of the External Advisory Group (EAG) of the NMP program (FP7)
- Elected member of the PSI research commission (FOKO).
- Elected member of the International Advisory Committee of the International Risø Symposium on Materials Science
- Vice chair of the International Committee of Strength of Materials (organization of ICSMA conferences).

Dr. E. Lehmann
- COST-IE0601 "Wood research for cultural heritage", Member of Steering Committees und Deputy Working Group Leader, Swiss Representative of the Action
- ILL: Mitglied des Subcommittees 1 für die Proposal Evaluation (until end of 2008)
- FRM-2: Member of Advisory Committee for Proposal Evaluation (since end of 2008)
LIST OF PUBLICATIONS (PEER REVIEWED)

Nature of the Magnetic Order in Ca$_3$Co$_2$O$_6
PHYSICAL REVIEW LETTERS 101, 097207 (2008)

Altissimo M, Petrillo C, Sacchetti F, Sani L, Stahn J
Neutron diffraction from macroscopic objects and transverse coherence of the wavefunction: The Fresnel zone plates
NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 586, 68 (2008)

Aswal VK, Chodankar S, Kohlbrecher J, Vavrin R, Wagh AG
Small-angle neutron scattering study of structural evolution of different phases in protein solution

Aswal VK, Chodankar SN, Kohlbrecher J, Vavrin R, Wagh AG
SANS and DLS Studies of Protein Unfolding in Presence of Urea and Surfactant
AIP CONFERENCE PROCEEDINGS 989, 53 (2008)

Characterisation of the polarised neutron beam at the small angle scattering instrument SANS-I with a polarised proton target
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 586, 86 (2008)

Aswal VK, Vavrin R, Kohlbrecher J, Wagh AG
Pressure-induced structural transition of nonionic micelles
PRAMANA-JOURNAL OF PHYSICS 71, 1051 (2008)

Balagurov AM, Bobrikov IA, Karpisky DV, Troyanchuk IO, Pomjakushin VY, Sheptyakov DV
Successive Structural Phase Transitions in Pr0.5 Sr0.5 CoO3 in the Range 10-1120K
JETP LETTERS 88, 531 (2008)

Balagurov AM, Bobrikov IA, Pomjakushin VY, Sheptyakov DV, Babushkina NA, Gorbenko OY, Kartavtseva MS, Kaul AR
Effect of isotopic composition and microstructure on the crystalline and magnetic phase states in R0.5Sr0.5MnO3
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS 106, 528 (2008)

Barilo SN, Shiryaev SV, Bychkov GL, Shestak AS, Flavell WR, Thomas AG, Rafique HM, Chernenkov YP, Plakhty VP, Pomjakushina E, Conder K, Allenspach P
Large single crystals of LnBaCo(2)O(5.5): Initial nucleation, growth and study
Bende A, Almasy L

Weak intermolecular bonding in N,N'-dimethylethyleneurea dimers and N,N'-dimethylethyleneurea-water systems: The role of the dispersion effects in intermolecular interaction

CHEMICAL PHYSICS 354, 202 (2008)

Superconducting vortices in CeCoIn5: Toward the Pauli-limiting field

SCIENCE 319, 177 (2008)

Storage of ultracold neutrons in high resistivity, non-magnetic materials with high Fermi potential

NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 597, 222 (2008)

Manipulating the magnetic structure with electric fields in multiferroic ErMn2O5

PHYSICAL REVIEW LETTERS 100, 027201 (2008)

Proton diffusivity in the BaZr_{0.9}Y_{0.1}O_{3-delta} proton conductor

Dynamical properties and temperature induced molecular disordering of LiBH4 and LiBD4

PHYSICAL REVIEW B 78, 094302 (2008)

Structure of Ca(BD4)2 beta-Phase from Combined Neutron and Synchrotron X-ray Powder Diffraction Data and Density Functional Calculations

JOURNAL OF PHYSICAL CHEMISTRY B 112, 8042 (2008)

Carrado A, Duriez D, Barrallier L, Brueck S, Fabre A, Stuhr U, Pirling T, Klosek V, Palkowski H

Variation of Residual Stresses in Drawn Copper Tubes

MATERIALS SCIENCE FORUM 571-572, 21 (2008)

Carver G, Thut M, Noble C, Tregenna-Piggott PLW

Theory of high-spin d(4) complexes: An angular-overlap model parametrization of the ligand field in vibronic-coupling calculations

JOURNAL OF CHEMICAL THEORY AND COMPUTATION 4, 603 (2008)

Cervellino A, Giannini C, Guagliardi A, Ladisa M

Unfolding a two-dimensional powder diffraction image: conformal mapping

JOURNAL OF APPLIED CRYSTALLOGRAPHY 41, 701 (2008)

Tuning competing orders in La2-xSrxCuO4 cuprate superconductors by the application of an external magnetic field

PHYSICAL REVIEW B 78, 104525 (2008)
Electronic structure near the 1/8-anomaly in La-based cuprates
NEW JOURNAL OF PHYSICS 10, 103016 (2008)

Anisotropic quasiparticle scattering rates in slightly underdoped to optimally doped high-temperature La2-xSrxCuO4 superconductors
PHYSICAL REVIEW B 78, 205103 (2008)

Chang JJ, Mesot JF
Microscopic neutron investigation of the Abrikosov state of high-temperature superconductors

Chathoth S, Podlesnyak A
Fast and slow dynamics in Pr60Ni10Cu20Al10 melts as seen by neutron scattering
JOURNAL OF APPLIED PHYSICS 103, 013509 (2008)

Chernyshov D, Dmitriev V, Pomjakushina E, Conder K, Stingaciu M, Pomjakushin V, Podlesnyak A, Taskin AA, Ando Y
Superstructure formation at the metal-insulator transition in RBaCo2O5.5 (R=Nd, Tb) as seen from reciprocal space mapping
PHYSICAL REVIEW B 78, 024105 (2008)

Chodankar S, Aswal VK, Kohlbrecher J, Vavrin R, Wagh AG
Structural evolution during protein denaturation as induced by different methods
PHYSICAL REVIEW E 77, 031901 (2008)

Chodankar S, Aswal VK, Kohlbrecher J, Vavrin R, Wagh AG
Structural study of coacervation in protein-polyelectrolyte complexes
PHYSICAL REVIEW E 78, 031913 (2008)

Chodankar S, Aswal VK, Kohlbrecher J, Vavrin R, Wagh AG
Small angle neutron scattering studies on protein denaturation induced by different methods
PRAMANA-JOURNAL OF PHYSICS 71, 1021 (2008)

Chotard JN, Sheptyakov D, Yvon K
Hydrogen induced site depopulation in the LaMgNi4 - hydrogen system
ZEITSCHRIFT FUR KRISTALLOGRAPHIE 223, 690 (2008)

Christensen M, Abrahamsen AB, Christensen NB, Juranyi F, Andersen NH, Lefmann K, Andreasson J, Bahl CRH, Iversen BB
Avoided crossing of rattler modes in thermoelectric materials
NATURE MATERIALS 7, 811 (2008)

Conder K, Stingaciu M, Pomjakushina E
Point defect chemistry of YBa2Cu3O6.5+delta
MATERIALS RESEARCH BULLETIN 43, 1195 (2008)

Dick A, Krausz ER, Hadler KS, Noble CJ, Tregenna-Piggott PLW, Riley MJ
The Jahn-Teller effect in Cu(II) doped MgO
JOURNAL OF PHYSICAL CHEMISTRY C 112, 14555 (2008)

Djerdi I, Sheptyakov D, Gozzo F, Arcon D, Nesper R, Niederberger M
Oxygen self-doping in hollandite-type vanadium oxyhydroxide nanorods
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 130, 11364 (2008)

Doenni A, Keller L, Kitazawa H, Prchal J, Fischer P
The isosstructural phase transition and frustrated magnetic ordering in TbPd0.9Ni0.1Al studied by neutron diffraction
Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation
NATURE MATERIALS doi:10.1038/nmat2333 (2008)

Embs JP, Leschhorn A, Luecke M
Reply to Comment on Measuring the transverse magnetization of rotating ferrofluids
PHYSICAL REVIEW E 78, 068302 (2008)

Furrer A
Admixture of an s-wave component to the d-wave gap symmetry in high-temperature superconductors
JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM 21, 1 (2008)

Furrer A, Juranyi F, Kramer KW, Strassle T
Reconciling exchange striction with biquadratic exchange in KMn0.1Zn0.9F3: An inelastic neutron scattering study
PHYSICAL REVIEW B 77, 134410 (2008)

Garcia-Fernandez M, Staub U, Bodenthin Y, Lawrence SM, Mulders AM, Buckley CE, Weyeneth S, Pomiakushina E, Conder K
Resonant soft x-ray powder diffraction study to determine the orbital ordering in A-site-ordered SmBaMn2O6
PHYSICAL REVIEW B 77, 060402 (2008)

Magnetic and orbital ordering in the spinel MnV2O4
PHYSICAL REVIEW LETTERS 100, 066404 (2008)

Gasser U, Maret G, Keim P
Das Schmelzen zweidimensionaler Kristalle
PHYSIK IN UNSERER ZEIT 39, 36 (2008)

Neutron decoherence imaging for visualizing bulk magnetic domain structures
PHYSICAL REVIEW LETTERS 101, 025504 (2008)

Gu QF, Krauss G, Steurer W, Gramm F, Cervellino A
Unexpected high stiffness of Ag and Au nanoparticles
PHYSICAL REVIEW LETTERS 100, 045502 (2008)

Gupta M, Gupta A, Stahn J, Gutberlet T
Ordering and self-diffusion in FePt alloy film
NEW JOURNAL OF PHYSICS 10, 053031 (2008)

Haefliger P, Ochsenbein ST, Trusch B, Guedel H, Furrer A
Spin dynamics in the manganese tetramer compound alpha-MnMoO4
PHYSICA B-CONDENSED MATTER 21, 026019 (2008)

Harris AB, Kenzelmann M, Aharony A, Entin-Wohlman O
Effect of inversion symmetry on the incommensurate order in multiferroic RMn2O5 (R=rare earth)
PHYSICAL REVIEW B 78, 014407 (2008)

Hoppler J, Stahn J, Bouyanfif H, Malik VK, Patterson BD, Willmott PR, Cristiani G, Habermeier HU, Bernhard C
X-ray study of structural domains in the near-surface region of SrTiO3 substrates with Y0.6Pr0.4Ba2Cu3O7/La2/3Ca1/3MnO3 superlattices grown on top
PHYSICAL REVIEW B 78, 134111 (2008)
Huber P, Blattler T, Textor M, Leitenberger W, Pietsch U, Geue T
Template-assisted self-assembly of colloidal crystals

Joergensen JE, Keller L
Magnetic ordering in Dy1-xCaxBaCo2O5.5 for x = 0.0 and 0.1

Jorgensen JE, Keller L
Magnetic ordering in HoBaCo2O5.5
PHYSICAL REVIEW B 77, 024427 (2008)

Kawasaki Y, Gavilano JL, Roessli B, Andreica D, Baines CH, Pomjakushina E, Conder K, Ott HR
muSR studies of CePd2In at low temperatures
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 69, 3149 (2008)

Kenzelmann M, Harris AB
Comment on "Ferroelectricity in spiral magnets"
PHYSICAL REVIEW LETTERS 100, 089701 (2008)

Coupled superconducting and magnetic order in CeColn5
SCIENCE 321, 1652 (2008)

Evidence of nodeless superconductivity in FeSe0.85 from a muon-spin-rotation study of the in-plane magnetic penetration depth
PHYSICAL REVIEW B 78, 220510 (2008)

Oxygen isotope effects on the superconducting transition and magnetic states within the phase diagram of Y1-xPrxBa2Cu3O7-delta
PHYSICAL REVIEW LETTERS 101, 077001 (2008)

Universal correlations of isotope effects in Y1-xPrxBa2Cu3O7-delta
PHYSICAL REVIEW B 77, 104530 (2008)

Spiral spin structures and origin of the magnetoelastic coupling in YMn2O5
PHYSICAL REVIEW B 78, 245115 (2008)

Klotz S, Le Godec Y, Straessle T, Stuhr U
The alpha-gamma-epsilon triple point of iron investigated by high pressure-high temperature neutron scattering
APPLIED PHYSICS LETTERS 93, 091904 (2008)

Klotz S, Padmanabhan B, Philippe J, Straessle T
The use of a Bridgman-seal for low-temperature hydraulics
HIGH PRESSURE RESEARCH 28, 621 (2008)

Magnetism and the Verwey transition in Fe3O4 under pressure
PHYSICAL REVIEW B 77, 012411 (2008)
Magnetism and the Verwey transition in Fe3O4 under pressure (vol 77, art no 012411, 2008)
PHYSICAL REVIEW B 77, 069901 (2008)

Fractal Aggregates of Polyfluorene-Polyaniline Triblock Copolymer in Solution State
JOURNAL OF PHYSICAL CHEMISTRY B 112, 16415 (2008)

Koo J, Guterlet T, Czeslik C
Control of Protein Interfacial Affinity by Nonionic Cosolvents
JOURNAL OF PHYSICAL CHEMISTRY B 112, 6292 (2008)

Kumar A, Yusuf SM, Keller L, Yakhmi JV
Microscopic Understanding of Negative Magnetization in Cu, Mn, and Fe Based Prussian Blue Analogues
PHYSICAL REVIEW LETTERS 101, 207206 (2008)

Kuzmicheva GM, Zaharko O, Tyunina EA, Rybakov VB, Domoroshchina EN, Dubovskii AB
Neutron Diffraction and X-Ray Diffraction Investigations of Langasite Crystals
CRYSTALLOGRAPHY REPORTS 53, 989 (2008)

Laver M, Forgan EM, Abrahamsen AB, Bowell C, Geue T, Cubitt R
Uncovering flux line correlations in superconductors by reverse monte carlo refinement of neutron scattering data (vol 100, art no 107001, 2008)
PHYSICAL REVIEW LETTERS 100, 149904 (2008)

Laver M, Forgan EM, Abrahamsen AB, Bowell C, Geue T, Cubitt R
Uncovering flux line correlations in superconductors by reverse monte carlo refinement of neutron scattering data
PHYSICAL REVIEW LETTERS 100, 107001 (2008)

Lawes G, Kenzelmann M, Broholm C
Magnetically induced ferroelectricity in the buckled Kagome antiferromagnet Ni3V2O8
JOURNAL OF PHYSICS-CONDENSED MATTER 434205, 434205 (2008)

Lonetti B, Kohlbrecher J, Willner L, Dhont JKG, Lettinga MP
Dynamic response of block copolymer wormlike micelles to shear flow
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 404207 (2008)

Microscopic evidence of spin state order and spin state phase separation in layered cobaltites R BaCo2O5.5 with R = Y, Tb, Dy, and Ho
PHYSICAL REVIEW LETTERS 101, 017601 (2008)

Optical properties of V1-xCr(x)O(2) compounds under high pressure
PHYSICAL REVIEW B 77, 235111 (2008)

Martinez-Lopez MJ, Retuerto M, Alonso JA, Pomjakushin V
Synthesis and study of the crystallographic and magnetic structure of DyFeMnO5: A new ferrimagnetic oxide
JOURNAL OF SOLID STATE CHEMISTRY 181, 2155 (2008)

Meier G, Vavrin R, Kohlbrecher J, Buitenhuis J, Lettinga MP, Ratajczyk M
SANS and dynamic light scattering to investigate the viscosity of toluene under high pressure up to 1800 bar
MEASUREMENT SCIENCE & TECHNOLOGY 19, 034017 (2008)
Mesot J, Mudry C
Does T* - the temperature that defines the onset of the pseudogap regime in underdoped cuprates - correspond to a phase transition or a crossover?
JOURNAL CLUB FOR CONDENSED MATTER PHYSICS June 3, (2008)

Spin structure of nanocrystalline gadolinium
EUROPHYSICS LETTERS 81, 66003 (2008)

Mohottala HE, Wells BO, Budnick JI, Hines WA, Niedermayer C, Chou FC
Flux pinning and phase separation in oxygen-rich La2-xSrxCuO4+y
PHYSICAL REVIEW B 78, 064504 (2008)

Mortensen K, Gasser U, Gursel SA, Scherer GG
Structural characterization of radiation-grafted block copolymer films, using SANS technique
JOURNAL OF POLYM ER SCIENCE PART B-POLYMER PHYSICS 46, 1660 (2008)

Elliptic neutron guides - focusing on tiny samples
NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 586, 77 (2008)

Microstructural characterisation of a Ni-Fe-based superalloy by in situ small-angle neutron scattering measurements
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 104220 (2008)

Nikolaev IV, Dhondt H, Abakumov AM, Hadermann J, Balagurov AM, Bobrikov IA, Sheptyakov DV, Pomjakushin VY, Pokholok KV, Filimonov DS, Vantendeloo G, Antipov EV
Crystal structure, phase transition, and magnetic ordering in perovskite-like Pb2xBaxFe2O5 solid solutions
PHYSICAL REVIEW B 78, 024426 (2008)

Neutron diffraction study of layered Ni dioxides: Ag2NiO2
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 104236 (2008)

A Model of Single Molecule Magnet Behavior of the [Cu LTb(hfac)2]2 Cluster

Origins of large critical temperature variations in single-layer cuprates
PHYSICAL REVIEW B 78, 054523 (2008)

Penc B, Wawrzynska E, Keller L, Szytu A
Magnetic structure of Tm_5 Rh_4 Ge_10
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS 320, L1 (2008)

Piegsa FM, Schneider M
A short-length neutron transmission polariser for large beam cross-sections
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 594, 74 (2008)
A Ramsey apparatus for the measurement of the incoherent neutron scattering length of the deuteron
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 589, 318 (2008)

Spin-State Polarons in Lightly-Hole-Doped LaCoO3
PHYSICAL REVIEW LETTERS 101, 247603 (2008)

Temperature dependence of antiferromagnetic resonance mode in two-dimensional system Ni-5(ToO3)(4)Br-2
PHYSICA B-CONDENSED MATTER 403, 950 (2008)

Putra EGR, Ikram A, Kohlbrecher J
SMARTer for magnetic structure studies
PRAMANA-JOURNAL OF PHYSICS 71, 1015 (2008)

High-pressure behavior of CsC8 graphite intercalation compound: Lattice structures and phase-transition mechanism
PHYSICAL REVIEW B 77, 125433 (2008)

Thermodynamics of the Spin Luttinger Liquid in a Model Ladder Material
PHYSICAL REVIEW LETTERS 101, 247202 (2008)

Cu-63,Cu-65 NMR and NQR evidence for an unusual spin dynamics in PrCu2 below 100 K
PHYSICAL REVIEW B 77, 144404 (2008)
Sanchez FG, Juranyi F, Gimmi T, Van Loon L, Seydel T, Unruh T
Dynamics of supercooled water in highly compacted clays studied by neutron scattering
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 415102 (2008)

Sanchez FG, Juranyi F, Gimmi T, Van Loon L, Unruh T, Diamond LW
Translational diffusion of water and its dependence on temperature in charged and uncharged clays: A neutron scattering study
JOURNAL OF CHEMICAL PHYSICS 129, 174706 (2008)

Schefer J, Schaniel D, Petricek V, Woike TH, Cousson A, Woehlecke M
Reducing the positional modulation of NbO6-octahedra in SrxBa1-xNb2O6 by increasing the barium content: A single crystal neutron diffraction study at ambient temperature for x = 0.61 and x = 0.34
ZEITSCHRIFT FUR KRISTALLOGRAPHIE 223, 399-407 (2008)

Schefer J, Schaniel D, Woike T, Petricek V
Neutron photocystallography: simulation and experiment
ZEITSCHRIFT FUR KRISTALLOGRAPHIE 223, 259-264 (2008)

Scheifele Q, Birk T, Bendix J, Tregenna-Piggott PLW, Weihe H
Superhyperfine interaction in [MnF6](3-) ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 47, 148 (2008)

Scheifele Q, Riplinger C, Neese F, Weihe H, Barra AL, Juranyi F, Podlesnyak A, Tregenna-Piggott PLW
Spectroscopic and theoretical study of a mononuclear manganese(III) complex exhibiting a tetragonally compressed geometry
INORGANIC CHEMISTRY 47, 439 (2008)

Schmidt H, Gupta M, Gutberlet T, Stahn J, Bruns M
How to measure atomic diffusion processes in the sub-nanometer range
ACTA MATERIALIA 56, 464 (2008)

Schorr S, Sheptyakov D
Low-temperature thermal expansion in sphalerite-type and chalcopyrite-type multinary semiconductors
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 104245 (2008)

Spin fluctuations, magnetic long-range order, and Fermi surface gapping in NaxCoO2 PHYSICAL REVIEW B 78, 205101 (2008)

Schulze TF, Hafliger PS, Niedermayer C, Mattenberger K, Bubenkofer S, Batlogg B
Direct link between low-temperature magnetism and high-temperature sodium order in NaxCoO2
PHYSICAL REVIEW LETTERS 100, 026407 (2008)

Sevillano JG, Alkorta J, Gonzalez D, Van Petegem S, Stuhr U, Van Swygenhoven H
In situ Neutron Diffraction Study of Internal Micro-Stresses Developed by Plastic Elongation in < 110 > Textured BCC Wires
ADVANCED ENGINEERING MATERIALS 10, 951 (2008)

Seydel T, Wiegart L, Juranyi F, Struth B, Schober H
Unaffected microscopic dynamics of macroscopically arrested water in dilute clay gels
PHYSICAL REVIEW E 78, 061403 (2008)
Coherent d-wave superconducting gap in underdoped La2-xSrxCuO4 by angle-resolved photoemission spectroscopy
PHYSICAL REVIEW LETTERS 101, 047002 (2008)

The electronic structure of La1-xSrxMnO3 thin films and its T-c dependence as studied using angle-resolved photoemission
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 222001 (2008)

Stadler A, Digel I, Artmann G, Embjs J, Zaccai G, Bueldt G
Hemoglobin Dynamics in Red Blood Cells: Correlation to Body Temperature
BIOPHYSICAL JOURNAL 95, 5449 (2008)

Stadler A, Embjs J, Digel I, Artmann G, Unruh T, Bueldt G, Zaccai G
Cytoplasmic Water and Hydration Layer Dynamics in Human Red Blood Cells

Stingaciu M, Pomjakushina E, Grimmer H, Trottmann M, Conder K
Crystal growth of Tb0.9Dy0.1BaCO2O5+delta using travelling solvent floating zone method
JOURNAL OF CRYSTAL GROWTH 310, 1239 (2008)

Taran YV, Balagurov AM, Schreiber J, Stuhr U
Residual stresses in a shape welded steel tube by neutron diffraction
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 104258 (2008)

New sources and instrumentation for neutrons in biology
CHEMICAL PHYSICS 345, 133 (2008)

Tokaychuk YO, Filinchuk YE, Sheptyakov DV, Yvon K
Hydrogen absorption in transition metal silicides: La3Pd5Si-hydrogen system
INORGANIC CHEMISTRY 47, 6303 (2008)

Tregenna-Piggott PLW
Origin of compressed Jahn-Teller octahedra in sterically strained manganese(III) complexes
INORGANIC CHEMISTRY 47, 448 (2008)

Tregenna-Piggott PLW, Juranyi F, Allenspach P
Introducing the Time-of-Flight Backscattering Instrument MARS at SINQ
NEUTRON NEWS 19, 20 (2008)

Tung LD, Ivanov A, Schefer J, Lees MR, Balakrishnan G, Paul DM
Spin, orbital ordering and magnetic dynamics of LaVO3: magnetization, heat capacity and neutron scattering studies
PHYSICAL REVIEW B 78, 054416 (2008)

Synthesis and Microstructural Investigations of Organometallic Pd(II) Thiol-Gold Nanoparticles Hybrids
NANOSCALE RESEARCH LETTERS 3, 461 (2008)
Volkov NV, Sabrina KA, Eremin EV, Boeni P, Shah VR, Flerov IN, Kartashev A, Rasch JCE, Boehm M, Schefer J
Heat capacity of a mixed-valence manganese oxide Pb3Mn7O15
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 445214 (2008)

Voronin VI, Berger IF, Proskurnina NV, Sheptyakov DV, Goshchitskii BN, Burmakin EL, Stroev SS, Shekhtman GS
Crystal structure of the low-temperature forms of cesium and rubidium orthophosphates
INORGANIC MATERIALS 44, 646 (2008)

Observations of the configuration of the high-field vortex lattice in YBaCuO: Dependence upon temperature and angle of applied field
PHYSICAL REVIEW B 78, 174513 (2008)

Low-temperature dynamics of magnetic colloids studied by time-resolved small-angle neutron scattering
PHYSICAL REVIEW B 77, 184417 (2008)

Yan XL, Chen XQ, Grytsiv A, Rogl P, Podloucky R, Pomjakushin V, Schmidt H, Giester G
Crystal structure, phase stability and elastic properties of the Laves phase ZrTiCu2
INTERMETALLICS 16, 651 (2008)

Yan XL, Grytsiv A, Rogl P, Pomjakushin V, Palm M
The Heusler Phase Ti-25(Fe50-xNix)Al-25 (0 <= x <= 50): Structure and Constitution

Yan XL, Grytsiv A, Rogl P, Pomjakushin V, Schmidt H
On the Quaternary System Ti-Fe-Ni-Al

Yaouanc A, de Reotier PD, Chapuis Y, Marin C, Lapertot G, Cervellino A, Amato A
Short-range magnetic ordering process for the triangular-lattice compound NiGa2S4: A positive muon spin rotation and relaxation study
PHYSICAL REVIEW B 77, 092403 (2008)

Structural and magnetic aspects of the nanotube system Na2-xV3O7
PHYSICAL REVIEW B 78, 214426 (2008)

Tetrahedra system Cu(4)OCI(6)daca(4): High-temperature manifold of molecular configurations governing low-temperature properties
PHYSICAL REVIEW B 77, 224408 (2008)

Investigation of the Structure and Properties of Model Membranes of the Stratum Corneum by Small-Angle Neutron Scattering
JOURNAL OF SURFACE INVESTIGATION. X-RAY, SYNCHROTRON AND NEUTRON TECHNIQUES 2, 884-889 (2008)
CONFERENCE, WORKSHOP AND SEMINAR CONTRIBUTIONS

R. Ackermann, U. Filges, M. Schneider, J. P. Embs, R. Hempelmann
A wedge-shaped polarizing analyzer – ray-trace MC simulations and experimental analysis
Deutscher Neutronentagung 2008 TU München, Garching Germany Sep. 14-17, 2008 poster

R. Ackermann, U. Filges, M. Schneider, J. P. Embs, R. Hempelmann
Ray-trace simulations of polarizing components for the cold neutron TOF spectrometer
FOCUS
Bunsentagung 2008 Universität des Saarlandes, Saarbrücken Germany Mai 1-3, 2008 poster

A. Cervellino, J. Schefler, L. Keller, A. Schuy, Th. Woike, D. Schaniel
Neutronenpulverdiffraktion an GNNP: Annäherung an die Nanometerskala.

N. B. Christensen, O. Zaharko
Diffuse scattering in Co3O4 and Co(Al1.3Co0.7)O4 studied by neutron diffraction and spectroscopy. An indication of a spiral spin liquid phase?
Materials for Frustrated Magnetism Grenoble France March 3-5, 2008 talk

N. B. Christensen, J. Chang, J. Mesot
Magnetic order and excitations in La1.48Nd0.4Sr0.12CuO4

J.P. Embs, R. Hempelmann
Cation Dynamics in Ionic Liquids be means of QENS
Bunsentagung Universität Saarbrücken Germany May,1-3, 2008 Poster

J.P. Embs, R. Hempelmann
Cation Dynamics in Ionic Liquids be means of QENS
Liquid Matter Conference Lund Sweden June/July 27.-1.,2008 Poster

J.P. Embs, R. Hempelmann
Cation Dynamics in Ionic Liquids be means of QENS
DFG - SPP 1191 colloquium Bamberg Germany Poster

Th. Geue, P. Huber, M. Textor, Th. Blaettle
X-ray scattering on ordered colloidal assemblies
SUG Surfaces and Interfaces Fribourg Switzerland January 25, 2008 poster

X-ray scattering on ordered colloidal assemblies
Swiss User Group Surfaces and Interfaces, 24nd Annual Meeting, “Liquid meets solid”
Université de Fribourg Switzerland January 25, 2008 poster

Magnetism of A-site ordered perovskite manganites RBaMn_{2O_6} (R = La and Y)
μSR 2008 conference Tsukuba Japan poster

Y. Kawasaki, J.L. Gavilano, L. Keller, B. Roessli, N. Christensen, T. Ohno, Z. He, Y Ueda
Neutron Scattering Studies of BaCo2V2O8
7th PSI Summer School on Condensed Matter Research, Laceum Alpinum Zuoz Switzerland August 16-22, 2008
L. Keller
Magnetic Order In CuCrS₂ Investigated By Neutron Diffraction
INTAS Workshop, New Layered 3d-Materials for Spintronics Villigen PSI Switzerland March 31 - April 4, 2008

M. Kenzelmann
Magnetically-driven ferroelectric polarization in a molecule-based quantum magnet
Materials for Frustrated Magnetism Grenoble France March 3-5, 2008

M. Kenzelmann
Electric control and switching frequency of magnetism in thin films of Ni₃V₂O₈
uμSR user meeting
Villigen PSI Switzerland January 23-24, 2008

M. Kenzelmann
Spin dynamics in SrHo₂O₄ and SrDy₂O₄
uμSR user meeting Villigen PSI Switzerland January 23-24, 2008

J. Kohlbrecher
Probing the phase diagram of colloidal suspensions under high pressure by neutron and light scattering
Liquid Matter Conference
Lund Sweden August 2008 poster

C. Kraemer, H. Ronnow, K. Kiefer, G. Aeppli, T. F. Rosenbaum, K. Habicht
Quantum Phase transition of a Magnet in a Spinbath
LT25 Conference Amsterdam Netherland August 16, 2008 poster

Magnetic and Structural Properties of Pb₃Mn₁₋ₓO₁₅
Annual Meeting of the Swiss Physical Society/MANEP Meeting Geneva Switzerland March 26-27, 2008 poster

Magnetic and Structural Properties of Pb₃Mn₁₋ₓO₁₅
Annual Meeting of the Swiss Physical Society/MANEP Meeting Geneva Switzerland March 26-27, 2008 poster

J.C.E. Rasch
Magnetism in Pb₃Mn₁₋ₓO₁₅
72nd Annual Meeting of the DPG Berlin Germany February 25-29, 2008

J.C.E. Rasch
Magnetism induced lattice distortion in CuCrS₂
16th ICTMC Berlin Germany Sept. 15-19, 2008

Quantum Statistics of Triplons in One Dimension
Annual Meeting of the Swiss Physical Society/MANEP Meeting Geneva Switzerland March 26-27, 2008 poster

Ph. Tregenna-Piggott
Introducing the new Backscatering spectrometer, MARS at the PSI
Workshop on Backscattering Spectrometers Tokai, Japan Switzerland February 20-21, 2007 poster

N. Tsyrlin
Quantum effects in $S=1/2$ two-dimensional Heisenberg antiferromagnet
IUCr2008 Osaka Japan August 23-31, 2008 poster

A. Wilk, J. Kohlbrecher, G. Meier, G. Petekidis, J. Roovers, E. Stakiakis, D. Vlassopoulos
Reversible thermal gelation in concentrated star solutions

M. Zayed
Evidence of pressure induced phase transitions in the Shastry-Sutherland compound $\text{SrCu}_2(\text{BO}_3)_2$
Materials for Frustrated Magnetism Grenoble France March 3-5, 2008

INVITED TALKS

R. Ackermann
Magnonen und polarisierte Neutronen
Universität des Saarlandes, Saarbrücken Germany June 20, 2008

R. Ackermann
Phononen und inelastische Neutronenstreuung
Universität des Saarlandes Saarbrücken Germany June 18, 2008

A. Cervellino
Analysis of partially ordered (nano)materials through the Debye function method.

A. Cervellino
Debye function: nella cassetta degli attrezzi.
Powder Diffraction Software Workshop „In the Toolchest“ Warsaw Poland September 18, 2008

A. Cervellino
The Debye equation: Powder diffraction patterns directly from atom clusters. What we can really do and when it is convenient.

J. Chang
Electronic structure of La-based cuprates near the 1/8-anomaly
UMD CNAM/ICAM Workshop on Cuprate Fermiology University of Maryland USA Nov. 14-15, 2008
J. Chang
Magnetic and Electronic properties of the high-temperature superconductor La2-xSrxCuO4.
Seminar Universite Sherbrooke Canada Mar. 15th, 2008

J.P. Embs
Dynamics of Ionic Liquids (ILs) by menas of QENS
13th International Conference on Neutron Scattering Investigation in Condensed Matter
Universität Poznan Poland May 8-10, 2008

J.P. Embs
QENS - a method to probe dynamics in liquids on a molecular scale
Winterschool DFG - SPP 1191 priority program Universität Leipzig Germany Feb., 20-23, 2008

A. Furrer
Admixture of an s-wave component to the d-wave gap symmetry in high temperature superconductors
22nd General Conference of the Condensed Matter Division of the EPS Rome Italy August 25-29, 2008

A. Furrer
Bose-Einstein Condensation in Magnetic Materials

A. Furrer
Towards establishing a Swiss partnership with the ILL
Symposium 20 Years Partnership Villigen PSI Switzerland Nov. 28, 2008

C. Garcia
TEM and WAXS complementarity to analyze nanopowder
Laboratory for Neutron Scattering PSI Villigen Switzerland Sept. 22, 2008

U. Gasser
Non-central forces in crystals of charged colloids
GaTech Atlanta USA Sept. 15-25, 2008

S.N.Gvasaliya
Phase Transitions in Relaxors: Neutron Scattering Studies
SNSF Scopes Workshop Tashkent Uzbekistan Sept. 11- Sept 14 2008

S.N.Gvasaliya, G.M. Rotaru, B. Roessli, R.A. Cowley, S. Kojima
Phase Transitions and Lattice Dynamics of Relaxors
Frontiers in Ferroelectricity St. Petersburg Russia June 12 - June 14, 2008

J. Hoppler
Stress induced modulation of the magnetic profile in Y0.6Pr0.4Ba2Cu3O7 / La2/3Ca1/3MnO3 superlattices
Seminar MPI fuer Festkörperfoerschung, Stuttgart Germany March 14, 2008

L. Keller
Upgrade Of The Cold Neutron Powder Diffractometer DMC At SINQ

G. M. Kenzelmann
Coupled magnetic and superconducting order in CeColn5
M. Kenzelmann
Ferroelectricity from magnetic order
International Conference on Highly Frustrated Magnetism Braunschweig Germany Sept. 8-12, 2008

M. Kenzelmann
Ferroelectricity from magnetic order

M. Kenzelmann
Magnetically-induced ferroelectricity in frustrated quantum magnets
American Crystallographic Association Oak Ridge USA Mai 31 - June 5, 2008

M. Kenzelmann
Multiferroic Materials
Dept of Materials, ETH Zürich Zürich Switzerland October 1, 2008

M. Kenzelmann
Multiferroic Materials
7th PSI Summer School on Condensed Matter Research Zuoz Switzerland Aug 20-22, 2008

M. Kenzelmann
Nanoscale Magnetization Dynamics
XFEL Bern Switzerland June 5, 2008

M. Kenzelmann
Quantum magnetism, multiferroics and heavy-fermion superconductivity
Dept. of Physics, University of Karlsruhe Karlsruhe Germany April 14, 2008

M. Kenzelmann
Superconducting Vortices in CeCoIn5: Toward the Pauli-Limiting Field
MANEP Review Geneva Switzerland Mai 20, 2008

M. Kenzelmann
Unconventional magnetism in an unconventional superconductor

M. Kenzelmann
Unconventional magnetism in an unconventional superconductor
Annual Meeting of the Swiss Physical Society/MANEP Meeting Geneva Switzerland March 26-27, 2008

J. Kohlbrecher
How scattering techniques can probe the nanometer scale: An introduction to SAS and PCS
PSI Zuoz Switzerland 16.-22. August 2008

J. Kohlbrecher
real-time small-angle neutron scattering techniques probing sub-millisecond dynamics in magnetic nanomaterials
NFFA Symposium PSI Villigen Switzerland August 16-22, 2008

J. Kohlbrecher
Small-Angle Scattering (SAS)
ETHZ-LMVT Switzerland 1.5.08

Quantum Phasetransition of a Magnet in a Spinbath
Departement of Physik, Neutron-Seminar TU München, Garching Germany January 19, 2008
J. Mesot
Doping Dependent Anisotropic Electronic Scattering Rate in La$_{2-x}$Sr$_x$CuO$_4
American Physical Society (APS) March meeting New Orleans USA March 10-14, 2008

J. Mesot
Electronic and magnetic excitations of high-temperature cuprate superconductors probed by ARPES and neutron scattering
Condensed Matter Colloquium, University Fribourg Fribourg Switzerland April 15, 2008

J. Mesot
Multiple Energy Scales and FS pockets : Neutron and ARPES Studies
CIFAR QM workshop Toronto Canada April 7-11, 2008

J. Mesot
Neutron and ARPES evidences for two energy scales in La(2-x)Sr(x)CuO(4)

J. Mesot
Neutron Scattering Investigation of High-Temperature Superconductors
International Symposium on Neutron Scattering, Mumbai India Jan. 15-18, 2008

M. Shi, J. Mesot
Electronic and Magnetic Excitations of High-Temperature Cuprate Superconductors Probed by ARPES and Neutron Scattering
22nd General Conference of the Condensed Matter Division of the European Physical Society Rome Italy August 25-29, 2008

C. Niedermaier
Tuning competing orders in cuprate superconductors by the application of an external magnetic field
Manep Internal Workshop Neuchâtel Switzerland January 15, 2008

C. Niedermaier
Tuning competing orders in La$_{2-x}$Sr$_x$CuO$_4$ cuprate superconductors by the application of an external magnetic field
Stripes 08: Quantum Phenomena in Complex Matter Erice Italy July 26 - August 1, 2008

V. Pomjakushin
Determination of the magnetic structure from powder neutron diffraction
Structure Determination from Powder Diffraction Data Villigen PSI Switzerland June 18-22, 2008

Layered and cubic cobaltites grown by floating zone, structural and magnetic properties study

J.C.E. Rasch
Layered compounds for spintronics
Metal Physics and Technology Winter Colloquium Stoos Switzerland January 15-18, 2008

J.C.E. Rasch
Magnetism induced lattice distortion in CuCrS$_2$
16th SCTE Dresden Germany July 26-31, 2008

J.C.E. Rasch
Neutron and synchrotron X-ray diffraction on Pb$_3$Mn$_7$O$_{15}$
INTAS Workshop, New Layered 3d-Materials for Spintronics Villigen PSI Switzerland March 31 to April 1, 2008
J.C.E. Rasch
Neutron scattering on magnetoelastic CuCrS₂
ETH Zurich Advanced Materials Science Seminar Zürich Switzerland October 13, 2008

Magnetic and Structural Properties of Pb₃Mn₇O₁₅

Magnetism in Pb₃Mn₇O₁₅
Annual Meeting of the Swiss Physical Society/MANEP Meeting Geneva Switzerland March 26-27, 2008

B. Roessli
Neutron Polarimetry in Ferroic NdFe₃(11BO₃)₄
Int. Seminar on Ferroelectricity St-Petersburg Russia June 12 - June 14, 2008

B. Roessli
Neutron Polarimetry in Ferroic NdFe₃(11BO₃)₄
PNCMI2008 Tokai Switzerland Sept. 1-5, 2008

B. Roessli
Three-dimensional polarimetry: from ILL to PSI Symposium 20 Years Partnership Villigen PSI
Switzerland Nov. 28, 2008

J. Schefer
Neutron Diffraction at the Swiss Neutron Spallation Source SINQ
1st Status Meeting of MaMaSELF Rigi Kulm Switzerland May 6-10, 2008

J. Schefer
Neutron Scattering at the Swiss Neutron Spallation Source SINQ
Department of Materials Engineering and Industrial Technologies University of Trento Italy
May 26, 2008

J. Schefer
Neutron Scattering at the Swiss Neutron Spallation Source SINQ

J. Schefer
SINQ and selected Applications: Metastable states, oxygen transport in perioviskites and other applications using novel materials
Institut für Experimentalphysik Universität Wien Austria Oct. 20, 2008

D. Sheptyakov
Crystal And Magnetic Structures Of The New Mixed Oxides: Pb₂₋ₓBaₓFe₂O₅ And Sr₃Y(Co,Fe)₄O₁₀₊ₓ
SNSF Scopes Workshop Tashkent Uzbekistan Sept. 11-13, 2008

D. Sheptyakov
Powder Diffraction Using Neutrons And Its Complementarity To The X-Ray Powder Diffraction Structure Determination from Powder Diffraction Data
Villigen PSI Switzerland June 18-22, 2008
D. Sheptyakov
Tutorial On Powder Diffraction Techniques In Application To The Analysis Of The Particle Sizes And Microstrains In Materials

7th PSI Summer School on Condensed Matter Research Zuoz Switzerland
August 16-22, 2008

V.V. Sikolenko
Phase separation and Co spin state in cobaltites with perovskite-type structure

Hasylab DESY seminar, 23.05.2008 Hamburg Germany Mai 23, 2008

V.V. Sikolenko
Triple-Axis Spectroscopy. Experimental training.

J. Stahn
Elliptic neutron guides from the idea to the implementation

NMI3 annual meeting 2008 Corse France June 25-28, 2008

J. Stahn
Laterally graded and complex multilayers for neutron optical elements

NMI3 annual meeting 2008 Corse France June 25-28, 2008

Th. Strässle
Neutron spectroscopy under high pressure: a vibrational study on the amorphization process of ice

11ème Journee de la Matiere Condensee Strasbourg France August 25-29

Ph. Tregenna-Piggott
*Experimental and Theoretical Study of Cyano-bridged trimers incorporating [Mn(5-Brsalen)]+
Units*

Seminar Freiburg Germany December 5, 2008

R. Vavrin
Probing the phase diagram of a colloidal suspension under high pressure by neutron and light scattering

Conference of the European Colloid and Interface Society (ECIS) Cracow Poland Aug. 31 - Sept. 5, 2008

O. Zaharko
Isolated tetrahedra system Cu4OCi6L4:magnetic exchange against cluster plasticity

seminar in Lab. of Crystallography Lausanne Switzerland February 25, 2008

O. Zaharko
Magnetic structure determination combining nonpolarized and polarized neutron diffraction

M. Zayed
Pressure induced phase transitions in the Shastry-Sutherland compound SrCu$_2$(BO$_3$)$_2$.

BOOK CHAPTERS

Magnetic and Structural Properties of Pb3Mn7O15
INTAS Workshop: New layerd 3d-Materials for Spintronics, PSI Villigen, Switzerland
LECTURES AND COURSES

M. Kenzelmann
- Introduction to multiferroics + Ferroelectricity from magnetic order, 2nd European School on Multiferroics, Girona, 1.9.2008-5.9.2008, European school
- Multiferroic Materials, 7th PSI Summer School on Condensed Matter Research, Zuoz

J. Mesot
- Neutronenstreuung in der Festkörperphysik I, ETH Zürich
- Neutronenstreuung in der Festkörperphysik II, ETH Zürich
- Seminarreihe Neutronenstreuung I, ETH Zürich
- Seminarreihe Neutronenstreuung II, ETH Zürich

J. Schefer
- Magnetic scattering with neutron diffractions, MaMaSELF, Erasmus Mundus Sommer School, University of Rennes, cycle of seminars

V.V. Sikolenko
- Triple-Axis Spectroscopy, Experimental training 20th Berlin School on Neutron Scattering, Hahn Meitner Insitut Berlin, cycle of seminars

T. Strässle
- Neutronenstreuung in der Festkörperphysik I, ETH Zürich
- Neutronenstreuung in der Festkörperphysik II, ETH Zürich

Ph. Tregenna-Piggott
- Magnetism and Transition Metal Compounds, Department of Chemistry, University of Bern, cycle of seminars

MEMBERSHIP IN EXTERNAL COMMITTEES

A. Furrer
- Science Advisory Committee, EU Infrastructure Initiative NMI3 (2002)
- Gutachter-Ausschuss Sonderforschungsbereich 463 DFG (2005)
- Programme Committee, 2008 Latsis Symposium (2007)

T. Geue
- Scientific Advisory Committee Budapest Neutron Center, BNC, Budapest, Hungary (2008)

S. Gvasaliya
- Program Committee, RCBJSF-10, TITech, Yokohama, Japan (2008)
M. Kenzelmann
- Executive Committee of the NIST Center for Neutron Research User Group, NCNR, NIST, United States (2008)

J. Kohlbrecher
- Scientific Advisory Committee ILL, ILL Grenoble, France (2008)
- Scientific Advisory Committee NCNR, NIST Center for Neutron Research (2007)

J. Mesot
- Forum of the CH-NCCR/NSF Materials with Novel Electronic Properties (MaNEP), Swiss National Science Foundation (since 2005)
- Member of the organizing committee, Summer School on Condensed Matter Research, Zuoz, Switzerland (2005-2008)
- Member of the International Advisory Committee, Conference on Dynamical Properties of Solids (DYPROSO): International Advisory Committee (since 2002)
- Member of the International Advisory Committee, International Workshop on Polarized Neutrons in Condensed Matter Investigations (PNCMI) (since 2005)
- Member of the International Advisory Board, Workshop on Inelastic Neutron Spectrometers (WINS) International Advisory Board (since 2006)
- Member of the Board, European Association of Research Facilities (since 2008)
- Member of the council, European Physical Society (since 2008)

V. Pomjakushin
- Scientific Advisory Committee ILL, Magnetism, ILL Grenoble, France (2009)

B. Roessli
- Scientific Advisory Committee ILL, Dynamics and Magnetism, ILL Grenoble, France (2006)

J. Schefer
- Scientific Advisory Committee FRM-II, structure, FRM-II, Munich, Germany (since 2008)
- Editor Newsletter of the Swiss Society for Crystallography, SGK/SSCr, Swiss Society for Crystallography (since 2006)
- Member of the Organizing Committee, Summer School on Condensed Matter Research, yearly (since 2008)
- Board Member, Swiss Society for Crystallography (since 2006)

Ph. Tregenna Piggott
- Scientific Advisory Committee for the DNA Backscattering Spectrometer, J-PARC, Japan (2008)

AWARDS

J. Chang
- ETH Medaille for outstanding thesis work Physics Departement ETH Zürich, October 2008
LIST OF PUBLICATIONS (PEER REVIEWED)

Acosta-Alejandro M, de Leon JM, Medarde M, Lacorre P, Konder K, Montano PA
Local lattice structure change in PrNiO₃ across the metal-insulator transition: X-ray absorption near-edge structure spectroscopy and ab initio calculations
PHYSICAL REVIEW B 77, 085107 (2008)

Characterisation of the polarised neutron beam at the small angle scattering instrument SANS-I with a polarised proton target
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 586, 86 (2008)

Barilo SN, Shiryaev SV, Bychkov GL, Shestak AS, Flavell WR, Thomas AG, Rafique HM, Chernenkov YP, Plakhty VP, Pomjakushina E, Conder K, Allenspach P
Large single crystals of LnBaCo(2)O(5.5): Initial nucleation, growth and study
JOURNAL OF CRYSTAL GROWTH 310, 1867 (2008)

Superconducting vortices in CeCoIn₅: Toward the Pauli-limiting field
SCIENCE 319, 177 (2008)

Resonant x-ray scattering study of layered TbBaCo₂O₅.5
PHYSICAL REVIEW B 78, 054123 (2008)

Chernyshov D, Dmitriev V, Pomjakushina E, Conder K, Stingaciu M, Pomjakushin V, Podlesnyak A, Taskin AA, Ando Y
Superstructure formation at the metal-insulator transition in RBaCo₂O₅.5 (R=Nd, Tb) as seen from reciprocal space mapping
PHYSICAL REVIEW B 78, 024105 (2008)

Producing over 100 ml of highly concentrated hyperpolarized solution by means of dissolution DNP
JOURNAL OF MAGNETIC RESONANCE 194, 152 (2008)

Principles of Operation of a DNP Prepolarizer Coupled to a Rodent MRI Scanner
APPLIED MAGNETIC RESONANCE 34, 313 (2008)

Conder K, Stingaciu M, Pomjakushina E
Point defect chemistry of YBa₂Cu₃O₆.5+delta
MATERIALS RESEARCH BULLETIN 43, 1195 (2008)
Magnetic and electronic Co states in the layered cobaltate GdBaCo$_2$O$_{5.5-x}$
PHYSICAL REVIEW B 78, 054424 (2008)

Garcia-Fernandez M, Staub U, Bodenthin Y, Lawrence SM, Mulders AM, Buckley CE, Weyeneth S, Pomjakushina E, Conder K
Resonant soft x-ray powder diffraction study to determine the orbital ordering in A-site-ordered SmBaMn$_2$O$_6$
PHYSICAL REVIEW B 77, 060402 (2008)

Giller L, Filges U, Kuehne G, Wohlmuther M, Zanini L
Validation of Monte-Carlo simulations with measurements at the ICON beam-line at SINQ
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 586, 59 (2008)

Gironnet J, Mikhailik VB, Kraus H, De Marcillac P, Coron N
Scintillation studies of Bi$_4$Ge$_3$O$_{12}$ (BGO) down to a temperature of 6K
NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 594, 358 (2008)

Grimmer H
Elastic properties of two-dimensional quasicrystals
ACTA CRYSTALLOGRAPHICA SECTION A 64, 459 (2008)

Harris AB, Kenzelmann M, Aharony A, Entin-Wohlman O
Effect of inversion symmetry on the incommensurate order in multiferroic RMn$_2$O$_5$ (R=rare earth)
PHYSICAL REVIEW B 78, 014407 (2008)

A 140 GHz prepolarizer for dissolution dynamic nuclear polarization

Kawasaki Y, Gavilano JL, Roessli B, Andreica D, Baines CH, Pomjakushina E, Conder K, Ott HR
muSR studies of CePd$_2$In at low temperatures
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 69, 3149 (2008)

Kenzelmann M, Harris AB
Comment on "Ferroelectricity in spiral magnets"
PHYSICAL REVIEW LETTERS 100, 089701 (2008)

Coupled superconducting and magnetic order in CeCoIn$_5$
SCIENCE 321, 1652 (2008)

Evidence of nodeless superconductivity in FeSe$_{0.85}$ from a muon-spin-rotation study of the in-plane magnetic penetration depth
PHYSICAL REVIEW B 78, 220510 (2008)

Oxygen isotope effects on the superconducting transition and magnetic states within the phase diagram of Y$_1$-xPr$_x$Ba$_2$Cu$_3$O$_{7-\delta}$
PHYSICAL REVIEW LETTERS 101, 077001 (2008)
Universal correlations of isotope effects in Y1-xPrxBa2Cu3O7-delta
PHYSICAL REVIEW B 77, 104530 (2008)

Kim JH, Lee SH, Park SI, Kenzelmann M, Harris AB, Schefer J, Chung JH, Majkrzak CF,
Takeda M, Wakimoto S, Park SY, Cheong SW, Matsuda M, Kimura H, Noda Y, Kakurai K
Spiral spin structures and origin of the magnetoelectric coupling in YMn2O5
PHYSICAL REVIEW B 78, 245115 (2008)

Kurdzesau F, van den Brandt B, Comment A, Hautle P, Jannin S, van der Klink JJ, Konter JA
Dynamic nuclear polarization of small labelled molecules in frozen water-alcohol solutions
JOURNAL OF PHYSICS D-APPLIED PHYSICS 41, 155506 (2008)

Lawes G, Kenzelmann M, Broholm C
Magnetically induced ferroelectricity in the buckled Kagome antiferromagnet Ni3V2O8
JOURNAL OF PHYSICS-CONDENSED MATTER 434205, 434205 (2008)

Lierke EG, Holitzner L
Perspectives of an acoustic-electrostatic-electrodynamic hybrid levitator for small fluid and
solid samples
MEASUREMENT SCIENCE AND TECHNOLOGY 19, 115803 (2008)

Luetkens H, Stingaciu M, Pashkevich YG, Conder K, Pomjakushina E, Gusev AA, Lamonova
KV, Lemmens P, Klaus HH
Microscopic evidence of spin state order and spin state phase separation in layered cobaltites
RBaCo2O5.5 with R = Y, Tb, Dy, and Ho
PHYSICAL REVIEW LETTERS 101, 017601 (2008)

Marini C, Arcangeletti E, Di Castro D, Baldassare L, Perucchi A, Lupi S, Malavasi L, Boeri L,
Pomjakushina E, Conder K, Postorino P
Optical properties of V1-xCr(x)O(2) compounds under high pressure
PHYSICAL REVIEW B 77, 235111 (2008)

Medarde M, Fernandez-Diaz MT, Lacorre P
Long-range charge order in the low-temperature insulating phase of PrNiO3
PHYSICAL REVIEW B 77, 212101 (2008)

Piegsa FM, Schneider M
A short-length neutron transmission polariser for large beam cross-sections
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-
ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 594, 74 (2008)

Piegsa FM, Van den Brandt B, Hautle P, Konter JA
Neutron spin phase imaging
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-
ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 586, 15 (2008)

Piegsa FM, van den Brandt B, Glaettli H, Hautle P, Kohlbrecher J, Konter JA, Schlimme BS,
Zimmer O
A Ramsey apparatus for the measurement of the incoherent neutron scattering length of the
deuteron
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-
ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 589, 318 (2008)

T, Pomjakushina E, Conder K, Khomskii DI
Spin-State Polaron in Lightly-Hole-Doped LaCoO3
PHYSICAL REVIEW LETTERS 101, 247603 (2008)

Polarization analysis in soft X-ray diffraction to study magnetic and orbital ordering

JOURNAL OF SYNCHROTRON RADIATION 15, 469 (2008)

Stingaciu M, Pomjakushina E, Grimmer H, Trottmann M, Conder K

Crystal growth of Tb0.9Dy0.1BaCO2O5+delta using travelling solvent floating zone method

JOURNAL OF CRYSTAL GROWTH 310, 1239 (2008)

Van den Brandt B, Hautle P, Konter JA, Kurdzesau F

Dynamic Nuclear Polarization - from Polarized Targets to Metabolic Imaging

APPLIED MAGNETIC RESONANCE 34, 475 (2008)

LIST OF PUBLICATIONS

F. Kurdzesau, P. Hautle, J. van der Klink, B. van den Brandt, J.A. Konter, S. Jannin, A.
Comment
Study of the DNP Build-up Time versus Applied Microwave Frequency in a Frozen Solution of Na Acetate in Ethanol/Water Doped with TEMPO
EUROMAR-2008, St. Petersburg, Russia, July 6-11, 2008

F. Kurdzesau, A. Comment, S. Jannin, P. Hautle, J.A. Konter, J. van der Klink, B. van den Brandt
Preparation of polarized solutions on 13C, 15N and 6Li labeled compounds for MRI/metabolic experiments
EUROMAR-2008, St. Petersburg, Russia, July 6-11, 2008

E.G. Lierke and L. Holitzner
Perspectives of an acoustic-electrostatic / electrodynamic hybrid levitator for small fluid and solid samples

S. Mayer and U. Filges
Uncertainty Assessment of a Photon Irradiation Facility
Workshop Proceedings, 8-10 October 2007, Bologna, Italy, ISBN 978-3-9805741-9-8

J. P. Urrego-Blanco, C.R. Bingham, B. van den Brandt, A. Galindo-Uribarri, P. Hautle, J. A. Konter, E. Padilla-Rodal, P. Schmelzbach
Development of Polarized Proton Targets for Reactions with Radioactive Ion Beams
SPIN2008, The 18th International Symposium on Spin Physics, Virginia, USA, October 6-11 2008

F.M. Piegsa et al.
Polarized Solid Targets at PSI: Recent Developments and Novel Applications in DNP
SPIN2008, The 18th International Symposium on Spin Physics, Virginia, USA, October 6-11 2008

B. van den Brandt, P. Hautle, J.A. Konter, F.M. Piegsa, J.P. Urregro-Blanco
Dilution refrigerators for particle physics experiments: two variants with sample cooling by helium-4
25th International Conference on Low Temperature Physics (LT25), Amsterdam, The Netherlands, August 6-13, 2008
CONFERENCE, WORKSHOP AND SEMINAR CONTRIBUTIONS

R. Ackermann, U. Filges, J. P. Embs, R. Hempelmann
Ray-trace simulations of polarizing components for the cold neutron TOF spectrometer FOCUS
Bunsentagung, 1-3 May, 2008, Saarbrücken, Germany

K. Conder, M. Stingaciu, E. Pomjakushina, A. Podlesnyak
Layered cobaltites: synthesis, crystal growth, transport and magnetic properties

K. Conder
Oxygen nonstoichiometry in perovskites: origin, control and determination
Perovskite meeting (ETHZ, EMPA, PSI) 26.05.2008, PSI West

U. Filges
Validation of the RNR11-SINQ beamline and FOCUS instrument with different Monte Carlo packages
MCNSI meeting, 25-28 June, 2008, Ajaccio, France

Th. Gahl, R. Hempelmann, F. Jurányi, J. Mesot, W.-C. Pilgrim, Th. Straessle
BRISP and FOCUS-2D – Two similar Large Area Position Sensitive Detector Projects for TOF applications at the ILL and the PSI
Poster, Deutschen Neutronenstreuungstagung 15.-17.9.2008, München:

F. Gallmeier, M. Wohlmuther and U. Filges
Implementation of Neutron Mirror Effects into MCNPX and its Validation
11th International Conference on Radiation Shielding, April 13-18. 2008, Pine Mountain, Georgia, USA

Johann Gironnet, Noël Coron, Pierre de Marcillac, Hans Kraus, Vitalii Mikhalik
Scintillation properties of Bi4Ge3O12 (BGO) down to a temperature of 20mK
Cryoscint, IPNL, Lyon, June 6th, 2008

M. Koennecke, M. Zolliker, PSI, N. Hauser, T. Lam, F. Fransecini
Treepath Based Instrument Control
ANSTO NOBUGS 2008, November 3-5, Sydney, Australia

M. Koennecke
PSD 4 Circle Data Processing at SINQ
PSD4C Workshop, November 13, Paris

Combining neutron diffraction and XAS: gap opening through charge disproportionation in RNI03 perovskites

Gap opening through charge disproportionation in RNI03 perovskites (R = rare earth): new neutron diffraction and x-ray absorption results

F. M. Piegsa
Spin Phase Neutron Spin Phase Imaging
Workshop on Neutron Wavelength dependent Imaging (TUM), München, April 21-24, 2008
F.M. Piegsa et al.
An accurate measurement of the spin-dependent neutron-deuteron scattering length

F.M. Piegsa, B. van den Brandt, P. Hautle, J.A. Konter
First results of the Neutron Spin Phase Imaging-Technique
Sixth International Topical Meeting on Neutron Radiography, ITMNR-6, Kobe, Japan, 14-18 September, 2008

Ekaterina V. Pomjakushina, Kazimierz Conder, Marian Stingaciu, Andrey Podlesnyak
Layered and cubic cobaltites grown by floating zone, structural and magnetic properties study

J.P. Urrego-Blanco, C.R. Bingham, B. van den Brandt, A. Galindo-Uribarri, P. Hautle, J.A. Konter, E. Padilla-Rodal, P.A. Schmelzbach
Development of Polarized Proton Targets for Reactions with Radioactive Ion Beams at Low and Intermediate Energies
Nuclear Structure 2008, National Superconducting Cyclotron Laboratory, East Lansing, MI, June 3-6, 2008

B. van den Brandt, P. Hautle, J.A. Konter, F.M. Piegsa, J.P. Urrego-Blanco
Polarised nuclei: From fundamental nuclear physics to applications in neutron scattering and magnetic resonance scattering AIP Proc. 980 (2008) 312
12th International Workshop Polarized Ion Sources, Targets and Polarimetry - PSTP2007, September 10-14, 2007, Brookhaven National Laboratory (BNL)

INVITED TALKS 2008

K. Conder
Crystal growth of oxides by Optical Floating Zone technique
MaMaSELF Status Meeting RIGI KULM, SWITZERLAND, 6-9 Mai 2008

M. Medarde
Neutron scattering instrumentation at the SINQ
IV Reunión de la Sociedad Española de Técnicas Neutrónicas, Sant Feliu de Guixols, (Spain), (8-10)-9-2008.

F.M. Piegsa et al.
Polarized Solid Targets at PSI: Recent Developments and Novel Applications in DNP
2. SPIN2008, The 18th International Symposium on Spin Physics, Virginia, USA, October 6-11 2008

F.M. Piegsa, B. van den Brandt, P. Hautle, J.A. Konter,
First results of the Neutron Spin Phase Imaging-Technique
Sixth International Topical Meeting on Neutron Radiography, ITMNR-6, Kobe, Japan, 14-18 September, 2008

J. P. Urrego-Blanco, C.R. Bingham, B. van den Brandt, A. Galindo-Uribarri, P. Hautle, J. A. Konter, E. Padilla-Rodal, P. Schmelzbach
Development of Polarized Proton Targets for Reactions with Radioactive Ion Beams
SPIN2008, The 18th International Symposium on Spin Physics, Virginia, USA, October 6-11 2008
COMMITTEES

M. Medarde
Member of College 5b (magnetism). Institut Laue-Langevin, France (until April 2008).

LECTURES AND COURSES 2008

K.Conder Keramik II (Semesterprogramm 327-0603-00), Fakultät Werkstoffe ETH Zürich, (together with Prof. L. Gauckler)
LIST OF PUBLICATIONS (PEER REVIEWED)

Bonda M, Holzapfel M, de Brion S, Darie C, Feher T, Baker PJ, Lancaster T, Blundell SJ, Pratt FL
Effect of magnesium doping on the orbital and magnetic order in LiNiO₂
PHYSICAL REVIEW B 78, 109903 (2008)

Tuning competing orders in La₂₋ₓSrₓCuO₄ cuprate superconductors by the application of an external magnetic field
PHYSICAL REVIEW B 78, 104525 (2008)

Two-step magnetic ordering in quasi-one-dimensional helimagnets: Possible experimental validation of Villain’s conjecture about a chiral spin liquid phase
PHYSICAL REVIEW LETTERS 100, 057203 (2008)

Deac IG, Tetean R, Andreica D, Burzo E
Magnetic and magnetoresistive properties of Pr₁₋ₓCaₓCoO₃ (x=0.3, 0.5) cobaltites
IEEE TRANSACTIONS ON MAGNETICS 44, 2922 (2008)

Pressure effects on the magnetic transition temperature in ordered double perovskites
PHYSICAL REVIEW B 78, 184416 (2008)

Direct measurement of the electronic spin diffusion length in a fully functional organic spin valve by low-energy muon spin rotation
NATURE MATERIALS doi:10.1038/nmat2333 (2008)

Intrinsic mobility limit for anisotropic electron transport in Alq(3)
PHYSICAL REVIEW LETTERS 100, 116601 (2008)

Fan I, Chow KH, Hitti B, Scheuermann R, MacFarlane WA, Mansour AI, Schultz BE, Egilmez M, Jung J, Lichti RL
Optically induced dynamics of muonium centers in Si studied via their precession signatures
PHYSICAL REVIEW B 77, 035203 (2008)

Influence of photoexcitation on the diamagnetic muonium states in Ge studied via their precession signatures
PHYSICAL REVIEW B 78, 153203 (2008)

Electronic Liquid Crystal State in the High-Temperature Superconductor YBa$_2$Cu$_3$O$_{6.45}$
Science 319, 597 (2008)

Strong coupling between magnetic and structural order parameters in SrFe$_2$As$_2$
PHYSICAL REVIEW B 78, 180504 (2008)

Kawasaki Y, Gavilano JL, Roessli B, Andreica D, Baines CH, Pomjakushina E, Conder K, Ott HR
muSR studies of CePd$_3$In at low temperatures
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 69, 3149 (2008)

Evidence of nodeless superconductivity in FeSe0.85 from a muon-spin-rotation study of the in-plane magnetic penetration depth
PHYSICAL REVIEW B 78, 220510 (2008)

Khasanov R, Klamut PW, Shengelaya A, Bukowski Z, Savic IM, Baines C, Keller H
Muon-spin rotation measurements of the penetration depth of the Mo$_3$Sb$_7$ superconductor
PHYSICAL REVIEW B 78, 014502 (2008)

Evidence for a Competition between the Superconducting State and the Pseudogap State of (BiPb)$_2$(SrLa)$_2$CuO$_{6.86}$ from Muon Spin Rotation Experiments
PHYSICAL REVIEW LETTERS 101, 227002 (2008)

Khasanov R, Luetkens H, Amato A, Klaus HH, Ren ZA, Yang J, Lu W, Zhao ZX
Muon spin rotation studies of SmFeAsO$_{0.85}$ and NdFeAsO$_{0.85}$ superconductors
PHYSICAL REVIEW B 78, 092506 (2008)

Oxygen isotope effects on the superconducting transition and magnetic states within the phase diagram of Y$_{1-x}$Pr$_x$Ba$_2$Cu$_3$O$_{7-\delta}$
PHYSICAL REVIEW LETTERS 101, 077001 (2008)

s-wave symmetry along the c-axis and s+d in-plane superconductivity in bulk YBa$_2$Cu$_3$O$_{6.86}$
JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM 21, 81 (2008)

Correlation between the transition temperature and the superfluid density in BCS superconductor NbB$_{2+x}$
PHYSICAL REVIEW B 77, 064506 (2008)

Nodeless superconductivity in the infinite-layer electron-doped cuprate superconductor Sr$_{0.5}$La$_{0.5}$CuO$_2$
PHYSICAL REVIEW B 77, 184512 (2008)

Universal correlations of isotope effects in Y$_{1-x}$Pr$_x$Ba$_2$Cu$_3$O$_{7-\delta}$
PHYSICAL REVIEW B 77, 104530 (2008)

Commensurate spin density wave in LaFeAsO: A local probe study
PHYSICAL REVIEW LETTERS 101, 077005 (2008)
Komissarov I, Zhang Y, Nieuwenhuys GJ, Morenzoni E, Prokscha T, Suter A, Aarts J
Investigating the occurrence of magnetic order in strained thin films of Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ by
muon spin relaxation
EPL 83, 47013 (2008)

Lancaster T, Blundell SJ, Baker PJ, Brooks ML, Hayes W, Pratt FL, Coldea R, Sorgel T,
Jansen M
Anomalous temperature evolution of the internal magnetic field distribution in the charge-
ordered triangular antiferromagnet AgNiO$_2$
PHYSICAL REVIEW LETTERS 100, 017206 (2008)

Luetkens H, Klauss HH, Khasanov R, Amato A, Klingeler R, Hellmann I, Leps N, Konrad A,
Hess C, Kohler A, Behr G, Werner J, Buchner B
Field and temperature dependence of the superfluid density in LaFeAsO$_{1-x}$F$_x$
superconductors: A muon spin relaxation study
PHYSICAL REVIEW LETTERS 101, 097009 (2008)

Luetkens H, Stingaciu M, Pashkevich YG, Conder K, Pomjakushina E, Gusev AA, Lamonova
KV, Lemmens P, Klauss HH
Microscopic evidence of spin state order and spin state phase separation in layered cobaltites
RBa$_2$Co$_{3-x}$O$_{5.5}$ with R = Y, Tb, Dy, and Ho
PHYSICAL REVIEW LETTERS 101, 017601 (2008)

Mamedov T, Baturin A, Blank V, Herlach D, Gorelkin V, Gritsaj K, Kuznetsov M, Nosukhin S,
Ralchenko V, Stoykov A, Terentiev S, Zhukov V, Zimmermann U
Non-equilibrium charge carrier dynamics in synthetic diamond studied by muSR-method
DIAMOND AND RELATED MATERIALS 17, 1221 (2008)

McKenzie I, Dilger H, Roduner E, Scheuermann R, Zimmermann U
Solvation of a hydrogen isotope in aqueous methanol, NaCl, and KCl solutions
JOURNAL OF PHYSICAL CHEMISTRY B 112, 3070 (2008)

Morenzoni E, Luetkens H, Prokscha T, Suter A, Vongtragool S, Galli F, Hesselberth MBS,
Garifianov N, Khasanov R
Depth-dependent spin dynamics of canonical spin-glass films: A low-energy muon-spin-
rotation study
PHYSICAL REVIEW LETTERS 100, 147205 (2008)

Mukai K, Sugiyama J, Ikedo Y, Andreica D, Amato A, Brewer JH, Ansaldo EJ, Russo PL,
Chow KH, Aiyoshi K, Ohzuku T
Micro- and macroscopic magnetism on layered cobalt dioxide Li$_x$CoO$_2$ (0.1 <= x <= 1)
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 69, 1479 (2008)

Ofer R, Keren A, Chmaissem O, Amato A
Universal doping dependence of the ground-state staggered magnetization of cuprate
superconductors
PHYSICAL REVIEW B 78, 140508 (2008)

Palczewski AD, Kondo T, Khasanov R, Kolesnikov NN, Timonina AV, Rotenberg E, Ohta T,
Bendounan A, Sassa Y, Fedorov A, Palles H, Santander-Syro AF, Chang J, Shi M, Mesot J,
Fretwell HM, Kaminski A
Origins of large critical temperature variations in single-layer cuprates
PHYSICAL REVIEW B 78, 054523 (2008)
The new μE4 beam at PSI: A hybrid-type large acceptance channel for the generation of a high intensity surface-muon beam

Ricco M, Gianferrari F, Pontiroli D, Belli M, Bucci C, Shiroka T
Unconventional isotope effects in superconducting fullerides
EPL 81, 57002 (2008)

Saoudi M, Fritzschke H, Nieuwenhuys GJ, Hesselberth MBS
Size effect in the spin glass magnetization of thin AuFe films as studied by polarized neutron reflectometry
PHYSICAL REVIEW LETTERS 100, 057204 (2008)

Shiroka T, Scheuermann R, Morenzoni E, Stoykov A, Prokscha T
Exploring the performance of μSR position-sensitive detectors through numerical simulations

Solt G, Zimmermann U, Herlach D
Dynamics of implanted muons at low temperatures in white tin
PHYSICA B-CONDENSED MATTER 403, 3351 (2008)

Direct observation of a Fermi surface and superconducting gap in LuNi$_2$B$_2$C
PHYSICAL REVIEW B 77, 134520 (2008)

Storchak VG, Brewer JH, Eshchenko DG, Stubbs SL, Cottrell SP, Nikonov AA, Parfenov OE, Marenkin SF
Weak High-Temperature Bulk Ferromagnetism in Mn-Doped CdGeAs$_2$ Semiconductors

Storchak VG, Eshchenko DG, Morenzoni E, Prokscha T, Suter A, Liu XY, Furdyna JK
Spatially resolved inhomogeneous ferromagnetism in (Ga,Mn)As diluted magnetic semiconductors: A microscopic study by muon spin relaxation
PHYSICAL REVIEW LETTERS 101, 027202 (2008)

Comparative μSR investigation of static magnetic order and anisotropy of the pure and Pb-doped Bi$_2$Sr$_2$Co$_2$O$_y$ layered cobalt dioxides
PHYSICAL REVIEW B 78, 094422 (2008)

Electronic and magnetic properties of novel layered cobalt dioxides A_xCoO$_2$ with $A = Li, Na, and K$

Static magnetic order in the triangular lattice of Li$_x$NiO$_2$ (x <= 1): Muon-spin spectroscopy measurements
PHYSICAL REVIEW B 78, 144412 (2008)
Static magnetic order in metallic triangular antiferromagnet Ag$_2$MnO$_2$ detected by muon-spin spectroscopy
PHYSICAL REVIEW B 78, 104427 (2008)

Muon-spin rotation and relaxation study on the quasi-one-dimensional compounds Ca$_3$CoRhO$_6$, Sr$_3$CoRh$_2$O$_9$, and Sr$_3$CoRh$_3$O$_{12}$
PHYSICAL REVIEW B 77, 092409 (2008)

Wagner W, Seidel M, Morenzoni E, Groeschel F, Wohlmuther M, Daum M
PSI status 2008 - Development at the 590 MeV proton accelerator facility
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT 11, 18 (2008)

Finite gap behaviour in the superconductivity of the ‘infinite layer’ n-doped high-T-c superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$
JOURNAL OF PHYSICS-CONDENSED MATTER 20, 104237 (2008)

Yaouanc A, de Reotier PD, Chapuis Y, Marin C, Lapertot G, Cervellino A, Amato A
Short-range magnetic ordering process for the triangular-lattice compound NiGa$_2$S$_4$: A positive muon spin rotation and relaxation study
PHYSICAL REVIEW B 77, 092403 (2008)

LIST OF PUBLICATIONS

D.G. Eshchenko, V.G. Storchak and S.P Cottrell
Muon track induced current measurements in semi-insulating GaAs (poster)
μSR 2008 - 11th International Conerence on Muon Spin Rotation, Relaxation, Resonance, Tsukuba, Japan, July 21-25, 2008

D.G. Eshchenko, V.G. Storchak and S.P Cottrell
RF-μSR in electric fields studies of GaP (poster)
μSR 2008 - 11th International Conerence on Muon Spin Rotation, Relaxation, Resonance, Tsukuba, Japan, July 21-25, 2008

D.G. Eshchenko, V.G. Storchak, E. Morenzoni, T. Prokscha, A. Suter, X. Liu and J.K. Furdyna
Low Energy Muon studies of semiconductor interfaces (poster)
μSR 2008 - 11th International Conerence on Muon Spin Rotation, Relaxation, Resonance, Tsukuba, Japan, July 21-25, 2008

D.G. Eshchenko, V.G. Storchak, E. Morenzoni and D. Andreica
High-pressure Muon Spin Rotation studies of magnetic semiconductors: EuS (poster)
μSR 2008 - 11th International Conerence on Muon Spin Rotation, Relaxation, Resonance, Tsukuba, Japan, July 21-25, 2008

E. Morenzoni,
Yamazaki Prize Lecture
A (closer) look below surfaces and at heterostructures with muons
To appear in Physica B
T. Prokscha, E. Morenzoni, D.G. Eshchenko, H. Luetkens, G.J. Nieuwenhuys, A. Suter
Near surface muonium states in germanium

A novel VME based muSR data acquisition system at PSI
Proceedings of the 11th International Conference on muSR, Tsukuba (Japan), July 21-25.

Magnetic Polarons in Magnetic Semiconductors
Proceedings of the 11th International Conference on muSR, Tsukuba (Japan), July 21-25.

B.M. Wojek, E. Morenzoni, D.G. Eshchenko, A. Suter, T. Prokscha, E. Koller, E. Treboux, Ø. Fischer, H. Keller
Magnetism and superconductivity in cuprate heterostructures studied by low energy muSR
Proceedings of the 11th International Conference on muSR, Tsukuba (Japan), July 21-25.
Physica B (2009), DOI:10.1016/j.physb.2008.11.189

H.V. Alberto, J. Piroto Duarte, A. Weidinger, R.C. Vilão, J.M. Gil, N. Ayres de Campos, K. Fostiropoulos, T. Prokscha, A. Suter, E. Morenzoni
Low-energy-muon [LEM] study of Znphthalocyanine and ZnO thin films
Proceedings of the 11th International Conference on muSR, Tsukuba (Japan), July 21-25.

T. Shiroka, T. Prokscha, E. Morenzoni, K. Sedlak
GEANT4 as a simulation framework in muSR
Proceedings of the 11th International Conference on muSR, Tsukuba (Japan), July 21-25.

CONFERENCE, WORKSHOP AND SEMINAR CONTRIBUTIONS

A. Amato,
Interplay Magnetism-Superconductivity in UCoGe
11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

T.C. Duan, T. Nakano, J. Matsumoto, I. Watanabe, T. Suzuki, T. Kawamata, A. Amato, F.L. Pratt and Y. Nozue
µSR Study on Ferromagnetic Properties of Rb Clusters Incorporated into Zeolite A
11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

Itinerant and localized magnetic correlations in URhGe and UGe2
11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

Paramagnetic nature of the layered cobalt dioxide with a double rocksalt-type block
11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

High pressure µSR study on cobalt oxide spinel
11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

\textit{\mu SR study on CuC}_{1-x}\textit{Mg}_{x}\text{O}_2}

11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

T.U. Ito, W. Higemoto, K. Ohishi, N. Nishida, R.H. Heffner, Y. Aoki, T. Onimaru, H.S. Suzuki, A. Amato

\textit{Observation of Quantized Muon Spin Precession Frequencies in Paramagnetic PrPb}_3

11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

\textit{Magnetism and Superconductivity in LaO}_{1-x}\textit{FxFeAs}

11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

E. Morenzoni

\textit{Investigation of proximity effects in high and low T}_C\textit{ heterostructures}

MaNEP Forum workshop, Neuchatel,15.1.2008

T. Nakano, J. Matsumoto, T.C. Duan, I. Watanabe, T. Suzuki, T. Kawamata, A. Amato, F.L. Pratt, Y. Nozue

\textit{Fast Muon Spin Relaxation in Ferromagnetism of Potassium Clusters in Zeolite A}

11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

\textit{Magnetism and Superconductivity in Heavy Fermion Superconductor CeCo(In}_{1-x}\textit{Cd}_x}_5

11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

\textit{A novel VME based \mu SR data acquisition system at PSI}

11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

K. Sedlak, R. Scheuermann, A. Stoykov, A. Amato

\textit{Simulation and Optimisation of the High-Field \mu SR Spectrometer Design}

11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

K. Sedlak, R. Scheuermann, A. Stoykov, A. Amato

\textit{Geant 4 simulation and optimisation of the high-field muSR spectrometer}

11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

K. Sedlak, T. Shiroka, A. Stoykov, R. Scheuermann

\textit{Geant 4 simulation of the upgraded ALC spectrometer}

11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008
A. Stoykov, R. Scheuermann, K. Sedlak, T. Shiroka, V. Zhuk:
First experience with G-APDs in muSR instrumentation

A. Stoykov, R. Scheuermann, K. Sedlak
Fast timing detectors for the high field muSR spectrometers
Poster Prize at the 11th International Conference on Muon Spin Rotation, Relaxation, and Resonance, Tsukuba, Japan, 21-25 July, 2008.

Static magnetic order on the triangular antiferromagnet Li$_x$NiO$_2$ with $x \leq 1$
11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

Static magnetic order and anisotropy of the layered cobalt dioxides Bi(1.6)Pb(0.4)Sr2Co2Oy and Bi$_2$SrCoO$_4$
11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

J. Sugiyama, Y. Ikedo, H. Nozaki, K. Mukai, D. Andreica, A. Amato, M. Ménétrier, D. Carlier, and C. Delmas
Annihilation of antiferromagnetic order in LiCoO$_2$ by excess Li
11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

J. Sugiyama, H. Nozaki, Y. Ikedo, K. Mukai, D. Andreica, A. Amato, H. Yoshida, and Z. Hiroi
Static magnetic order in metallic triangular antiferromagnet Ag$_2$MnO$_2$
11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

A. Suter
Search for Magnetism in HfO$_2$ Thin Films

A. Suter
The Thin Film Phase Diagram of La$_{2-x}$Sr$_x$CuO$_4$

A. Suter
Superconductivity in La$_2$CuO$_4$/La$_{1.56}$Sr$_{0.44}$CuO$_4$ Superlattices

μSR study of thiospinel CuCrZrS$_4$
11th International Conference on Muon Spin Relaxation, Rotation and Resonance, Tsukuba, Japan, 21-25th July 2008

B. M. Wojek, E. Morenzoni, D. G. Eshchenko, T. Prokscha, A. Suter, E. Koller, E. Treboux, O. Fischer, and H. Keller
Superconductivity and Magnetism in Cuprate Multi-layers (poster)
Annual meeting of the Swiss Physical Society, Genève, March 26-27, 2008
B.M. Wojek, E. Morenzoni, D.G. Eshchenko, T. Prokscha, A. Suter, E. Koller, E. Treboux, O. Fischer, and H. Keller

Magnetism and Superconductivity in Cuprate Heterostructures Studied by Low Energy muSR (poster)

muSR 2008 – 11th International Conerence on Muon Spin Rotation, Relaxation, & Resonance, Tsukuba, Japan, July 21-25, 2008

B.M. Wojek, E. Morenzoni, D.G. Eshchenko, A. Suter, T. Prokscha, E. Koller, E. Treboux, O. Fischer, and H. Keller

Magnetism and Superconductivity in Cuprate Heterostructures Studied by Low Energy muSR (poster)

7th PSI Summer School on Condensed Matter Research, Zuoz, August 16-22, 2008

INVITED TALKS

A. Amato,
Bulk μSR Facilities at PSI,
μSR User Meeting BVRA 2008, January 2008, Paul Scherrer Institute, Villigen Switzerland

A. Amato
Bulk MuSR: a tool to investigate nanometer scale phenomena - Introduction and selected examples
7th PSI Summer School on Condensed Matter Research, Zuoz, August 16-22, 2008

R. Khasanov
Two energy scales in the superconducting state of high-temperature cuprate superconductors: μSR and ARPES studies
Workshop on Metal Insulator transition in Cuprates (MICuO), 18 March 2008, Parma, Italy

R. Khasanov
Muon spin rotation study of the ternary non-centrosymmetric superconductors Li$_2$Pd,Pt$_{3-x}$B
Workshop on Non-Centrosymmetric Superconductors, 30-31 May, ETH Zurich

R. Khasanov
Magnetism and Superconductivity in RO$_{1-x}$FxFeAs and RFeAsO$_{1-x}$: A Local Probe Study
International Symposium on Fe-oxipnictide Superconductors, 28-29 June, Tokyo, Japan

R. Khasanov
Evidence for complex order parameters in cuprate superconductors
The 22nd General Conference of the Condensed Matter Division of the European Physical Society, 25-29 August, Rome, Italy

R. Khasanov
Partially superconducting "Fermi surface" in Bi2201: evidence for competition between superconductivity and pseudogap from superfluid density studies
Second CoMePhS Workshop in Controlling Phase Separation in Electronic Systems, 30 September - 4 October, Nafplion, Greece

R. Khasanov
μSR study of the superfluid response of Fe-based superconductors
LMU seminar, 11 November, PSI, Villigen

R. Khasanov
μSR study of the superfluid response of Fe-based superconductors
Zurich University seminar, 17 December

H. Luetkens,
Electronic Phase Diagram of LaO$_{1-x}$F$_x$FeAs:A Muon Spin Rotation Study (invited talk),
LMU Seminar on Fe-based Superconductors, 4.11.2008
E. Morenzoni
Depth dependent μSR on nanometer scale
International Symposium on Pulsed Neutron and Muon Sciences (IPS 08)
March 5-7, 2008, Mito, Japan

E. Morenzoni
A (closer) look below surfaces and at heterostructures with muons
(Yamazaki Prize Lecture)
International Conference on Muon Spin Rotation, Relaxation and Resonance, 21-25th July 2008, Tsukuba, Japan.

E. Morenzoni
Superconductivity and Magnetism in Cuprate Heterostructures
6th International Conference on Low Temperature Physics, 6.8-13.8.2008, Amsterdam

E. Morenzoni
Introduction to polarized low energy muons as depth dependent probes of thin films and heterostructures
7th PSI Summer School on Condensed Matter Research, Zuoz 17.8.2008

A. Maisuradze
Analysis of μSR spectra in the vortex state of type-II superconductor
Paul Scherrer Institut, 28 Feb. 2008

T. Prokscha
PSI Fast and Slow Muons
ISIS Muon Training Course, April 21-25, 2008

T. Prokscha
Thin-film investigations with low-energy muons (Non-locality and spintronics: what can low-energy muons tell us?)
PSI, Oct-24, 2008

A. Suter
Induced Superconductivity in La$_2$CuO$_4$/La$_{1.56}$Sr$_{0.44}$CuO$_4$ Superlattices
BVRA, Jan. 29, 2008, PSI, Switzerland

A. Suter
Supraleitung und Magnetismus in nominal nicht supraleitenden La$_{2.4}$Sr$_6$CuO$_4$ Übergittern
Nov. 10, 2008, Institute for Material Science, Darmstadt University of Technology, Germany

T. Shiroka
Computer Modelling and Simulations of Future Muon Sources
International Workshop on Next Generation Muon Sources, Cockcroft Institute, Daresbury Lab, UK, 8-9 April 2008.

B.M. Wojek
Superconductivity and Magnetism in Cuprate Heterostructures
Studied by Low Energy muSR Seminar in Festkörperphysik, Universität Zürich, May 14, 2008

LECTURES AND COURSES

H. Luetkens
20 Jahre PSI, "Neue Phänomene in mikroskopischen Dimensionen - Bausteine einer Zukunftstechnologie", Baden und Aarau, Germany, August, 2008,
E. Morenzoni
ETH Zürich, FS-2008
Physik mit Myonen: von der Atomphysik zur Festkörperphysik, Vorlesungen und Übungen

E. Morenzoni
ETH Zürich, FS-2008
Praktikum: Myon Spin Rotationsspektroskopie

A. Suter
20 Jahre PSI, "Neue Phänomene in mikroskopischen Dimensionen - Bausteine einer Zukunftstechnologie", Waldshut, Germany, August, 2008,

MEMBERSHIP IN EXTERNAL COMMITTEES

A. Amato
- Swiss Representative COST – Action P16, "Emergent Behaviour in Correlated Matter"
- Facility Subcommittee of the International Society for μSR Spectroscopy (ISMS)
- International Advisory Committee, 11th International Conference on Muon Spin Relaxation, Rotation and Resonance

D. Herlach
- Secretary, PSI μSR International Research Committee
- Swiss Delegate, International Society for μSR Spectroscopy (ISMS) Europe

H. Luetkens
- Executive committee member of the International Society for μSR Spectroscopy (ISMS)

E. Morenzoni
- Program Committee for muSR2008 (Tsukuba, Japan) International Advisory Committee for muSR2008 (Tsukuba, Japan)
- Program Committee for IPS08 (Mito, Japan)
- Program Committee of 7th PSI Summer School on Condensed Matter Research, Zuoz, Switzerland

AWARDS

E. Morenzoni
- Yamazaki Prize awarded by the International Society for μSR spin spectroscopy
LIST OF PUBLICATIONS IN 2008

A vertex trigger based on cylindrical multiwire proportional chambers

Wavelength shifter strips and G-APD arrays for the read-out of the z-coordinate in axial PET modules

I. Johnson, K. Jefimovs, O. Bunk, C. David, M. Dierolf, J. Gray, D. Renker and F. Pfeiffer
Coherent diffractive imaging using phase front modifications

P. Lecomte, D. Luckey, F. Nessi-Tedaldi, F. Pauss and D. Renker
Comparison between high-energy proton and charged pion induced damage in PbWO₄ calorimeter crystals

R-89-01 (PIBETA Collaboration), R-05-01 (PEN Collaboration)

W. Bertl
Form factors for radiative pion and kaon decays
in: C. Amsler et al., Review of Particle Physics,

E. Friež, M. Bychkov, and D. Počanić
The automatic gain-matching in the PIBETA CsI calorimeter

R-97-05 (MuCap Collaboration), R-08-01 (MuSun Collaboration)

C. Petitjean
Muon capture experiments in hydrogen and deuterium
R-98-01 (Pionic Hydrogen)

Accurate miscut angle determination for spherically bent Bragg crystals

R-99-05 (MEG Collaboration)

Development of a large volume zero boil-off liquid xenon storage system for muon rare decay experiment (MEG)

R-99-06 (FAST Collaboration)

A. Barczyk et al. (PSI: K. Deiters, C. Petitjean)

Measurement of the Fermi constant by FAST

R-00-03 (UCN Source Project), R-05-03 (nEDM Collaboration)

Direct experimental verification of neutron acceleration by the material optical potential of solid deuterium

Neutron velocity distribution from a superthermal solid 2H$_2$ ultracold neutron source

Surface characterization of diamond-like carbon for ultracold neutron storage
Storage of ultracold neutrons in high resistivity non-magnetic materials with high Fermi potential

Tailored instrumentation for long-pulse neutron spallation sources

P.-N. Seo *et al.* (PSI: B. Lauss)
High-efficiency resonant RF spin rotator with broad phase space acceptance for pulsed polarized cold neutrons

R-03-01

F.M. Piegsa, B. van den Brandt, H. Glättli, P. Hautle, J. Kohlbrecher, J.A. Konter, B.S. Schlimme and O. Zimmer
A Ramsey apparatus for the measurement of the incoherent neutron scattering length of the deuteron

CMS Collaboration

Design and performance of the silicon sensors for the CMS barrel pixel detector

P. Adzic *et al.* (CMS Electromagnetic Calorimeter Group, PSI : K. Deiters, Q. Ingram, C. Marchica, D. Renker)
Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up
JINST **3**, P10007 (2008)

The CMS experiment at the CERN LHC
JINST **3**, S08004 (2008)
H1 Collaboration

F.D.Aaron et al. (PSI: S. Egli, R. Eichler, M. Hildebrandt, R. Horisberger)
Multi-lepton production at high transverse momenta in ep collisions at HERA

F.D.Aaron et al. (PSI: S. Egli, R. Eichler, M. Hildebrandt, R. Horisberger)
Search for excited electrons in ep collisions at HERA

F.D.Aaron et al. (PSI: S. Egli, R. Eichler, M. Hildebrandt, R. Horisberger)
Measurement of the proton structure function \(F_2(x,Q^2) \) at low x

F.D.Aaron et al. (PSI: S. Egli, R. Eichler, M. Hildebrandt, R. Horisberger)
A search for excited neutrinos in e-p collisions at HERA

F.D.Aaron et al. (PSI: S. Egli, R. Eichler, M. Hildebrandt, R. Horisberger)
Three- and four-jet production at low x at HERA

F.D.Aaron et al. (PSI: S. Egli, R. Eichler, M. Hildebrandt, R. Horisberger)
Measurement of isolated photon production in deep-inelastic scattering at HERA

F.D.Aaron et al. (PSI: S. Egli, R. Eichler, M. Hildebrandt, R. Horisberger)
Measurement of deeply virtual Compton scattering and its t-dependence at HERA

L3 Collaboration

P. Achard et al. (PSI: K. Deiters)
Study of the solar anisotropy for cosmic ray primaries of about 200- GeV energy with the L3 + C muon detector

Theory Group

A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini
NLO QCD corrections to \(t^t b^b \) production at the LHC: 1. quark-antiquark annihilation
S. Brensing, S. Dittmaier, M. Krämer and A. Mück
Radiative corrections to W-boson hadroproduction: Higher-order electroweak and supersymmetric effects

J. Brod, F. Fugel and B. A. Kniehl
Dominant two-loop electroweak corrections to the hadroproduction of a pseudoscalar Higgs boson and its photonic decay

M. Ciccolini, A. Denner and S. Dittmaier
Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC

A. Denner, B. Jantzen and S. Pozzorini
Two-loop electroweak next-to leading logarithms for processes involving heavy quarks
JHEP 0811, 062 (2008)

R. Horsky, M. Krämer, A. Mück and P. Zerwas
Squark cascade decays to charginos/neutralinos: Gluon radiation

M. Mühlleitner and M. Spira
Higgs boson production via gluon fusion: Squark loops at NLO QCD

D. Noth and M. Spira
Higgs boson couplings to bottom quarks: Two-loop supersymmetry-QCD corrections

CONTRIBUTIONS TO CONFERENCES AND WORKSHOPS

PEN collaboration

M. Bychkov
Muon radiative decay and limits on non-(V-A) weak interaction
American Physical Society, Division of Nuclear Physics Fall Meeting, Oakland, CA, 23-26 October 2008
E. Frlež
Central particle tracking in the PEN experiment
American Physical Society, Division of Nuclear Physics Fall
Meeting, Oakland, CA, 23-26 October 2008

E. Frlež et al. (PSI: W. Bertl)
Precise measurement of $\pi^+\rightarrow e^+\nu$ branching ratio
Contribution to New Trends in High Energy Physics:
Experiment, phenomenology, theory,
Yalta, Crimea, (Ukraine), 27 September - 4 October 2008
arXiv:0812.2829 [hep-ex]

A. Palladino
Waveform analysis for a precision pion decay measurement
American Physical Society, Division of Nuclear Physics Fall
Meeting, Oakland, CA, 23-26 October 2008

MEG Collaboration

B. Keil, S. Lehner and S. Ritt
Application of a 5 GSPS analogue ring sampling chip for low-cost single-shot BPM systems
Proceedings of 11th European Particle Accelerator Conference (EPAC 08), Magazzini del
Cotone, Genoa (Italy) 23 - 27 June 2008, pp TUPC048.

S. Ritt
Design and performance of the 6 GHz waveform digitizing chip DRS4
Proceedings of the 2008 Nuclear Science Symposium (NSS/MIC 2008), Dresden (Germany),
19 - 25 October 2008

Pionic Hydrogen

D. Gotta, F. Amaro, D. F. Anagnostopoulos, S. Biri, D. S. Covita, H. Gorke, A. Gruber,
M. Hennebach, A. Hirtl, T. Ishiwatari, P. Indelicato, Th. Jensen, E.-O. Le Bigot, J. Marton,
M. Nikipelov, J.M.F. dos Santos, S. Schlesser, Ph. Schmid, L. M. Simons, Th. Strauch,
M. Trassinelli, J. F. C. A. Veloso and J. Zmeskal
Conclusions from recent pionic-atom experiments
Proceedings of the International Workshop on Cold Antimatter Plasmas and Application to
Fundamental Physics (PBAR 2008), eds. Y. Kanai and Y. Yamazaki, 20 - 22 February 2008,
Naha, Okinawa (Japan)
Muonic Hydrogen

T. Nebel
News from the muonic hydrogen Lamb shift experiment
Poster at the Int. Conf. on Precision Physics of Simple Atomic Systems (PSAS2008),
Windsor, Ontario (Canada), 21 - 26 July 2008

T. Nebel
News from the muonic hydrogen Lamb shift experiment
Poster at the 21st Int. Conf. Atomic Physics (ICAP2008),

UCN Collaboration

J. Krempel *et al.*
Progress on the GAMS-6 double crystal gamma-spectrometer
Proceedings of the Conference on Precision Electromagnetic Measurements,
Broomfield, Colorado (USA), 8 - 13 June 2008

B. Lauss
UCN guides for the ultra-cold neutron source at PSI
Poster at the International Workshop on Particle Physics with Slow Neutrons,
Grenoble (France), 29 - 31 May 2008

B. Lauss
Fundamentale Physik mit ultrakalten Neutronen am Paul Scherrer Institut
Poster at the Jahrestagung der "Osterreichischen Physikalischen Gesellschaft,
Leoben (Austria), 22 - 26 September 2008

G. Zsigmond
Monte Carlo optimization of the polarized beamlines of the ultracold neutron source at PSI
Poster at the International Workshop on Particle Physics with Slow Neutrons,
Grenoble (France), 29 - 31 May 2008

CMS Collaboration

W. Erdmann
Vertex reconstruction at the CMS experiment
Theory Group

N.E. Adam et al. (PSI: M. Ciccolini, A. Denner, M. Spira)
Higgs working group summary report

Z. Bern et al. (PSI: A. Denner)
The NLO multileg working group: Summary report

A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini
NLO QCD corrections to $pp \rightarrow t \bar{t} b \bar{b}$ via quark anti-quark annihilation
Proceedings of 9th Workshop on Elementary Particle Theory:
Loops and Legs in Quantum Field Theory, Sondershausen (Germany), 20 - 25 April 2008

C. Buttar et al. (PSI: B. Jantzen)
Standard Model handles and candles working group: Tools and jets summary report
Report of SMHC working group for the Workshop "Physics at TeV Colliders",
Les Houches (France), 11 - 29 June, 2007

M. Ciccolini, A. Denner and S. Dittmaier
Strong and electroweak NLO corrections to Higgs-boson production in vector-boson fusion at the LHC
Proceedings of 9th Workshop on Elementary Particle Theory:
Loops and Legs in Quantum Field Theory, Sondershausen (Germany), 20 - 25 April 2008

A. Denner, B. Jantzen and S. Pozzorini
Two-loop electroweak Sudakov logarithms for massive fermion scattering
Proceedings of the 8th International Symposium on Radiative Corrections (RADCOR07), Florence (Italy), 1 - 5 October 2007

T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein
FeynHiggs and more
Proceedings of the 9th DESY Workshop on Elementary Particle Theory,
Sondershausen (Germany), 20 - 25 April 2008
T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein
Two-loop corrections to the charged Higgs-boson mass in the MSSM
Proceedings of the 9th DESY Workshop on Elementary Particle Theory,
Sondershausen (Germany), 20 - 25 April 2008

K. Kampf, J. Novotny and J. Trnka
Renormalization of tensor self-energy in resonance chiral theory
Contribution to Hadron structure 07, Slovakia

K. Kampf, M. Knecht, J. Novotny and M. Zdrahal
Dispersive representation of $K \to 3\pi$ amplitudes and cusps
Contribution to QCD 08, Montpellier (France)

K. Kampf, J. Novotny and J. Trnka
Renormalization of the antisymmetric tensor field propagator and dynamical generation of the 1^+-mesons in resonance chiral theory
Contribution to QCD 08, Montpellier (France)

R. Rosenfelder
Stochastic evaluation of high-energy potential scattering
Poster at PANIC08 - International Conference on Particles And Nuclei, Eilat (Israel), 9 - 14 November 2008, abstract no. 82-288.

PUBLISHED PROCEEDINGS (from previous conferences)

F. del Aguila et al. (PSI: M. Spira)
Collider aspects of flavour physics at high Q
Report of Working Group 1 of the CERN Workshop Flavor in the Era of the LHC:
A Workshop on the Interplay of Flavor and Collider Physics,
Geneva (Switzerland), 7 - 10 November 2005

M. Artuso (ed.) et al. (PSI: R. Horisberger)
Vertex detectors
Proceedings of the 16th International Workshop (Vertex 2007),
Lake Placid (USA), 23 - 28 September 2007
SISSA , Trieste (Italy), (2008) nonconsec. pag.
A. Biland, I. Britvich, E. Lorenz, N. Otte, F. Pauss, D. Renker, S. Ritt, U. Roesner and M. Scheebeli
First detection of air shower Cherenkov light by Geigermode avalanche photodiodes
Proceedings of the Sixth International Workshop on Ring Imaging Cherenkov Detectors (RICH 2007)

B. van den Brandt, P. Hautle, J.A. Konter, F.M. Piegsa and J.P. Urrego-Blanco
Polarised nuclei: From fundamental nuclear physics to applications in neutron scattering and magnetic resonance imaging
12th Int. Workshop on Polarized Sources, Targets \& Polarimetry
Brookhaven, NY (USA), 10 - 14 September 2007

Pionic hydrogen

U. Langenegger, A. Starodumov and D. Wiesmann
Topological reconstruction of decays with missing particles
18th Hadron Collider Physics Symposium 2007 (HCP 2007),
La Biodola, Isola d’Elba (Italy), 20 - 26 May 2007

S. Mayer, G. Zsigmond and P. Allenspach
Monte-Carlo simulation of phase space transformation of ultra-cold neutrons
Proceedings of the European Workshop on Neutron Optics (NOP07),
Paul Scherrer Institut, Villigen (Switzerland), 5 - 7 March 2007

M. Raidal et al. (PSI: K. Kirch)
Flavor physics of leptons and dipole moments
R. Fleischer, T. Hurth and M. L. Mangano

R. Rosenfelder
Perturbative results without diagrams
Proceedings of he 9th International Conference ``Path Integrals - New Trends and Perspectives``,
Dresden, Germany (2007), eds. W. Janke and A. Pelster,
World Scientific, Singapore, 2008
S. Santra et al.
Parity-violating gamma asymmetry in $\eta + p \to d + \gamma$
Proceedings of the DAE Symposium on Nuclear Physics,
Sambalpur, Burla, Orissa (India), 11-15 December 2007

A. Starodumov
Rare heavy flavor decays at ATLAS and CMS
18th Hadron Collider Physics Symposium 2007 (HCP 2007),
La Biodola, Isola d'Elba (Italy), 20-26 May 2007

A. Starodumov
Missing particle reconstruction using vertexing
Proceedings of the CERN Workshop on Flavor in the Era of the LHC, October 2006, CERN
(Switzerland),
ed. M. Artuso et al.

INVITED TALKS

M. Hildebrandt
The drift chamber system of the MEG experiment
Seminar f. Teilchen- und Astrophysik,
Universität Zürich, 19 November 2008

F.M. Piegsa,
An accurate measurement of the spin-dependent neutron-deuteron scattering length
International Workshop on Particle Physics with Slow Neutrons,
Grenoble (France), 29-31 May 2008

F.M. Piegsa
Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging
Excellence-Cluster Seminar, Garching (Germany), 26 August 2008

F.M. Piegsa
Polarised solid targets at PSI
18th International Spin Physics Symposium, Charlottesville, VA (USA), 6-11 October 2008

F.M. Piegsa
Neutron spin precession in samples of polarised nuclei and neutron spin phase imaging
Group Seminar of Prof. G. Gratta, Stanford University, Stanford, CA (USA), 13 October 2008
D. Renker
New developments on photosensors for particle physics instrumentation for colliding beam physics
INSTR08, Novosibirsk (Russia), 28 February - 5 March 2008

D. Renker
Progress in the development of Geiger-mode avalanche photodiodes
IEEE Nuclear Science Symposium, Dresden (Germany), 19 - 25 October 2008

UCN Collaboration

R. Henneck
The new high-intensity ultracold neutron source at PSI
PANIC08, Eilat (Israel), 9 - 14 November 2008

K. Kirch
Towards a new measurement of the neutron electric dipole moment
Int. Workshop on Particle Physics with Slow Neutrons, Grenoble (France), 29 - 31 May 2008

K. Kirch
Betazerfall: R-Parameter
39. Arbeitstreffen Kernphysik Schleching, Schleching (Austria), 21 - 28 February 2008

K. Kirch
FUN with UCN
Universität Bern, 23 April 2008

K. Kirch
The quest for new physics: Neutrons and muons
ETH Zürich, 3 June 2008

K. Kirch
Neutron EDM experiments
Workshop on *P and T Violation at Low Energies and Related Phenomena*, Heidelberg (Germany), 9 - 11 June 2008

K. Kirch
Muon electric dipole moment
10th International Workshop on Neutrino Factories, Superbeams and Betabeams (NuFact08), Valencia (Spain), 30 June - 5 July 2008

K. Kirch
FUN with UCN
Universität Münster, 4 July 2008
K. Kirch
Low energy precision experiments (2 lectures)
ZuoZ Summer School on New Ideas in Particle Physics,
ZuoZ, Engadine (Switzerland), 13 - 19 July 2008

K. Kirch
Ultrakalte Neutronen
Universität Wuppertal, 24 November 2008

K. Kirch
Ultracold neutrons at ILL and PSI
Symposium on the Occasion of 20 Years Partnership between Switzerland and
the Institut Laue-Langevin ILL Grenoble, PSI, 28 November 2008

A. Knecht
A direct experimental limit on neutron - mirror neutron oscillations
SPG Jahrestagung, Geneva (Switzerland), 26 - 27 March 2008

A. Knecht
A direct experimental limit on neutron - mirror neutron oscillations
Talk and poster at International Workshop on Particle Physics with Slow Neutrons,
Grenoble (France), 29 - 31 May 2008

M. Kuzniak
An improved electric dipole moment experiment
FCPC08, Taipei (Taiwan), 5 - 9 May 2008.

B. Lauss
Status of the ultra-cold neutron source and the neutron EDM experiment at the
Paul Scherrer Institut
4th International Workshop on Nuclear and Particle Physics at J-PARC (NP08),
Ibaraki (Japan), 5 - 7 March 2008

B. Lauss
Experiments on muon capture and muon lifetime: Latest results and future goals
Annual Meeting of the Swiss Physical Society, Geneva (Switzerland), 27 - 28 March 2008

B. Lauss
Fundamentale Physik mit ultrakalten Neutronen am Paul Scherrer Institut
Fachausschusstagung Kern- und Teilchenphysik der Österreichischen Physikalischen
Gesellschaft, Aflenz (Austria), 21 - 23 September 2008

B. Lauss
Fundamental measurements with muons - View from PSI
International Conference on Particles And Nuclei (PANIC08),
Eilat (Israel), 9 - 14 November 2008
G. Zsigmond
The UCN source at PSI
Workshop on tailored neutron beams & neutron anti-bunching, ATI
Wien (Austria), 6 - 8 March 2008

PEN Collaboration

D. Počanić
Rare pion and muon decays: Summary of results and prospects
"Low Energy Precision Electroweak Physics in the LHC Era,"
Institute for Nuclear Theory, University of Washington,
Seattle, 21 November 2008

D. Počanić
PEN Experiment: A sensitive search for non-(V-A) weak processes
18th International Conference on Particles and Nuclei (PANIC08),
Eilat, Israel, 9--14 November 2008

MEG Collaboration

F. Cei
The MEG experiment
Neutrino Oscillation Workshop (NOE 2008), Conca Specchiulla Otranto,
Lecce (Italy), 6 - 13 September 2008.

L. Galli
An FPGA-based trigger for the search of $\mu \rightarrow e + \gamma$ in the MEG experiment

O. Kiselev
Status of MEG experiment
10th International Workshop on Tau Lepton Physics, Budker Institute of Nuclear Physics,
Novosibirsk, 22 - 25 September 2008

O. Kiselev
Positron spectrometer of MEG experiment at PSI
8th International Conference on Position Sensitive Detectors (PSD8),
Glasgow, Scotland, 1- 5 September 2008

W. Ootani
Status of MEG at PSI & prospects
3rd CHIPP Neutrino Meeting, ETHZ, Zürich, 17 - 18 November 2008
A. Papa
Search for lepton flavour violation with the MEG experiment
New Trends in High Energy Physics (Crimea 2008),
Yalta (Ukraine), 27 September - 4 October 2008

S. Ritt
Tackling the search for Lepton flavour violation with GHz waveform digitizing using the DRS chip
Seminar at Fermilab, Batavia, Illinois (USA), 26 February 2008

G. Signorelli
The MEG experiment at PSI: Status and prospects
PANIC 2008, Eilat (Israel), 11 - 16 November 2008

G. Signorelli
Status of MEG: An experiment to search for the $\mu \to e\gamma$ decay
Symposium on Muon Physics during the Workshop "Low Energy Precision Electroweak Physics in the LHC Era",
Institute of Nuclear Theory & University of Washington,
Seattle, WA (USA), 27-30 October 2008

Pionic Hydrogen

D. Gotta
X-ray spectroscopy of light hadronic atoms
International Conference on Exotic Atoms (EXA08),
Vienna (Austria), 15 - 19 September 2008

MuLan Collaboration

K. Lynch
The MuLan experiment: Measuring the muon lifetime to 1ppm
10th International Workshop on Tau Lepton Physics (Tau08),
Budker Institute for Nuclear Physics, Novosibirsk (Russia), 22 - 25 September 2008

MuCap Collaboration

C. Petitjean
Muon capture in hydrogen and deuterium
Int. Conference on Exotic Atoms & related topics (EXA08),
Vienna (Austria), 15 - 18 September 2008
Deuterium removal unit for the Mucap experiment
NHA Annual Hydrogen Conference 2008, Sacramento, CA (USA), 30 March - 3 April 2008

Muonic Hydrogen

A. Antognini
The thin-disk laser for the muonic hydrogen Lamb shift experiment
International Workshop on Laserspectroscopy,
Ringberg-Tegernsee (Germany), 8 - 12 September 2008

T. Nebel
Lamb shift in muonic hydrogen: Experiment and results from the 2007 campaign
International Workshop on Laserspectroscopy,
Ringberg-Tegernsee (Germany), 8 - 12 September 2008

R. Pohl
2S state and Lamb shift in muonic hydrogen
International Workshop on Laserspectroscopy,
Ringberg-Tegernsee (Germany), 8 - 12 September 2008.

R. Pohl
2S state and Lamb shift in muonic hydrogen
Int. Conf. on Exotic Atoms and Related
Topics (EXA08), Vienna (Austria), 15 - 19 September 2008

CMS Collaboration

L. Caminda and A. Starodumov
Building and commissioning of the CMS pixel barrel detector

L. Caminda
Topics in heavy quark physics at CMS
18th International Conference On Particles and Nuclei (PANIC08),
Eilat (Israel), 9 - 14 November 2008

W. Erdmann
Beam spot and primary vertices
CMS b-tagging workshop, CERN, 29 October 2008

W. Erdmann
Tracking in high energy physics
University of Kansas, Kansas (USA), 17 September 2008
R. Horisberger
Conference summary talk of VERTEX 2008
17th International Workshop on Vertex detectors (Vertex2008), Utö Island (Sweden), 28 July - 1 August 2008

H.-C. Kästli
Integration and installation of the CMS pixel barrel detector
17th International Workshop on Vertex detectors (Vertex2008), Utö Island (Sweden), 28 July - 1 August 2008

S. König
Building the detector modules for the barrel part of the CMS pixel detector
Vertical Integration Technologies for HEP and Imaging Sensors, Ringberg Castle, Lake Tegernsee (Germany), 7 April 2008

D. Kottlinski
Status of the CMS pixel detector
Pixel 2008 International Workshop, Fermilab, Batavia (USA), 23 - 26 September 2008

B. Meier
Design studies of a low power serial data link for a possible upgrade of the CMS pixel detector
Topical Workshop on Electronics for Particle Physics Search (TWEPP-08), Naxos (Greece), 15 - 19 September 2008

T. Rohe
Signal height in silicon pixel detectors irradiated with pions and protons
7th International Conference on Radiation Effects on Semiconductor Materials Detectors and Devices, Florence (Italy), 15 - 17 October 2008

A. Starodumov
Building the CMS pixel barrel detector: Assembling, testing and integration
Pixel 2008 International Workshop, Fermilab, Batavia (USA), 23 - 26 September 2008

A. Starodumov
Flavor physics with CMS at LHC
2nd International Workshop on Theory, Phenomenology and Experiments in Heavy Flavor Physics, Capri (Italy), 16 - 18 June 2008

Theory Group

A. Denner
Reduction of multiparticle one-loop integrals and amplitudes (5 lectures)
Third Graduate School in Physics at Colliders: from Twistors to Monte Carlos, Turin (Italy), 7 - 11 January 2008
A. Denner
Electroweak and QCD corrections to Higgs production in vector-boson fusion at the LHC
8th DESY Workshop: Loops and Legs in Quantum Field Theory, Sondershausen (Germany), 20 - 25 April 2008

A. Denner
Towards reliable predictions for multiparticle processes at the LHC
Seminar Elementarteilchentheorie, Würzburg (Germany), 5 June 2008

A. Mück
Squark decay chains at NLO SUSY-QCD
Theory Seminar, MPI München (Germany), 28 January 2008

A. Mück
Electroweak precision at the LHC
Frühjahrstagung der Deutschen Physikalischen Gesellschaft, Freiburg (Germany), 4 March 2008

A. Mück
Electroweak precision for W-boson production at the LHC
Swiss Physical Society Annual Meeting, Geneva (Switzerland), 26 March 2008

A. Mück
Squark decay chains at NLO SUSY-QCD
CMS SUSY Meeting, CERN, 30 April 2008

A. Mück
Squark decay chains at NLO SUSY-QCD
ATLAS SUSY Meeting, CERN, 21 May 2008

A. Mück
Squark decay chains at NLO SUSY-QCD
Particle Physics Seminar, ETH Zürich, 27 May 2008

A. Mück
Electroweak corrections to W hadroproduction
LHC-D workshop on QCD and EW Physics, Zürich, 3 June 2008

A. Mück
Precise prediction for MSSM Higgs-boson production in bottom quark fusion
MSSM Higgs Physics at the LHC: Theory meets Experiment, Santander (Spain), 8 October 2008

M. Spira
Associated MSSM Higgs production with heavy quarks: SUSY-QCD corrections
SUSY08 conference, Seoul (Korea), 16 - 21 June 2008
M. Spira
Recent progress in Higgs cross section (and branching ratios) calculations
CMS-Meeting, CERN, 4 July 2008

M. Spira
Associated MSSM Higgs production with heavy quarks: SUSY-QCD corrections
SUSY08 conference, Seoul (Korea), 16 - 21 June 2008

M. Spira
Higgs & ILC: Reality or wishful thinking?
LC08 School, Frascati (Italy), 22 - 25 September 2008

OUTREACH AND OTHER SCIENTIFIC ACTIVITIES

P.-R. Kettle
New COMET brings a promising future to proton therapy

A. Knecht and M. Kuzniak
Mirror matter - Experimental search for neutron to mirror neutron oscillations
SPG Mitteilungen **22**, 6 2008

A. Knecht and M. Kuzniak
Mirror matter - experimental search for neutron to mirror neutron oscillations

R. Rosenfelder and M. Spira (organizers)
New ideas in particle physics
Summer School, Lyceum Alpinum, Zuoz, Engadine (Switzerland), 13 - 19 July 2008

LECTURES AND COURSES

A. Denner
Das Standardmodell der elektroschwachen Wechselwirkung und dessen Erweiterungen
ETH Zürich, HS 08

R. Horisberger
Elektronik für Physiker I, Analog
ETH Zürich, HS 08
R. Rosenfelder
Pfadintegrale in der Quantenphysik
ETH Zürich, HS 08

M. Spira and A. Mück
LTP-Colloquium
PSI, FS 08, HS 08

M. Spira
Einführung in die Quantenchromodynamik
ETH Zürich, FS 08

M. Spira (with F. Moortgat)
Jenseits des Standardmodells
ETH Zürich, HS 08

THESES

S. Heule
Production, characterization and reflectivity measurements of diamond-like carbon and other ultracold neutron guide materials

M. Kasprzak
Ultracold neutron converters

M. Kuzniak
The neutron electric dipole moment experiment: Research and development for the new spectrometer
Doctoral thesis, Jagiellonian University, Krakow (Poland), 2008

H. Nishiguchi
An innovative positron spectrometer to search for the lepton flavour violating muon decay with a sensitivity of 10^{-13}
Doctoral Thesis, University of Tokyo, 2008
Advisors: T. Mori (Tokyo), J. Egger (PSI)

D. Noth
Supersymmetric precision calculations of bottom Yukawa couplings
Doctoral thesis, Universität Zürich, December 2008
Advisors: M. Spira (PSI), D. Wyler (U. Zürich)
COMMITTEES

R. Horisberger
- President of the Internal PSI Forschungskommission (FOKO),
- Member of the Photon Science Committee at HASYLAB, DESY Hamburg,
- Member of the Advisory Committee of VERTEX-Conferences

K. Kirch
- Member of the Committee of the Swiss Physical Society,
- Swiss Correspondent for Nuclear Physics News

S. Ritt
- Elected member of the IEEE Nuclear & Plasma Sciences Society Administrative Committee (AdCom)

R. Rosenfelder
- Member of the Research Committee BVR at PSI

M. Spira
- Convenor of the working group 'Electroweak Gauge Theories and Alternative Theories' of the 'ECFA Study of Physics and Detectors for a Linear Collider'
Radio- and Environmental Chemistry
LIST OF PUBLICATIONS

HEAVY ELEMENTS

D. Piguet, P. Rasmussen, A. Serov, S.V. Shishkin, A.V. Shutov, A.I. Srivikhin, E.E. Tereshatov, G.K. Vostokin,
M. Wegrzecki, A.V. Yeremin
Thermochemical and physical properties of element 112

D. Piguet, P. Rasmussen, A. Serov, S.V. Shishkin, A.V. Shutov, A.I. Srivikhin, E.E. Tereshatov, G.K. Vostokin,
M. Wegrzecki, A.V. Yeremin
Thermochemische und physikalische Eigenschaften von Element 112
Angew. Chem. 120(17), 3306-3310 (2008).

J.M. Gates, M.A. Garcia, K.E. Gregorich, Ch.E. Dullmann, I. Dragojevic’, J. Dvorak, R. Eichler, C.M. Folden,
Synthesis of rutherfordium isotopes in the $^{238\text{U}}(^{26\text{Mg}}, \text{xn})^{264-\text{Rf}}$ reaction and study of their decay properties

S.L. Nelson, C.M. Folden III, K.E. Gregorich, I. Dragojevic’, Ch.E. Dullmann, R. Eichler, M.A. Garcia, J.M. Gates,
R. Sudowe, H. Nitsche
Comparison of complementary reactions for the production of $^{261,262\text{Bh}}$

SURFACE CHEMISTRY

J. Abbatt, T. Bartels-Rausch, M. Ullerstam, T. Ye
Uptake of acetone, ethanol and benzene to snow and ice: Effects of surface area and temperature

T. Bartels-Rausch, T. Huthwelker, M. Jöri, H.W. Gąggele, M. Ammann
Interaction of gaseous elemental mercury with snow surfaces: Laboratory investigation

M. Kerbrat, B. Pinzer, T. Huthwelker, H.W. Gąggele, M. Ammann, M. Schneebeli
Measuring the specific surface area of snow with x-ray tomography and gas adsorption: Comparison and implications for
surface smoothness

M. Ndour, B. D’Anna, C. George, O. Ka, Y. Balkansi, J. Kleffmann, K. Stemmler, M. Ammann
Photoenhanced uptake of NO$_2$ on mineral dust: Laboratory experiments and model simulations

K. Stemmler, A. Vlasenko, C. Guimbaud, M. Ammann
The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol

O. Vesna, S. Sjogren, E. Weingartner, V. Samburova, M. Kalberer, H.W. Gąggele, M. Ammann
Changes of fatty acid aerosol hygroscopicity induced by ozonolysis under humid conditions
ANALYTICAL CHEMISTRY

E. Dietze, A. Kleber, M. Schwikowski

S. Kaspari, R. Hooke, P.A. Mayewski, S. Kang, S. Hou, D. Qin

F. Vimeux, P. Ginot, M. Schwikowski, M. Vuille, G. Hoffmann, L.G. Thompson, U. Schotterer

RADWASTE ANALYTICS

S. Chiriki, J. Fachinger, R. Mormann
Decommissioning and safety issues of liquidmercury waste generated from high power spallation sources with particle accelerators
11th International Conference on Radiation Shielding (ICRS-11) of American Nuclear Society, Pine Mountain, Georgia, USA.

J. Neuhausen, S. Horn, B. Eichler, D. Schumann, T. Stora, M. Eller
Mercury purification in the Megawatt Liquid Metal Spallation Target of EURISOL-DS

Radiochemical separation and analytical determination of 10Be from proton-irradiated graphite targets

D. Schumann, J. Neuhausen
Accelerator waste as a source for exotic radionuclides

Cation-exchange separation of group V elements: Model experiments on isolation and chemical identification of Db

PROTON IRRADIATION FACILITY

E. Bellm, M.E. Bandstra, S.E. Boggs, W. Hajdas, K. Hurley, D.M. Smith, C. Wigger
RHESSI Spectral Fits of Swift GRBs

H.D.R. Evans, P. Bühler, W. Hajdas, E.J. Daly, P. Nieminen, A. Mohammadzadeh
Results from the ESA SREM monitors and comparison with existing radiation belt models

U. Grossner, W. Hajdas, K. Egli, R. Brun, R. Harboe-Sorensen
Proton Irradiation Facility at the PROSCAN project of the Paul Scherrer Institute
Experimental Linear Energy Transfer of Heavy Ions in Silicon for RADEF Cocktail Species

EURECA: European-Japanese Microcalorimeter Array

J. Řipa, A. Mészáros, R. Hudec, C. Wigger, W. Hajdas
The RHESSI Satellite and Classes of Gamma-ray Bursts

J. Řipa, D. Huja, A. Mészáros, R. Hudec, W. Hajdas, C. Wigger
A Search for Gamma-ray Burst Subgroups in the SWIFT and RHESSI Databases

St. Scherrer, W. Hajdas, U. Grossner, N. Schlumpf
Proton radiation test of DC/DC converter with high voltage output

C. Wigger, O. Wigger, E. Bellm, W. Hajdas
Prompt spectrum of GRB 021206 supports the Cannonball Model

C. Wigger, O. Wigger, E. Bellm, W. Hajdas
Observation of an Unexpected Hardening in the Spectrum of GRB 021206

ENVIRONMENTAL RADIONUCLIDES UNIVERSITÄT BERN

T. Barrelet, A. Ulrich, H. Rennenberg, C.N. Zwicky, U. Krähenbühl
Assessing the suitability of Norway Spruce wood as an environmental archive for sulphur
Environmental Pollution 156, 1007-1014 (2008).

Detection of trace deuterium in depleted protium by MeV ion beam techniques

Restrictions on fluor depthprofiling for exposure age dating in archaeological bones

N. Homazava, A. Ulrich, U. Krähenbühl
In situ element-specific and time-resolved investigation of micro-corrosion processes

N. Homazava, A. Ulrich, U. Krähenbühl
Spatially and time-resolved element-specific in situ corrosion investigations with an online hyphenated microcapillary flow injection inductively coupled plasma mass spectrometry set-up
N. Homazava, A. Shkabko, D. Logvinovich, U. Krähenbühl, A. Ulrich
Element-specific in situ corrosion behaviour of Zr-Cu-Ni-Al-Nb bulk metallic glass in acidic media studied using a novel microcapillary flow injection inductively coupled plasma mass spectrometry technique

Petrography, mineralogy and geochemistry of Lunar meteorite Sayh al Uhaymir 300

Source attribution of submicron organic aerosols during wintertime inversions by advanced factor analysis of aerosol mass spectra

Titanium isotopes and the radial heterogeneity of the solar system
Earth Planet Science Letters **226**, 233-244 (2008).

J. Mohn, S. Szidat, J. Fellner, H. Rechberger, R. Quartier, B. Buchmann, L. Emmenegger
Determination of biogenic and fossil CO₂ emitted by waste incineration based on ¹³C CO₂ and mass balances

Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter

Studying sulphur functional groups in Norway spruce year rings using SL-edge total electron yield spectroscopy

Boreal ecosystem responses to climatic variation in southeastern Alaska during the past seven centuries

Source apportionment of particulate matter in Europe: A review of methods and results

TECHNICAL REPORTS

Y. Dai, J. Neuhausen, D. Schumann
Specimen extraction plan for MEGAPIE PIE

D. Kiselev, D. Schumann, S. Teichmann, M. Wohlmuther
Berechnung des Radionuklidinventars von 3 Proben aus dem SINQ-Target 3
REPORTS

H.W. Gaggio, S. Szidat, E. Vogel, L. Tobler
210Pb Messungen in Niederschlagsproben

W. Hajdas
Demo electronics preliminary test plan
POLAR Progress Meeting, ISDC, Versoix, 11 February 2008.

W. Hajdas
POLAR Engineeringmodel – concept of electronics
POLAR Progress Meeting, ISDC, Versoix, 11 February 2008.

W. Hajdas
Demo electronics test flow

W. Hajdas
POLAR Demo electronics status
POLAR Progress Meeting, DPNC, Geneva, 4 April 2008.

W. Hajdas
POLAR engineering model and demonstration model status
POLAR Progress Meeting, ISDC, Versoix, 9 July 2008.

W. Hajdas
Proton Irradiation facility Annual Report 2007
European Space Agency Internal Document.

IPN triangulation and energy spectrum of GRB080916C

IPN localization of GRB 080211

CONTRIBUTIONS TO CONFERENCES, WORKSHOPS AND SEMINARS

HEAVY ELEMENTS

R. Dressler, D. Schumann, R. Eichler, S.V. Shishkin
Experiments with the descendants of $^{268}115$ revisited from the spectroscopic point of view
7-th International Conference on Nuclear and Radiochemistry (NRC7), Budapest, Hungary, 24-29 September, 2008.

R. Eichler
Adsorptionsuntersuchungen mit den Superschweren Elementen 112 und 114
Seminar für Kern- und Radiochemie am Institut für Kernchemie der Universität Mainz, Germany, 7 January 2008.
R. Eichler for a PSI-University of Bern-FLNR-LLNL-ITE collaboration
Chemical investigation of element 114 – status report
7th International Conference on Nuclear and Radiochemistry (NRC7), Budapest, Hungary, 24-29 September, 2008.

R. Eichler
Chemical investigation of SHE 112&114
International Symposium on Heavy Ion Physics (ISHIP 08), GSI Darmstadt, Germany, 17-20 November 2008.

H.W. Gäggeler
Chemical studies with single atoms of superheavy elements
Technical University Prague, Czech Republic, 3 March 2008.

H.W. Gäggeler
How chemists have reached the island of superheavy elements
Symp. on the occasion of the 75th birthday of Y.T. Oganessian, Dubna, Russia, 24 May 2008.

H.W. Gäggeler
Happy landing on the island of superheavy elements

A. Serov
On the adsorption interaction of 211At, 212Pb, and 200,202Tl with metal surfaces
7th International Conference on Nuclear and Radiochemistry (NRC7), Budapest, Hungary, 24-29 September, 2008.

A. Serov
Adsorption interaction of lighter homologues of superheavy elements with various surfaces
Seminar of the Laboratory of Radiochemistry and Environmental Chemistry, University of Berne and Paul Scherrer Institut, 12 December 2008.

SURFACE CHEMISTRY

M. Ammann
Effects of fatty acids on HNO_3 uptake to deliquesced NaCl particles
American Chemical Society National Meeting, New Orleans, USA, 6-11 April 2008.

M. Ammann
Phase transfer properties, ozonolysis and photochemistry of organic films of atmospheric relevance
Seminar, Brookhaven National Laboratory, Long Island, NY, USA, 11 April 2008.

M. Ammann
Tracing phase transfer at the interface between chemistry and climate
Seminar, Department of Chemistry of Biochemistry, University of Bern, Bern, Switzerland, 24 April 2008.

M. Ammann
Photosensitized uptake of nitrogen dioxide and ozone to humic acid containing ice and aerosol surfaces
IGAC International Conference, Annecy, France, 7-12 September 2008.

M. Ammann, A. Křepelová, T. Huthwelker, J. T. Newberg, H. Bluhm
The effect of strong acids on the ice - air interface probed by photoelectron spectroscopy
IGAC International Conference, Annecy, France, 7-12 September 2008.

M. Ammann
Can a XFEL shed light on atmospheric particles?
PSI XFEL Science Workshop, EPFL, Lausanne, Switzerland, 10 October 2008.

M. Ammann
Mechanisms and kinetics of heterogeneous reactions of nitrogen oxides with tropospheric aerosol particles
Seminar, Institut of Hydrochemistry, TU München, Germany, 6 November 2008.
T. Bartels-Rausch, M. Ammann, J. Kleffmann, Y. Elshorbany, M. Brigante, B. D’Anna, C. George
Sun, soil, snow and HONO
Invited Eurochamp HONO Workshop, Bergische Universität Wuppertal, Wuppertal, Germany, 1-3 March 2008.

T. Bartels-Rausch, M. Jöri, T. Huthwelker, H.W. Gächter, M. Ammann
Interaction of gaseous, elemental mercury with snow surfaces: Laboratory investigations

T. Bartels-Rausch, M. Ammann
A new dye to probe the acidity at the water/air and ice/air interface
Faraday Discussion 141: Water – From Interfaces to the Bulk, Heriot-Watt University, Edinburgh, United Kingdom, 27-29 August 2008.

T. Bartels-Rausch
From Russia with love: Thermo-chromatography in atmospheric science
Seminar of the Laboratory of Radiochemistry and Environmental Chemistry, University of Berne and Paul Scherrer Institut, 17 October 2008.

T. Bartels-Rausch
Matlab in the lab: Use of matlab in atmospheric and climate science

T. Bartels-Rausch, M. Ammann
A new dye to probe the acidity at the water/air and ice/air interface
Atmospheric Chemical Mechanisms, University of California, Davis, USA, 10-12 December 2008.

T. Bartels-Rausch, T. Huthwelker, I. Zimmermann, M. Ammann
Interaction of peroxynitrile acid with ice surfaces

M. Kerbrat, T. Bartels-Rausch, T. Huthwelker, M. Ammann
Recent results on the uptake of HNO2 and HNO3 on ice surfaces from laboratory studies
Annual Meeting of the EU FP6 project SCOUT-O3, Alfred-Wegener-Institut für Polar- und Meeresforschung (AWI), Potsdam, Germany, 21-23 April 2008.

A. Křepelová, M. Ammann, J.T. Newberg, H. Bluhm, T. Huthwelker
Influence of HNO3 on ice surface melting studied by X-ray photoelectron spectroscopy
Seminar of the Laboratory of Radiochemistry and Environmental Chemistry, University of Berne and Paul Scherrer Institut, 9 May 2008.

A. Křepelová, M. Ammann, J.T. Newberg, H. Bluhm, T. Huthwelker
Influence of nitric acid on ice surface melting studied by X-ray photoelectron spectroscopy

A. Křepelová, M. Ammann, J.T. Newberg, H. Bluhm, T. Huthwelker
Impact of HNO3 and HCl on ice surface melting
Faraday Discussion 141: From Interfaces to the Bulk, Heriot-Watt University, Edinburgh, UK, 27-29 August 2008.

Environmental studies using XAS
Workshop on X-ray absorption spectroscopy and advanced XAS techniques, Paul Scherrer Institut, Villigen, Switzerland, 6-10 October 2008.

A. Rouviere, M. Ammann
Heterogeneous reactions of ozone on inorganic aerosol particles. Influence of fatty acid coating.
Seminar of the Laboratory of Radiochemistry and Environmental Chemistry, University of Berne and Paul Scherrer Institut, 4 April 2008.
A. Rouvière, M. Ammann
Effect of fatty acid coating on ozone uptake to deliquesced iodide particles

A. Rouvière, M. Ammann
Etude de l’interaction de l’ozone avec des particules d’iodure de potassium - influence des acides gras
Conférence annuelle de cinétique et de photochimie, Strasbourg, France, 9 June 2008.

A. Schlierf
Photochemical aging of organic aerosol
EUCAARI Workshop, Mainz, Germany, 26 February 2008.

A. Schlierf
Photochemical altering of organic aerosol
Seminar, Institute for Atmospheric and Climate Science, ETH Zürich, Switzerland, 12 March 2008.

A. Schlierf
Photochemical aging of organic aerosol
Seminar of the Laboratory of Radiochemistry and Environmental Chemistry, University of Berne and Paul Scherrer Institut, 9 May 2008.

O. Vesna, M. Kalberer, M. Ammann
Formation of hydrogen peroxide in the ozonolysis of mixed oleic acid - NaCl aerosol particles under humid conditions
American Chemical Society National Meeting, New Orleans, USA, 6-11 April 2008.

V. Zelenay, A. Křepelová, M. Ammann, M.G.C. Vernooij, M. Birrer, G. Tzvetkov, J. Raabe, T. Huthwelker
X-ray microspectroscopy of aerosol particles
Seminar Institute for Atmosphere and Climate, ETH, Zürich, Switzerland, 14 March 2008.

V. Zelenay, A. Křepelová, M. Ammann, M.G.C. Vernooij, M. Birrer, R. Chirico, G. Tritscher, G. Tzvetkov, J. Raabe, T. Huthwelker
X-ray microspectroscopy of aerosol particles

V. Zelenay, A. Křepelová, M. Ammann, M.G.C. Vernooij, M. Birrer, R. Chirico, G. Tritscher, G. Tzvetkov, J. Raabe, T. Huthwelker
Water uptake experiments with combustion particles using X-ray microspectroscopy
XRM, ETH, Zürich, Switzerland, 21-25 July 2008.

V. Zelenay, A. Křepelová, T. Huthwelker, M. Birrer, G. Tzvetkov, J. Raabe, M. Ammann
Development of an environmental cell to study phase changes in aerosol particles using X-ray microspectroscopy
9th International Conference on X-Ray Microscopy, ETH Zürich, Switzerland, 21-25 July 2008.

V. Zelenay, A. Křepelová, M. Birrer, M.G.C. Vernooij, M. Ammann, G. Tzvetkov, J. Raabe, T. Huthwelker
X-ray microspectroscopy of aerosol particles
Seminar ETH, Zürich, Switzerland, 15 August 2008.

V. Zelenay, A. Křepelová, M. Birrer, M.G.C. Vernooij, M. Ammann, G. Tzvetkov, J. Raabe, T. Huthwelker
A new device for the study of water uptake and release in aerosol particles using x-ray microspectroscopy

V. Zelenay, A. Křepelová, M. Ammann, M. Birrer, M.G.C. Vernooij, G. Tzvetkov, J. Raabe, T. Huthwelker
Water uptake on aerosol particles studied by X-ray microspectroscopy
XAS workshop, PSI, Villigen, Switzerland, 7-8 October 2008.

V. Zelenay, A. Křepelová, M. Ammann, M.G.C. Vernooij, M. Birrer, R. Chirico, G. Tritscher, G. Tzvetkov, J. Raabe, T. Huthwelker
Observations on water uptake in soot particles using X-ray microspectroscopy
NEADS Workshop, Zürich, Switzerland, 4 November 2008.
ANALYTICAL CHEMISTRY

A. Ciric
Regionale Klimarekonstruktion mit Eisbohrkernen von Hochgebirgs-tglatschern

A. Ciric, L. Tobler, H.W. Gaggeler, G. Casassa, M. Schwikowski
Source apportionment of trace species and possible ENSO detection in the Mercedario ice core
7th NCCR Climate Summer School, Monte Verità, Switzerland, 31 August-5 September 2008.

A. Ciric
Mercedario ice core records and the regional climate
Seminar of the Laboratory of Radiochemistry and Environmental Chemistry, University of Berne and Paul Scherrer Institut,

A. Ciric, L. Tobler, H.W. Gaggeler, G. Casassa, M. Schwikowski
An ice core record from Mercedario (32°S), Central Argentinean Andes
4th EGU Alexander von Humboldt International Conference “The Andes: Challenge for Geosciences”,
Santiago, Chile, 24-28 November 2008.

Response of regional climate and glacier ice proxies to El Niño-Southern Oscillation (ENSO) in the subtropical Andes

A. Eichler, S. Olivier, H. Henderson, A. Laube, J. Beer, T. Papina, M. Schwikowski
Ice core climate and environmental signals over the past 750 years from Belukha glacier (Siberian Altai)
Swiss-Russian Seminar “Reconstruction of past climate variability in Siberia from natural archives”,
Barnaul, Russia, 1-7 June 2008.

S. Eyrikh, T. Papina, L. Tobler, M. Schwikowski
Representativeness of ice-core analysis for reconstruction of historic mercury deposition in Altai region
Swiss-Russian Seminar “Reconstruction of past climate variability in Siberia from natural archives”,
Barnaul, Russia, 1-7 June 2008.

H.W. Gaggeler
Die naturwissenschaftlichen Grundlagen des Klimawandels: Umweltforschung anhand von Gletschereis

H.W. Gaggeler, A. Eichler
Long-term air pollution records retrieved from Alpine ice cores
Workshop “Spawning the Atmosphere Measurements of Jungfraujoch”, Swiss Academy of Sciences, Bern, Switzerland,

Reduction in northward incursions of the South Asian Monsoon since ~1400 AD inferred from a Mt. Everest ice core
Swiss-Russian Seminar “Reconstruction of past climate variability in Siberia from natural archives”,
Barnaul, Russia, 1-7 June 2008.

S. Kaspari, M. Schwikowski, P. Mayewski, S. Kang, S. Hou
Carbonaceous particle concentrations since the pre-industrial era from Asian ice cores

Carbonaceous particle and dust concentrations since the pre-industrial era from Asian ice cores
Third International Training School on Atmospheric Brown Clouds, United Nations Environmental Program,
Kathmandu, Nepal, 4-7 December 2008.

Carbonaceous Particle and dust concentrations since the pre-industrial era from Asian ice cores
American Geophysical Union Fall Meeting, San Francisco, California, USA, 15-19 December 2008.
Holocene climatic fluctuations including Medieval Warm Period and Little Ice Age type events in tropical South America deduced from Illimani ice core

M. Schläppi, T. Jenk, B. Rufibach, A. Rivera, M. Rodriguez, G. Casassa, M. Schwikowski
Results of the ice core from Pio XI, Southern Patagonian ice field
9th Swiss Global Change Day, Bern, Switzerland, 1 April, 2008.

M. Schläppi, T. Jenk, B. Rufibach, A. Rivera, M. Rodriguez, G. Casassa, M. Schwikowski
Seasonality of different proxies in Pio XI ice core, Southern Patagonia Ice Field (49°S)
7th NCCR Climate Summer School, Monte Verità, Switzerland, 31 August-5 September 2008.

M. Schläppi, T. Jenk, B. Rufibach, P. Santibáñez, A. Rivera, M. Rodriguez, G. Casassa, M. Schwikowski
First ice core record from Pio XI Glacier, Southern Patagonia Ice Field (49°S)

M. Schwikowski
Ist CO₂ an allem Schuld?
Ökumenisches Bildungswerk Laufenburg, Laufenburg, Germany, 14 January 2008.

M. Schwikowski
Klimageschichte aus alpinen Eisbohrkernen

M. Schwikowski
Schnee von gestern - Gletschereis als Klimaarchiv
KLIMAsonnntag Paul Scherrer Institut, Villigen, Switzerland, 13 April 2008.

M. Schwikowski
Chemistry of glacier ice: Frozen archive of past environmental conditions

M. Schwikowski
Zeitreise durch das Eis: Hochalpine Gletscher als Klimaarchive
Senioren-Universität Bern, Bern, Switzerland, 2 May 2008.

M. Schwikowski
Schnee von gestern - Gletschereis als Klimaarchiv
SGK Young Generation Frühjahrstreffen 2008 “Basiswissen Klima und Energie“, ETH Zürich, Zürich, Switzerland, 13 May 2008.

M. Schwikowski
Ice cores from the Alps: Challenges in reconstructing paleo climate

M. Schwikowski
High-alpine glaciers as archives of atmospheric pollution and climate

M. Sigl
Radiocarbon dating of Alpine ice cores
Seminar - Laboratory of Ion Beam Physics ETH Zurich, Switzerland, 5 March 2008.

M. Sigl
Radiocarbon dating of Alpine ice cores
Seminar - Laboratory for Radiochemistry and Environmental Chemistry, Villigen, Switzerland 7 March 2008.
M. Sigl, T.M. Jenk, D. Divine, M. Schwikowski
Climate signals from Colle Gnifetti ice core, Swiss Alps
Millennium European Climate 2nd Milestone Meeting, Cala Millor Mallorca, Spain, 10-16 March 2008.

M. Sigl
Climate signals from Colle Gnifetti ice core, Swiss Alps
9th Swiss Global Change Day, Bern, Switzerland, 1 April 2008

Radiocarbon dating of glacier ice on a microgram level – examples from the Alps and the Andes

Radiocarbon dating of glacier ice on a microgram level – examples from the Alps and the Andes
7th NCCR Climate Summer School, Monte Verità, Switzerland, 31 August-05 September 2008.

M. Sigl
Towards radiocarbon dating of ice cores
MILLENIUM Young Writers Workshop, Tihany, Hungary, 6-10 October 2008.

L. Tobler, A. Circ, T. Kellerhals, M. Schwikowski
Anwendung der (Continuous Ice Melting) CIM-ICP-SF-MS zur Bestimmung von Spurenelementen in Eiskernen aus den Südamerikanischen Anden

RADWASTE ANALYTICS

S. Chiriki, N. Prolingheur, R. Moormann
A simplified method for estimation of groundwater contamination surrounding accelerators and high power targets

S. Chiriki, K. Bongardt, J. Fachinger, M. Herbst, B. Heuel-Fabianek, R. Moormann, R. Nabb, N.Prolingheuer, B.Schlögl
Safety and disposal activities of Hg-target systems
Joint collaboration meeting ‘SAFERIB and Safety and Radioprotection task within EURISOL-DS’ Lithuanian Academy of Sciences, Vilnius, 05-06 May 2008.

s-process nucleosynthesis in massive stars: new results on 56Fe, 62Ni and 64Ni

D. Kiselev, D. Schumann, S. Teichmann, M Wohlmuther
Activation of targets and accelerator components at PSI – a comparison of simulation and measurement
HB08, Nashville, USA, 25-29 August 2008.

R. Moormann, S. Chiriki, K. Bongardt
Safety aspects of high power targets for European spallation sources

J. Neuhause, R. Dressler, F. v. Rohr, M.M. Marin Marmol, St. Heinitz, S. Lüthi, D. Schumann
Results on nuclear reaction product behavior in LBE
EUROTRANS Domain 4 Technical Meeting, Forschungszentrum Karlsruhe, Germany, 03 March 2008.
J. Neuhausen

Recent results on the chemistry of liquid mercury and lead-bismuth targets
Seminar of the Laboratory of Radiochemistry and Environmental Chemistry, University of Berne and Paul Scherrer Institut, 4 April 2008.

J. Neuhausen, D. Schumann

PIE-samples for radiochemical analysis

J. Neuhausen

Radiochemistry of activated mercury
EURISOL-DS METEX Preparation Meeting, Paul Scherrer Institut, Villigen, Switzerland, 17 June 2008.

J. Neuhausen, F. v. Rohr, M.M. Marin Marmol, St. Heinitz, S. Lüthi, S. Horn, D. Schumann

Recent results on polonium behavior in eutectic lead-bismuth alloy
NRC7 – Seventh International Conference on Nuclear and Radiochemistry, Budapest, Hungary, 29 August 2008.

J. Neuhausen, D. Schumann, S. Heinitz, F. v. Rohr, S. Horn, S. Lüthi

Nuclear reaction product behavior in lead-bismuth alloy
3rd Conference Heavy Liquid-Metal Coolants in Nuclear Technology, Obninsk, Russia, 15-19 September 2008.

J. Neuhausen, D. Schumann

Radiochemical analysis in MEGAPIE PIE

J. Neuhausen, D. Schumann

Radiochemical analysis in MEGAPIE PIE

J. Neuhausen, D. Schumann

Radiochemistry of activated mercury

J. Neuhausen, S. Heinitz, F. v. Rohr, S. Lüthi, S. Horn, D. Schumann

Nuclear reaction product behavior in liquid metal targets

J. Neuhausen

Abschätzung der Aktivitätsfreisetzung beim Ausschmelzen der Proben im Megapie-Target
Technisches Meeting zur Konzeption des Ausschmelzens des MEGAPIE Targets, Paul Scherrer Institut, Villigen, Switzerland, 30 October 2008.

Opportunities for nuclear astrophysics at FRANZ

A new approach to determine the half-life of 56Fe
AMS-11, Rome, Italy 14-19 September 2008.

D. Schumann

Progresses in ERAWAST

D. Schumann

ERAWAST - A status report
Seminar - Laboratory for Radiochemistry and Environmental Chemistry, Villigen, Switzerland 7 March 2008.
D. Schumann
Production of long-lived exotic radionuclides for nuclear physics experiments
BRIX meeting, Mol, Belgium, 06-09 April 2008.

D. Schumann
Wässrige Chemie von Transaktiniden

Measurement of long-lived radionuclides in proton-irradiated accelerator components

D. Schumann, J. Neuhausen, S. Horn, S. Lüthi, J. Eikenberg, M. Rüthi
Liquid scintillation counting as measuring method for the analytics of accelerator waste

D. Schumann
The ERAWAST initiative - a new approach for isotope production
Annual meeting of the American Nuclear Society, Anaheim, USA, 8-12 June 2008.

G. Korschinek, G. Rugel, Th. Faestermann
Radiochemische Charakterisierung eines Kupfer- Beamdumps vom 590-MeV-Ringzyklotron des Paul Scherrer Instituts
Villigen

G. Korschinek, G. Rugel, Th. Faestermann, I. Dillmann, C. Domingo Pardo, F. Käppeler, J. Marganiec, F. Voss, S. Walter, M. Heil,
R. Reifarth, J. Goerres6, E. Uberseder, M. Wiescher
Radionuclides of astrophysical interest from accelerator waste

D. Schumann, J. Neuhausen, I. Dillmann, C. Domingo Pardo, F. Käppeler, J. Marganiec, F. Voss, S. Walter, M. Heil,
R. Reifarth, J. Goerres, E. Uberseder, M. Wiescher, M. Pignatari
Preparation of a 60Fe target for nuclear astrophysics experiments

D. Schumann
The ERAWASTInitiative - a new approach for isotope production

D. Schumann
ERAWAST - A status report
SARAF workshop, Jerusalem, Israel, 26-29 October 2008.

D. Schumann
Wässrige Chemie von Transaktiniden
Succession Professorship J.V. Kratz, University of Mainz, Germany, 24/25 November 2008.

PROTON IRRADIATION FACILITY

U. Grossner, W. Hajdas, K. Egli, R. Brun, R. Harboe-Sorensen
New proton irradiation facility at Paul Scherrer Institute
NUCLEAR AND SPACE RADIATION EFFECTS CONFERENCE NSREC 2008

U. Grossner, W. Hajdas, K. Egli, R. Brun, R. Harboe-Sorensen
Proton irradiation facility at the PROSCAN project of the Paul Scherrer Institute
8th European Workshop on Radiation Effects on Components and Systems RADECS2008, Jyvaskyla,
10-12 September 2008.
W. Hajdas, C. Eggel, D. Kotlinski, B. Schmitt, St. Scherrner, N. Schlumpf, A. Mohammadzadeh, P. Nieminen
Development of the low energy electron detector
Seminar in the Swiss Space Office, Bern, Switzerland, 12 March 2008.

W. Hajdas
PIF activities: from ground tests to space weather monitoring and biggest cosmic explosions
Seminar in the Physics Institute of the Bern University, Bern, Switzerland, 12 March 2008.

W. Hajdas, St. Scherrner, K. Egli, N. Schlumpf, B. Schmitt, A. Mohammadzadeh, P. Nieminen, C. Eggel, D. Kotlinski
Current status of the low energy electron detector

W. Hajdas
POLAR - novel hard X-ray polarimeter for gamma ray bursts
37th COSPAR Scientific Assembly, Montréal, Canada, 13-20 July 2008.

W. Hajdas
Low energy electron detector for space radiation measurements
37th COSPAR Scientific Assembly, Montréal, Canada, 13-20 July 2008.

H. Evans, E.J. Daly, P. Nieminen, W. Hajdas, A. Mohammadzadeh, D. Rodgers, G. Mandorlo, K. Ryden
Use of radiation Monitor data for validation of radiation environment specifications based on the NASA AE8 Models
37th COSPAR Scientific Assembly, Montréal, Canada, 13-20 July 2008.

W. Hajdas
SREM data base and calibration meeting
ESA-ESTEC, Nordwijk, 6-7 October 2008.

W. Hajdas, E. Daly, L. Desorgher, C. Eggel, K. Egli, H. Evans, D. Kotlinski, D. Marinov, A. Mohammadzadeh,
P. Nieminen, G. Santin, St. Scherrner, N. Schlumpf, B. Schmitt
Space radiation monitoring activities at PSI

St. Scherrner, W. Hajdas, U. Grossner, N. Schlumpf
Proton radiation test of DC/DC converter with high voltage output

ENVIRONMENTAL RADIONUCLIDES UNIVERSITÄT BERN

A.C. Aiken, C. Wiedinmyer, B. de Foy, D. Salcedo, M. Cubison, I. Ulbrich, P. DeCarlo, J.A. Huffman, K. Docherty,
Organic aerosols in Mexico City: urban and biomass burning contributions during MILAGRO / MCMA-2006 at the urban supersite (T0)

S. Fahrni
Towards compound-specific radiocarbon analysis of carbonaceous aerosols
Seminar Radio- und Umweltchemie, University of Berne, Switzerland, 4 April 2008.

S. Fahrni
Towards compound-specific radiocarbon analysis of carbonaceous aerosols
First Year Graduate Student Symposium, University of Berne, Switzerland, 8 September 2008.

S. Fahrni, H.W. Gäggeler, I. Hajdas, M. Ruff, S. Szidat, L. Wacker
A direct combination of CuO oxidation with a gas ion source for small 14C samples
N. Perron, L. Besnier, S. Szidat, A.S.H. Prévôt, U. Baltensperger
EC and OC separation for 14C analysis: a challenge
Seminar Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, Switzerland, 19 May 2008.

N. Perron, L. Besnier, S. Szidat, A.S.H. Prévôt, U. Baltensperger
EC and OC separation for 14C analysis

Optimised separation of OC and EC for radiocarbon-based source apportionment of carbonaceous aerosol
9th International Conference on Carbonaceous Particles in the Atmosphere, Berkeley, CA, USA, 12-14 August 2008.

N. Perron, S. Szidat, A. S. H. Prévôt, U. Baltensperger
Carbonaceous aerosol: OC and EC separation for radiocarbon-based source apportionment

N. Perron, S. Szidat, A.S.H. Prévôt, U. Baltensperger
Carbonaceous aerosol: OC and EC separation for radiocarbon-based source apportionment
Seminar Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, Switzerland, 10 November 2008.

Improved separation of OC and EC for radiocarbon-based source apportionment of carbonaceous aerosol
EUCAARI annual meeting, Helsinki, Finland, 17-21 November 2008.

A comparison of new and classic methods to estimate the wood smoke contribution to particulate matter for several field campaigns
European Aerosol Conference, Thessaloniki, Greece, 24-29 August, 2008.

Comparison of different wood smoke markers in ambient aerosol

Fully automated radiocarbon AMS measurements with elemental analyser and gas ion source

Radiocarbon dating of small samples
5th International Symposium on Radiocarbon and Archaeology, Zürich, Switzerland, 26-28 March 2008.

Radiocarbon measurements with the MICADAS gas ion source

S. Schmoker
Compound-specific radiocarbon dating of various soil components
Seminar Radio- und Umweltchemie, University of Berne, Switzerland, 12 December 2008.

Recent developments in accelerator mass spectrometry and its impact to archaeology
5th International Symposium on Radiocarbon and Archaeology, Zürich, Switzerland, 26-28 March 2008.

S. Szidat
14C-Analysen von Feinstaubproben
Refined 14C source apportionment of organic carbon
9th International Conference on Carbonaceous Particles in the Atmosphere, Berkeley, CA, USA, 12-14 August 2008.

L. Wacker, M. Němec, J. Bourquin
A revolutionary graphitisation system: fully automated, compact and simple
PUBLIC RELATIONS

Analytical Chemistry
Printed media

- Die Botschaft
 Menschliche Einflüsse unbestreitbar

- Argauer Zeitung
 In Zukunft recht unbeständig, Leibstadt Vortragsreihe „Klima und Atmosphäre“ im Kernkraftwerk

- PSI media release
 Temperatur im Altai folgt Sonne mit Verzögerung
 19 December 2008.

- Tagesanzeiger
 Sonne beeinflusst die Temperatur Sibiriens
 23 December 2008.

Demonstration
Tage der Offenen Tür am PSI
Klimasignale im Gletschereis und in Bäumen

Proton Irradiation Facility
Demonstration
Tage der Offenen Tür am PSI
Radiation detectors for space weather monitoring

Environmental Radionuclides Universität Bern

- Homepage Department of Chemistry and Biochemistry, Uni Bern
 Device of the month: Radiocarbon dating of small samples using on-line combustion
 http://www.dcb-server.unibe.ch/dcbneu/mom/mom0408.html
 April 2008.

- PSI Scientific report 2007
 New findings on the sources of fine particles in ambient air in Switzerland
 June 2008.

- PSI, Energie-Spiegel Nr.19
 Vorsicht Feinstaub
 July 2008.

- Senioren-Universität, Uni Bern
 Vortrag U. Krähenbühl: Auf Meteoritensuche in kalten und heissen Wüstengebieten (Antarktis und Oman)
 2 December 2008.
MEMBERS OF SCIENTIFIC COMMITTEES
EXTERNAL ACTIVITIES

Dr. Markus Ammann:
- Air-Ice Chemical Interactions (AICI), Member of Steering Committee
- Atmospheric Chemistry and Physics: member of editorial board
- Member of the IUPAC Subcommittee on gas kinetic data evaluation
- PSI internal research commission (FoKo), member

Dr. Robert Eichler:
- PSI internal research commission (FoKo), member

Prof. Dr. Heinz W. Gäggeler:
- Nuklearforum Schweiz, Member of the Executive Board and Member of the Science Board
- Schweizerische Kommission für die hochalpine Forschungsstation Jungfraujoch der SANW (Mitglied)
- Astronomische Kommission der Stiftung Jungfraujoch und Gornergrat (Member)
- Joint IUPAC/IUPAP Working Party (JWP) on the discovery of new elements (Member)
- International Union of Pure and Applied Chemistry (IUPAC) (Fellow)
- Steering Committee of EURISOL (Member)
- Division of Nuclear and Radiochemistry, European Association for Chemical and Molecular Sciences (EuCheMS) (Chairman)
- Oeschger Centre for Climate Change Research, Member of the Scientific Board

Dr. Wojtek Hajdas:
- Official Reviewer for the 8th European Workshop on Radiation Effects on Components and Systems RADECS2008, Jyvaskyla, 10-12 September 2008
- Session Chair for the session “dosimetry and facilities” of the 8th European Workshop on Radiation Effects on Components and Systems RADECS2008, Jyvaskyla, 10-12 September 2008
- International Technical Committee of the 8th European Workshop on Radiation Effects on Components and Systems RADECS2008, Jyvaskyla, 10-12 September 2008
- Organizing Committee for 9th ESA Final Presentation Days and RADECS Thematoc Workshop, 27-29 January, PSI Villigen

Dr. Dorothea Schumann:
- Member of the Nuklearforum Schweiz
- Member of the Schweizerische Gesellschaft der Kernfachleute
- Member of the PSI internal Neutron Source Development Group

PD Dr. Margit Schwikowski:
- Expert of the Matura Examination of Kantonsschule Baden
- Member of the Coordinating Committee of the Pages/IGBP initiative LOTRED SA
 (Long-Term climate Reconstruction and Diagnosis of (southern) South America)
- Schweizerische Gesellschaft für Schnee, Eis und Permafrost (SEP), board member
- Member of the Oeschger Centre for Climate Change Research

Leonhard Tobler:
BACHELOR THESIS
Stephan Keller
Anionenbestimmungen von Aerosolfiltern
Dr. S. Szidat / Uni Bern
Prof. Dr. H.W. Gäggeler / PSI & Uni Bern
May 2008

MASTER THESIS
Beat Muther
Chemische Modellstudien für die Elemente 113 und 114
Dr. R. Eichler / PSI
Prof. Dr. H.W. Gäggeler / PSI & Uni Bern
January 2008

Stephan Heinitz
Extraction of polonium from lead-bismuth eutectic
Dr. D. Schumann / PSI
Prof. Dr. H. Morgner / University Leipzig
November 2008

Andreas M. Bernhard
Photo-induced reduction of mercury in ice
PD Dr. M. Schwikowski / PSI & Uni Bern
Dr. M. Ammann / PSI, Dr. T. Bartels-Rausch / PSI
December 2008

Stéphane Schmoker
Isolierung einzelner Bodenkomponenten aus Bodenproben für die Radiokohlenstoffdatierung
Dr. S. Szidat / Uni Bern
Prof. Dr. H.W. Gäggeler / PSI & Uni Bern
December 2008

David Wittwer
Stopping force measurements of 40Ca induced reaction products in Mylar and argon
Dr. R. Eichler / PSI
Prof. Dr. H.W. Gäggeler / PSI & Uni Bern
December 2008
DOCTORAL THESIS

Olga Vesna

Ozonolysis of unsaturated organic acids in aerosol particles: products, secondary chemistry and hygroscopicity studies

Dr. M. Ammann / PSI
Prof. Dr. H.W. Gäggeler / PSI & Uni Bern
February 2008

Kaizhen Li

On the investigation of I-129 in the environment by ICP-MS: possibilities and limitations

Prof. Dr. U. Krähenbühl / Uni Bern
April 2008

Hanna Franberg

Production of exotic, short-lived carbon isotopes at ISOL-type facilities

Dr. M. Ammann / PSI
Prof. Dr. H.W. Gäggeler / PSI & Uni Bern
October 2008

Thomas Kellerhals

Holocene climate fluctuations in tropical South America deduced from an Illimani ice core

PD Dr. M. Schwikowski / PSI & Uni Bern
Prof. Dr. H.W. Gäggeler / PSI & Uni Bern
December 2008

Matthias Ruff

Radiocarbon measurement of micro-scale samples – a carbon dioxide inlet system for AMS

Dr. S. Szidat / Uni Bern
Prof. Dr. H.W. Gäggeler / PSI & Uni Bern
December 2008
Publikationen 2008
Labor für Ionenstrahlyphysik

M.H. Aguirre, S. Canulescu, R. Robert, N. Homazava, D. Logvinovich, L. Bocher, T. Lippert, M. Döbeli and A. Weidenkaff
Structure, microstructure, and high-temperature transport properties of La(1-x)CaxMnO(3-delta) thin films and polycrystalline bulk materials

A case for a downwasting mountain glacier during Termination I, Verçenik valley, northeastern Turkey

Surface characterization of diamond-like carbon for ultracold neutron storage

Comparison of exposure ages and spectral properties of rock surfaces in steep, high alpine rock walls of Aiguille du Midi, France

Plutonium measurements on the 1 MV AMS system at the Centro Nacional de Aceleradores (CNA)

Isolation of Pu-isotopes from environmental samples using ion chromatography for accelerator mass spectrometry and alpha spectrometry

Status of the compact 1 MV AMS facility at the Centro Nacional de Aceleradores (Spain)
Nuclear Instruments and Methods B 266, 2217-2220 (2008).

M. Döbeli
Characterization of oxide films by MeV ion beam techniques
Detection of trace deuterium in depleted protium by MeV ion beam techniques

M. Dühnforth, A.L. Densmore, S. Ivy-Ochs and P.A. Allen
Controls on sediment evacuation from glacially modified and unmodified catchments in
the eastern Sierra Nevada, California

F.G. Fedele, B. Giaccio and I. Hajdas
Timescales and cultural process at 40,000 BP in the light of the Campanian Ignimbrite
eruption, Western Eurasia

The chronology, climate, and confusion of the Moorhead Phase of glacial Lake Agassiz:
new results from the Ojata Beach, North Dakota, USA
Quaternary Science Reviews 27, 1124-1135 (2008).

M. Frank, J. Backman, M. Jakobsson, K. Moran, M. O'Regan, J. King, B.A. Haley, P.W.
Kubik and D. Garbe-Schönberg
Beryllium isotopes in central Arctic Ocean sediments over the past 12.3 million years:
Stratigraphic and paleoclimatic implications

F. Gianotti, M.G. Forno, S. Ivy-Ochs and P.W. Kubik
New chronological and stratigraphical data on the Ivrea amphitheatre (Piedmont, NW
Italy)

I. Hajdas
The Radiocarbon dating method and its applications in Quaternary studies

I. Hajdas, S. Ivy-Ochs, R. Pickering and F. Preusser
Recent developments in Quaternary dating methods

U. Heikkilä, J. Beer and V. Alfimov
Beryllium-10 and beryllium-7 in precipitation in Dübendorf (440 m) and at Jungfraujoch
(3580 m), Switzerland (1998–2005)
10Be measured in a GRIP snow pit and modeled using the ECHAM5-HAM general circulation model

S. Heiroth, T. Lippert, A. Wokaun and M. Döbeli
Microstructure and electrical conductivity of YSZ thin films prepared by pulsed laser deposition

R. Herger, P.R. Willmott, C.M. Schleputz, M. Bjorck, S.A. Pauli, D. Martoccia, B.D. Patterson, D. Kumah, R. Clarke, Y. Yacoby and M. Döbeli
Structure determination of monolayer-by-monolayer grown La(1-x)SrₓMnO₃ thin films and the onset of magnetoresistance

A. Hormes, S. Ivy-Ochs, P.W. Kubik, L. Ferreli and A. Maria Michetti
10Be exposure ages of a rock avalanche and a late glacial moraine in Alta Valtellina, Italian Alps

S. Ivy-Ochs and F. Kober
Surface exposure dating with cosmogenic nuclides

Chronology of the last glacial cycle in the European Alps

Southern Patagonian glacial chronology for the Last Glacial period and implications for Southern Ocean climate

H. Kerschner and S. Ivy-Ochs
Palaeoclimate from glaciers: Examples from the Eastern Alps during the Alpine Lateglacial and early Holocene

M.F. Knudsen, G.M. Henderson, M. Frank, C. Mac Niocaill and P.W. Kubik
In-phase anomalies in Beryllium-10 production and palaeomagnetic field behaviour during the Iceland Basin geomagnetic excursion

Publikationen 2008

Labor für Ionenstrahlphysik

Complex multiple cosmogenic nuclide concentration and histories in the arid Rio Lluta catchment, northern Chile

J. Kuhlemann, E.J. Rohling, I. Krumrei, P.W. Kubik, S. Ivy-Ochs and M. Kucera
Regional Synthesis of Mediterranean Atmospheric Circulation During the Last Glacial Maximum

G. Kuri, D. Gavillet, M. Döbeli and D. Novikov
Structural changes in helium implanted Zr0.8Y0.2O1.9 single crystals characterized by atomic force microscopy and EXAFS spectroscopy

Source attribution of submicron organic aerosols during wintertime inversions by advanced factor analysis of aerosol mass spectra

D. Levchuk, H. Bolt, M. Döbeli, S. Eggenberger, B. Widrig and J. Ramm
Al-Cr-O thin films as an efficient hydrogen barrier

I. Marozau, A. Shkabko, G. Dinescu, M. Döbeli, T. Lippert, D. Logvinovich, M. Mallepell, A. Weidenkaff and A. Wokaun
RF-plasma assisted pulsed laser deposition of nitrogen-doped SrTiO3 thin films

Towards more precise 10Be and 36Cl data from measurements at the 10-14 level: Influence of sample preparation

10Be AMS measurements at low energies (E < 1 MeV)

N. Akçar, S. Ivy-Ochs, C. Schlüchter
Application of in-situ produced terrestrial cosmogenic nuclides to archaeology: A schematic review
Publikationen 2008
Labor für Ionenstrahlphysik

Cosmogenic nuclide-based investigation of spatial erosion and hillslope channel coupling in the transient foreland of the Swiss Alps

A. Oron, G. Hadas, N. Liphschitz and G. Bonani
A New Type of Composite Anchor Dated to the Fatimid-Crusader Period from the Dead Sea, Israel

Extent of the last ice sheet in northern Scotland tested with cosmogenic 10Be exposure ages

Thermoelectric properties of LaCo(1-x)NiO3 polycrystalline samples and epitaxial thin films

Cosmogenic beryllium-10 and neon-21 dating of late Pleistocene glaciations in Nyalam, monsoonal Himalayas

F. Simmen, T. Lippert, P. Novak, B. Neuenschwander, M. Döbeli, M. Mallepell and A. Wokaun
The influence of lithium excess in the target on the properties and compositions of Li(1+x)Mn2O(4-delta) thin films prepared by PLD

Natural and anthropogenic 236U in environmental samples
Nuclear Instruments and Methods B 266, 2246-2250 (2008).

Z.C. Yu, K.N. Walker, E.B. Evenson and I. Hajdas
Lateglacial and early Holocene climate oscillations in the Matanuska Valley, south-central Alaska

Timing of the late Quaternary glaciation in the Andes from similar to 15 to 40 degrees S

LIST OF PUBLICATIONS 2008

BIOMOLECULAR RESEARCH

UNIVERSITY LEVEL AND OTHER TEACHING

K. Ballmer-Hofer
Cellular signalling
Biozentrum, University of Basel, Switzerland, HS 2008

K. Ballmer-Hofer
Hypoxia signaling in angiogenesis, applications in tumor therapy
Cancer Network, ETH Zurich and University of Zurich, Switzerland, March 2008

R. Jaussi
„Gentechnik“ for students in medicine
University of Zurich, FS 2008

R. Jaussi
"Molekulare Zellbiologie“ for students in life sciences
University of Zurich, HS 2008

Ch. Kambach
EMBO Practical Course on the Structural Characterization of Macromolecular Complexes
EMBL Grenoble, France, June 2 – 7, 2008

X.-D. Li
Membrane protein purification
7th NCCR Practical Course and EMBN Summer School "Practical Course 2D Membrane Protein Crystallization and Observation", Basel, Switzerland, October 20 – 24, 2008

F.K. Winkler
Grundlagen der Biologie I
ETH Zurich, FS 2008

F.K. Winkler
Molecular Biology and Biophysics III: Proteins: Structure, Function and Engineering
ETH Zurich, HS 2008

PUBLICATIONS

A. Akhmanova, M.O. Steinmetz
Tracking the ends: a dynamic protein network controls the fate of microtubule tips

O. Azzaroni, M. Mir, L. Tiefenauer, W. Knoll
Electrochemical rectification with redox-labeled supramolecular bioconjugates: Molecular building blocks for the construction of biodiodes
Orf virus VEGF-E NZ2 promotes paracellular NRP-1/VEGFR-2 coreceptor assembly via the peptide RPPR

J. Dolenc, R. Baron, J.H. Missimer, M.O. Steinmetz, W.F. van Gunsteren
Exploring the conserved water sites and hydration of a coiled-coil trimerization motif: A MD simulation study

O. Eidam, F.S. Dworkowski, R. Glockshuber, M.G. Grütter, G. Capitani
Crystal structure of the ternary FimC–FimF–FimD complex indicates conserved pilus chaperone–subunit complex recognition by the usher FimD

STIM1 is a MT-plus-end-tracking protein involved in remodeling of the ER

DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli

Functional connectivity in tactile object discrimination – A principal component analysis of an event related fMRI-study

S.J. Hwang, S.H. Kim, H.Z. Kim, M.O. Steinmetz, G.Y. Koh, G.M. Lee
High-level expression and purification of a designed angiopoietin-1 chimeric protein, COMP-Ang1, produced in chinese hamster ovary cells

A. Javelle, D. Lupo, P. Ripoche, T. Fulford, M. Merrick, F.K. Winkler
Substrate binding, deprotonation, and selectivity at the periplasmic entrance of the Escherichia coli ammonia channel AmtB

Neuropilin-1 in regulation of VEGF-induced activation of p38MAPK and endothelial cell organization

K. Licht, J. Medenbach, R. Lührmann, Ch. Kambach, A. Bindereif
3'-cyclic phosphorylation of U6 snRNA leads to recruitment of recycling factor p110 through LSm proteins
RNA 14, 1532 – 1538 (2008)
T. Manna, S. Honnappa, M.O. Steinmetz, L. Wilson
Suppression of microtubule dynamic instability by the +TIP protein EB1 and its modulation by the CAP-Gly domain of p150^{glued}
Biochemistry 47, 779 – 786 (2008)

M. Mir, M. Álvarez, O. Azzaroni, L. Tiefenauer, W. Knoll
Molecular architectures for electrocatalytic amplification of oligonucleotide hybridization

D. Mukhopadhyay, K.S. Howell, H. Riezman, G. Capitani
Identifying key residues of sphinganine-1-phosphate lyase for function in vivo and in vitro

Evidence for proton shuffling in a thioredoxin-like protein during catalysis

On the neural networks of empathy: A principal component analysis of an fMRI study
Behavioral and Brain Functions 4, 41 - 53 (2008)

C. Puorger, O. Eidam, G. Capitani, D. Erilov, M.G. Grütter, R. Glockshuber
Infinite kinetic stability against dissociation of supramolecular protein complexes through donor strand complementation

Recombinant human VEGF_{165b} protein is an effective anti-cancer agent in mice

A proangiogenic peptide derived from vascular endothelial growth factor receptor-1 acts through α5β1 integrin

Atomic models of de novo designed ccβ-Met amyloid-like fibrils

M.O. Steinmetz, A. Akhmanova
Capturing protein tails by CAP-Gly domains

L. Tiefenauer, A. Studer
Nano for bio: Nanopore arrays for stable and functional lipid bilayer membranes
R.A. Vacca, S. Giannattasio, G. Capitani, E. Marra, P. Christen
Molecular evolution of B6 enzymes: binding of pyridoxal-5'-phosphate and Lys41Arg substitution turn ribonuclease A into a model B6 protoenzyme
BMC Biochem. 9, 17 (2008)

R. Verel, I.T. Tomka, C. Bertozzi, R. Cadalbert, R.A. Kammerer, M.O. Steinmetz, B.H. Meier
Polymorphism in an amyloid-like fibril forming model peptide

M. Weichel, R. Jaussi, C. Rhyner, R. Crameri
Display of E. coli alkaline phosphatase pIII or pVIII fusions on phagemid surfaces reveals monovalent decoration with active molecules

INVITED TALKS

K. Ballmer-Hofer
Structure/function analysis of the activation of VEGF receptor tyrosine kinases and how coreceptors modulate signal output
University of Manchester, Manchester, United Kingdom, March 10, 2008

K. Ballmer-Hofer
Structure/function analysis of the activation of VEGF receptor tyrosine kinases and how coreceptors modulate signal output
University of Bristol, Bristol, United Kingdom, March 11, 2008

K. Ballmer-Hofer
Signaling in angiogenesis; structural and mechanistic insights into activation of VEGF receptor tyrosine kinases
ESH Conference on Angiogenesis, Paris, France, May 9 – 12, 2008

K. Ballmer-Hofer
Signaling in angiogenesis; structural and mechanistic insights into activation of VEGF receptor tyrosine kinases
7th D-BIOL Symposium ETH Zurich, Davos, Switzerland, June 2 – 4, 2008

K. Ballmer-Hofer
Structure/function analysis of the activation of VEGF receptor tyrosine kinases and how coreceptors modulate signal output
Gordon Conference on Growth Factors and Signalling, Oxford, United Kingdom, August 3 – 8, 2008

K. Ballmer-Hofer
Activation of receptor tyrosine kinases: VEGFR-2/Neuropilin-1 co-receptor complex formation by distinct VEGF isoforms
K. Ballmer-Hofer
Structure/function analysis of the activation of VEGF receptor tyrosine kinases and how coreceptors modulate signal output
Novartis, Basel, Switzerland, November 17, 2008

K. Ballmer-Hofer
Structure/function analysis of the activation of VEGF receptor tyrosine kinases and how coreceptors modulate signal output
Basilea Pharmaceutica, Basel, Switzerland, December 15, 2008

X.-D. Li
Ammonium transported by Amt/Mep/Rh proteins
First Chinese Conference on Life Sciences in Switzerland, ETHZ, Zurich, Switzerland, May 17, 2008

X.-D. Li
AmtB-GlnK complex and nitrogen regulation in bacteria
Symposium “Micromechanics”, Institute of Microbiology, ETH Zurich, July 18, 2008

X.-D. Li
Ammonium transported by Amt/Mep/Rh proteins
First CAS-SSSTC Joint Workshop, ETH, Zurich, Switzerland, November 18, 2008

X.-D. Li
Understanding membrane protein function: present and future
PSI-XFEL Science Workshop on “Coherent Diffraction by Nanostructures”, Swiss National Science Foundation, Bern, Switzerland, November 27, 2008

M.O. Steinmetz
Key interaction modes of dynamic +TIP networks
EMBL Heidelberg, Cell Biology and Biophysics Unit, Heidelberg, Germany, January 17, 2008

M.O. Steinmetz
Key interaction modes of dynamic +TIP networks
3D Repertoire Annual Meeting, Milan, Italy, February 14 – 15, 2008

M.O. Steinmetz
Key interaction modes of dynamic +TIP networks
Canceropôle PACA “Cytosquelette Microtubulaire & Cancer”, Marseille, France, February 26, 2008

M.O. Steinmetz
Key interaction modes of dynamic +TIP networks
INSERM U836, Institut des Neurosciences, Université Joseph Fourier, Grenoble, France, March 2, 2008

M.O. Steinmetz
Key interaction modes of dynamic +TIP networks
Microtubule Dynamics Workshop 2008, Treverevex Hill Oxted, Surrey, United Kingdom, May 11 – 12, 2008

M.O. Steinmetz
Key interaction modes of dynamic +TIP networks
University of Manchester, Wellcome Trust Centre for Cell-Matrix Research, Manchester, United Kingdom, July 2, 2008
M.O. Steinmetz
Key interaction modes of dynamic +TIP networks
CNRS, Centre de Recherche de Biochimie Macromoléculaire, Montpellier, France, July 10, 2008

M.O. Steinmetz
Key interaction modes of dynamic +TIP networks
FOM Institute for Atomic and Molecular Physics, Cytoskeleton-based Force Generation, Amsterdam, The Netherlands, September 2, 2008

M.O. Steinmetz
Tracking the ends: A dynamic protein network controls the fate of microtubule tips
Institute of Pharmaceutical Sciences, ETH Zurich, Switzerland, October 29, 2008

M.O. Steinmetz
Tracking the ends: A dynamic protein network controls the fate of microtubule tips
Institute of Biochemistry, ETH Zurich, Switzerland, November 13, 2008

M.O. Steinmetz
Tracking the ends: A dynamic protein network controls the fate of microtubule tips
Institute of Structural and Molecular Biology, University of London, United Kingdom, November 17, 2008

M.O. Steinmetz
Molecular mechanism of EB1-dependent microtubule tip tracking

A. Studer, M. Di Berardino, L. Tiefenauer
Measuring membrane protein-mediated transport across lipid bilayers
The 10th World Congress on Biosensors, Shanghai, China, May 14 – 16, 2008

L. Tiefenauer
AFM and nanopores in service for biosciences
Indo-US Workshop on Science and Technology at the Nano-Bio Interface, Bhubaneswar, India, February 19 – 22, 2008

BOOK CHAPTERS

B.L. Zaric, Ch. Kambach
Reconstitution of recombinant human LSmi complexes for biochemical, biophysical, and cell biological studies
CENTER FOR RADIOPHARMACEUTICAL SCIENCE

UNIVERSITY LEVEL AND OTHER TEACHING

S.M. Ametamey
Einführung in die pharmazeutischen Wissenschaften I
ETH Zurich, HS08

R. Schibli
Metal Based Drug and Drug Development
ETH Zurich, FS08

R. Schibli
Practicum Medicinal Chemistry
ETH Zurich, HS08

P.A. Schubiger, S.M. Ametamey, R. Schibli
Einführung in die pharmazeutischen Wissenschaften II
ETH Zurich HS08

P.A. Schubiger, S.M. Ametamey, R. Schibli
Radiopharmazeutische Chemie
ETH Zurich HS08

P.A. Schubiger
CIMST Interdisciplinary Summer School
ETH Zurich, 2008

PUBLICATIONS

S.M. Ametamey, M. Honer, P.A. Schubiger
Molecular imaging with PET

W.H. Bisson, G. Westera, P.A. Schubiger, L. Scapozza
Homology modeling and dynamics of the extracellular domain of rat and human neuronal nicotinic acetylcholine receptor subtypes α4β2 and α7

Glycation methods for bombesin analogs containing the (N\(^2\)His) Ac chelator for \(^{99m}\)Tc(CO)\(_3\) radiolabeling
E. García Garayoa, Ch. Schweinsberg, V. Maes, L. Brans, P. Bläuenstein, D.A. Tourwé, R. Schibli, P.A. Schubiger

Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the $[^{99m}Tc(CO)_3]$-core

Bioconjugate Chem. 19, 2409 – 2416 (2008)

Synthesis, 18F-labelling, and in vitro and in vivo studies of bombesin peptides modified with silicon-based building blocks

Modification of different IgG1 antibodies via glutamine and lysine using bacterial and human tissue transglutaminase

Th.L. Mindt, C. Müller, M. Melis, M. DeJong, R. Schibli

“Click-to-chelate”: In vitro and in vivo comparison of a 99mTc(CO)$_3$-labeled N(τ)-histidine folate derivative with its isostructural, clicked 1,2,3-triazole analogue

Siliciumbausteine für die einstufige 18F-Radiomarkierung von Peptiden für die PET-Bildgebung

Angew. Chem. 120, 1 – 5 (2008)

C. Müller, F. Forrer, R. Schibli, E. P. Krenning, M. DeJong

SPECT study of folate receptor-positive malignant and normal tissues in mice using a novel 99mTc-radiofolate

C. Müller, R. Schibli, E. P. Krenning, M. DeJong

Pemetrexed improves tumor selectivity of 111In-DTPA-folate in mice with folate receptor–positive ovarian cancer

I. Novak-Hofer, S. Cohrs, J. Grünberg, A. Friedli, M. C. Schlatter, M. Pfeiffer, P. Altevogt, P. A. Schubiger

Antibodies directed against L1-CAM synergize with genistein in inhibition growth and survival pathways in SKOV3ip human ovarian cancer cells

T. L. Ross, M. Honer, Ph. Lam, T. L. Mindt, V. Groehn, R. Schibli, S. M. Ametamey, P. A. Schubiger

Fluorine-18 “click” radiosynthesis and preclinical evaluation of a new 18F-labelled folic acid derivative

H. Struthers, B. Spingler, Th. L. Mindt, R. Schibli

“Click-to-chelate”: Design and incorporation of triazole-containing metal-chelating systems into biomolecules of diagnostic and therapeutic interest

CONFERENCE PROCEEDINGS

J. Grünberg
Radioimmunotherapy of ovarian cancer metastasis with Lu-177-labeled antibody chCE7agl directed against L1-CAM
Annual Congress of the European Association of Nuclear Medicine, Munich, Germany, October 11 – 15, 2008

S. Jeger
Enzymatic functionalization of the tumor targeting antibody chCE7agl produces single species radioimmunoconjugates
Annual Meeting of the Swiss Society of Nuclear Medicine, St. Gallen, Switzerland, May 29 – 31, 2008

Th. L. Mindt
Click-to-chelate: Expedited development of metal-based imaging probes and therapeutic agents by click chemistry
Symposium on Medicinal Organometallic Chemistry, St. Martin, Germany, April 2 – 5, 2008

Th. L. Mindt
Expedited development of imaging probes by click chemistry
Center for Imaging Science and Technology Symposium, Zurich, Switzerland, May 2008

Th. L. Mindt
New strategies for the development of molecular imaging probes
236th National Meeting of the American Chemical Society, Philadelphia, USA, August 17 – 21, 2008

Th. L. Mindt
Click-to-Image: Application of Click Chemistry to the Design of Novel Imaging Probes and Therapeutic Agents
236th National Meeting of the American Chemical Society, Philadelphia, USA, August 17 – 21, 2008

Th. L. Mindt
Application of click chemistry to the design of novel imaging probes and therapeutic agents
World Molecular Imaging Congress, Nice, France, September 10 – 13, 2008
H.R. Struthers
"Click to chelate": Functionalization of thymidine with chelating systems for rhenium and technetium and their evaluation as substrates for human thymidine kinase type 1

DISSERTATIONS

D. Eichenberger
Wasserstoffperoxid in Pharma Isolatoren
Eidgenössische Technische Hochschule ETH Zurich, Nr. 17’857, 2008

A. Friedli
Targeting the L1 cell adhesion molecule in cancer: mechanism involved in the anti-proliferative properties of anti-L1 antibodies
Eidgenössische Technische Hochschule ETH Zurich, Nr. 17’859, 2008

K. Hajdin
Phage display selected peptides identify furin as therapeutic target on pediatric rhabdomyosarcoma
Eidgenössische Technische Hochschule ETH Zurich, 2008

A. Höhne
Development of new proprietary F-18 radiolabeling methods
Eidgenössische Technische Hochschule ETH Zurich, Nr. 17’680, 2008

U. Künzle
Verunreinigungsprofil und Stabilität von Aminosäuren diverser Herkunft
Eidgenössische Technische Hochschule ETH Zurich, 2008

M. Martic
Development of new nucleoside analogues as PET imaging agents for monitoring gene expression
Eidgenössische Technische Hochschule ETH Zurich, Nr. 17’632, 2008

Ch. Schweinsberg
Novel 99mTc-labeled bombesin analogues with improved pharmacokinetics and targeting of gastrin-releasing-peptide receptor-positive tumors
Eidgenössische Technische Hochschule ETH Zurich, Nr. 17’952, 2008

M. Zimmermann
Cell death in keratinocytes induced by IFN-gamma and ligands of the tumor necrosis factor receptor superfamily
Eidgenössische Technische Hochschule ETH Zurich, Nr. 18’006, 2008
INVITED TALKS

S.M. Ametamey
PET radioligand development for the imaging of a CNS target
CIMST Summer School Zurich, Switzerland, June 25 – July 6, 2008

S.M. Ametamey
Functional brain imaging with PET
Swiss Society for Experimental Pharmacology Zurich, Switzerland, August 29, 2008

S.M. Ametamey
Hypoxia tracers
Annual Congress of the European Association of Nuclear Medicine, Munich, Germany, October 11 – 15, 2008

S.M. Ametamey
PET chemistry and radiopharmaceuticals, modul III: Radiation protection course for the medical application of radioactive substances to men
ETH Zurich, Switzerland, October 23, 2008

E. García Garayoa
Tumour targeting with $^{64/67}$Cu-labelled neurotensin analogues
14th European Symposium on Radiopharmacy and Radiopharmaceuticals, Skopje, Macedonia (former Yugoslav Republic of Macedonia), April 24 – 27, 2008

J. Grünberg
Lutetium-177 radioimmunotherapy of ovarian cancer metastasis in nude mice with anti-L1CAM antibody chCE7 in combination with genistein
28th International Symposium Radioactive Isotopes in Clinical Medicine and Research, Bad Hofgastein, Austria, January 9 – 12, 2008

R. Schibli
New strategies for the development of tracer for non-invasive imaging

R. Schibli
“Click” to image: Chemical strategies for the design of multiple modality imaging probes
Seminar at the University of Oxford, Dept. of Chemistry, Oxford, United Kingdom, February 2008

R. Schibli
Site-specific radiolabelling of recombinant proteins for imaging and quantitative in vivo studies
2nd World Immune Regulation Meeting, Davos, Switzerland, March 22 – 25, 2008

R. Schibli
Targeting of cancerous diseases with radioactive vitamin derivative
Seminar at the Dept. of Chemistry, University of Trieste, Trieste, Italy, April 2008

R. Schibli
New perspectives for the development of molecular imaging probes using “click”-chemistry
14th European Symposium on Radiopharmacy and Radiopharmaceuticals, Skopje, Macedonia (former Yugoslav Republic of Macedonia), April 24 – 27, 2008

R. Schibli
New Strategies for the Development of Tracer for Invasive and Non-Invasive Imaging
Symposium Regenerative Medicine, Zurich, Switzerland, June 2008
R. Schibli
Transglutaminases allow site-specific modification of anti L1CAM antibody chCE7 with a defined number of metal chelating systems for radiometal labeling
The 25th International Conference Advances in the Application of Monoclonal Antibodies in Clinical Oncology, Island of Rhodes, Greece, June 16 – 18, 2008

R. Schibli
Molecular radiodiagnostics and therapy: What can chemistry and radiopharmacy contribute?
Seminars in Drug Discovery and Development, Zurich, Switzerland, September 2008

R. Schibli
New folate tracers for non-invasive imaging of folate receptors
2nd International Meeting on Folate Receptors and Carriers, Como, Italy, October 26 – 30, 2008

R. Schibli
New methods for site-specific labelling of proteins and small molecules for imaging and therapy
Rusnanotech’2008, Moskow, Russia, December 3 – 5, 2008

P.A. Schubiger
PET-tracers for imaging of the glutaminergic pathway
28th International Symposium Radioactive Isotopes in Clinical Medicine and Research, Bad Hofgastein, Austria, January 9 – 12, 2008

P.A. Schubiger
Radiopharmaka zur Sichtbarmachung (und Heilung?) von krankhaften Vorgängen
ETH Im Dialog, ETHZ Zurich, Switzerland, March 29, 2008

P.A. Schubiger
PET molecular imaging in research and development - exemplified on a glutamatergic tracer
The Basel Seminar on Peptides, Proteins and Proteomics, Pharmacenter Basel, Switzerland, April 9, 2008

P.A. Schubiger
Molecular Imaging of Biochemical Functions using (Small Animal) PET
35th European Symposium on Calcified Tissues, Barcelona, Spain, May 24 – 28, 2008

R. Waibel
Targeting of tumors with radiolabeled vitamins
The 25th International Conference Advances in the Application of Monoclonal Antibodies in Clinical Oncology, Island of Rhodes, Greece, June 16 – 18, 2008

R. Waibel
Targeting of tumors with radiolabeled vitamins
8th International Conference of Anticancer Research, Kos, Greece, October 17 – 22, 2008
LIST OF PUBLICATIONS: 2008

NES — Nuclear Energy and Safety

Publications in Scientific and Technical Journals

ALAM A., HELLWIG C.

AOUNALLAH Y.

BAKO B., WEYGAND D.¹, SAMARAS M., HOFFELNER W., ZAISER M.²
¹ University of Karlsruhe, DE
² University of Edinburgh, UK

BART G., BOTTA F., HOTH C.¹, LEDERGERBER G.², MASON R.¹, STRATTON R.³
“Comparative Irradiation Test of Mixed Carbide Fuel in the US Fast Flux Test Facility with Focus on Sphere-Pac Fuel Behaviour; Summary of a Joint USA-Swiss Experiment”, J. Nucl. Mater. (ISSN 0022-3115), 376(1), 47-59 (2008)
¹ LANL, Los Alamos, US
² KKL, Leibstadt, CH
³ NOK AG, Baden, CH

BARTEN W., JASIULEVICIUS A., MANERA A., MACIAN-JUAN R., ZERKAK O.

BARTEN W., MANERA A., MACIAN-JUAN R.¹
¹ TUM, Garching, DE

BIRCHLEY J., HASTE T., RICHNER M.¹
¹ NOK AG, Baden, CH

BLAIR P., KHVOSTOV G., ROMANO A.¹, HELLWIG C.², CHAWLA R.
¹ ENUSA, Madrid, ES
² NOK AG, Baden, CH

BLANCHET D., HUOT N.¹, SIRETA P.¹, SERVIÈRE H.¹, BOYARD M.², ANTONY M.¹, LAVAL V.¹, HENRARD P.³
¹ CEA, Cadarache, FR
² AREVA TA, Aix-en-Provence, FR
³ University Blaise Pascal, Clermont-Ferrand, FR

BUBELIS E., CASTELLITI D.¹, CODDINGTON P., DOR I.², FOUILLET C.³, DE GEUS E.⁴, MARSHALL T.⁵, VAN ROOIJEN W.⁶, SCHIKORR M.⁷, STAINSBY R.⁸
¹ CIRCTEN, Pisa, IT
² CEA, Saclay, FR
³ AREVA NP, Paris, FR
⁴ NRG, Amhem, NL
⁵ ANL Argonne, Idaho Falls, US
⁶ TU Delft, NL
⁷ FZK, Karlsruhe, DE
⁸ AMEC NCC Ltd, Knutsford, UK

BUBELIS E., CODDINGTON P., MIKITYUK K.

BUKOWIECKI N.¹, LIENEMANN P.¹, ZWICKY C., FURGER M., RICHARD A., FALKENBERG G.², RICKERS K.², GROLIMUND D., BORCA C., HILL M.¹, GEHRIG R.¹, BALTENSPERGER U.

“X-ray fluorescence spectrometry for high throughput analysis of atmospheric aerosol samples: the benefits of synchrotron X-rays”, Spectrochimica Acta (ISSN 0584-8547), B63, 929-938 (2008)
¹ EMPA, Dübendorf, CH
² DESY, Hamburg, DE

Cammelli S., Degueldre C., Kuri G., Bertsch J.

Caruso S., Günther-Leopold I., Murphy M., Jatuff F., Chawla R.

Caruso S., Murphy M., Jatuff F., Chawla R.

Chawla R., Jatuff F., Tani F.

Chen J.C., Jung P.,¹ Pouchn M.A., Rebac T., Hoffelner W.

¹ FZJ, Jülich, DE

Churakov S.

Churakov S., Mandaliev P.

Cometto M., Wydler P., Chawla R.

Dai Y., Gavillet D., Restani R.

¹ CEA, Grenoble, FR
² GRS, Garching, DE
³ IRSN, Cadarache, FR
⁴ JNES, Tokyo, JP
⁵ KAERI, Daejeon, KR
⁶ KINS, Daejeon, KR
⁷ NRI, Rez, CZ
⁸ UNIP, Pisa, IT
⁹ UPC, Madrid, ES

Degueldre C., Abolhassani-Dadas S., Kuri G., Raabe J.

“Zircaloy-2 secondary phase precipitate analysis by X-ray microspectroscopy”, Talanta (ISSN 0039-9140), 75(2), 402-406 (2008)

Degueldre C., Kastoryano M., Dardenne K.¹

¹ FZK, Karlsruhe, DE
DEHBI A.

DEHBI A.

DESGRANGES L.1, PASQUET B.1, ROURE I.1, PORTIER S., BREMIER S.2, WALKER C.2, HASNAOUI R.2, GAVILLET D., MARTIN M., RAIMBAULT L.3
1 CEA, Cadarache, FR
2 JRC/ITU, Karlsruhe, DE
3 Ecole des Mines, Paris, FR

FAZIO C.1, GRÖSCHEL F., WAGNER W., THOMSEN K., SMITH B.L., STIEGLITZ R.1, ZANINI L., GUERTIN A.2, CADIOU A.2, HENRY J.3, AGOSTINI P.4, DAI Y., HEYCK H., DEMENTJEVS S., PANEBIANCO S.5, ALMAZOUI A.4, EIKENBERG J., LETOURNEAU A.5, TOUSSAINT J.5, JANETT A., PERRET G., JORAY S., PATORSKI J., LEUNG W., MELONI P.4, TURRONI P.4, ZUCHINI A.4, BENAMATI G.4, KONYS J.1, AUGER T.1, GESSI A.6, GORSE D.7, SERRE I.8, TERRAIN A.5, VOGT J.B.8, BATT A.1, CLASS A.1, CHENG X.1, FELLMOSER F.1, DAUBNER M.1, GNIESER S.1, GRÖTZBACH G.1, MILENKOVIC R., LATGE C.5, KNEBEL J.1
1 FZK, Karlsruhe, DE
2 SUBATECH, Nantes, FR
3 FZJ, Jülich, DE
4 ENEA, Bologna, IT
5 CEA, Gil-surt-Yvette, FR
6 SCK-CEN, Mol, BE
7 CNRS-CECM, Vitry, FR
8 CNRS-LMPGM, Villeneuve d'Ascq, FR

FROIDEVAL A., DEGUELdre C., SEGRE C.1, POUCHON M.A., GROLIMUND D.
1 CSR&+BCPS, Illinois Institute of Technology, Chicago, US

GAVILLET D., MARTIN M., DAI Y.

GIMMI T.

GIRARDIN G., RIMPault G.1, MORIN F.1, BOSQ J.1, CODDINGTON P., MIKYTYUK K., CHAWLA R.
1 CEA, Cadarache, FR

GLAUS M., MÜLLER W., VAN LOON L.R.

GLAUS M., VAN LOON L.R.

GLAUS M., VAN LOON L.R., SCHWYN B.1, VINES S.2, WILLiAMS S.3, LARSSON P.3, PUIGDOMENECH I.3
1 NAGRA, Wettingen, CH
2 NDA, Harwell, UK
3 SKB, Stockholm, SE

GONZÁLEZ F., JURANJ F., GIMMI T., VAN LOON L.R., SEYDEL T.1, UNRUH T.2
1 Institut Laue-Langevin, Grenoble, FR
2 Forschungsneutronenquelle Heinz Maier-Leibnitz, Garching, DE

27/05/2009
GONZÁLEZ F., JURANJI F., GIMMI T., VAN LOON L.R., UNRUH T.¹, DIAMOND L.²
¹ Forschungsnucronte Heinz Maier-Leibnitz, Garching, DE
² University of Berne, CH

GONZÁLEZ F., VAN LOON L.R., GIMMI T., JAKOB A., GLAUS M., DIAMOND L.¹
¹ University of Berne, CH

GÜNTER-LEOPOLD I., KIVEL N., KOBLER WALDIS J., WERNLI B.

HARTMANN E.¹, BAEYENS B., BRADBURY M.H., GECKIES H.¹, STUMPF T.¹
¹ KIT, Karlsruhe, DE

HUMMEL W.
“Radioactive contaminants in the subsurface: the influence of complexing ligands on trace metal speciation”, Monatsh. Chem. (ISSN 0026-9247), 139, 459-480 (2008)

IANNUZZI MAURI M.

JOHNSON S., BEAUD P., KRASNIGI F., MILNE C.¹, KAISER M.¹, GROLIMUND D., ABELA R., INGOLD G.
¹ EPFL, Lausanne, CH

KOLBE E., VASILIEV A., FERROUKHI H., ZIMMERMANN M.A.

KOSA M.¹, KRACK M., CHEETHAM A.K.², PARRINELLO M.¹
¹ ETHZ, Zurich, CH
² University of Cambridge, UK

KOSAKOWSKI G., CHURAKOV S., THOENEN T.

KOSAKOWSKI G., MCDERMOTT C.¹
¹ University of Edinburg, UK

KREPEL J., ROHDE U.¹, GRUNDMANN U.¹, WEISS F.P.¹
¹ FZD, Rossendorf, DE

KÜPPER F.C.¹,²,³, CARPENTER L.J.⁴, McFIGGANS G.B.⁵, PALMER C.J.⁵,⁶, WAITE T.⁷, BONEBERG E.-M.²,⁸, WOITSCH S.², WEILLER M.², ABELA R., GROLIMUND D., POTIN PH.⁵, BUTLER A.³, LITHER III G.W.¹, KRONECK P.², MEYER-KLAUCKE W.¹, FEITERS M.¹¹
¹ Dannstaffnage Marine Laboratory, Oban, UK
² University of Konstanz, DE
³ UCSB, Santa Barbara, US
⁴ University of York, UK
⁵ University of Manchester, UK
⁶ University of Capetown, SA
⁷ University of Delaware, US
⁸ Biotechnologie Inst., Kreuzlingen, CH
⁹ UPMC, Paris VI, FR
¹⁰ European Molecular Biology Laboratory, Hamburg, DE
¹¹ University of Nijmegen, NL

KURI G., GAVILLET D., DOEBELI M., NOVIKOV D.¹
“Structural changes in helium implanted Zr$_{0.8}$Y$_{0.2}$O$_{1.9}$ single crystals characterized by atomic force microscopy and EXAFS spectroscopy”, Nucl. Instrum. Methods Phys. Res., Sect. B (ISSN 0168-583), 266(8), 1216-1223 (2008)
1 DESY, Hamburg, DE

LENZ M. 1,2, VAN HULLEBUSCH E. 1,3, FARGES F. 4,5, NIKITENKO S. 6,7, BORCA C.N., GROLIMUND D., LENS P.N.L. 1,8
1 University of Wageningen, NL
2 University of Paris-Est, La Marne, FR
3 FHNW, Muttenz, CH
4 MNHN, Paris, FR
5 Stanford University, US
6 NWI Den Haag, NL
7 ESRF, Grenoble, FR
8 UNESCO-IHE, Delft, NL

LIAO, Y.

LIAO, Y., VIerox, K., DEHBI, A., GUENTAY, S.

LIU L. 1, KRACK M., MICHAELIDES A. 1
1 University College, London, UK

MAASS R., VAN PETEGEM S., GROLIMUND D., VAN SWYGENHOVEN H., KIENER D. 1, DEHM G. 1
1 Montanuniversity, Leoben, AT

MAASS R., VAN PETEGEM S., ZIMMERMANN J., BORCA C., VAN SWYGENHOVEN H.

MANERA A., OZAR B. 1, PARANJAPE S. 1, IISHII M. 1, PRASSER H.-M.
1 Purdue University, West Lafayette, US

MARQUES FERNANDES M., BAEYENS B., BRADBURY M.H.

MERLET, C. 1, LLOVET, X. 2, AUFORE, L. 3, BRÉMIER, S. 4, DESCHANELS, X. 5, DUGNE, O. 5, LAMONTAGNE, J. 6, RESTANI, R., ROCHE, C. 4, TRIBET, M. 5, VAN RENTERGHEM, W. 6
1 University of Montpellier II, FR
2 University of Barcelona, ES
3 CEA, Cadarache, FR
4 JRC/ITU, Karlsruhe, DE
5 CEA, Marcoule, FR
6 SCK CEN, Mol, BE

MERLET C. 1, LLOVET X. 2, DUGNE O. 5, BRÉMIER S. 4, VAN RENTERGHEM W. 6, RESTANI R.
1 University of Montpellier, FR
2 IEC, Barcelona, ES
3 CEA VRH, Pierrelatte, FR
4 JRC/ITU, Karlsruhe, DE
5 SCK, Mol, BE

MIKIYUK K., CODDINGTON P., GRÖSCHEL F.

MURPHY M., JATUFF F., PERRET G., PLASCZY M. 1, BERGMANN U. 2, CHAWLA R.
NICENO B., DHOSTRE M., DEEN N.1

1University of Twente, NL

NIFFENEGGER M., LEBER H.

NILSSON A., HEDOVIST I., DEGUERDRE C.

1Geosigma, Dandery, SE

2SKB, Figeholm, SE

PALADINO D., HUGGENBERGER M., SCHÄFER F.1

1FZK, Karlsruhe, DE

PALADINO D., ZBORAY R., BENZ P., ANDREANI M.

PERRET G., PLASCHY M., MURPHY M., JATUFF F., CHAWLA R.

RAABE D., RAMESH M., ZHAO Z.2, CUITIÑO A.3, RADOVITZKY R.2

1Max-Planck-Institut, München, DE

2MIT, Cambridge, US

3Rutgers University, Piscataway, US

RITTER S., SEIFERT H.P.

RODRIGUEZ-FORTEA A., IANNUZZI MAURI M.

1University Rovira i Virgili, Tarragona, ES

2TU Delft, NL

3GE, San Jose, US

SANTAROSA G., VARGAS A., IANNUZZI MAURI M., PIGNEDOLI C.A.2, PASSERONE D.2, BAIKER A.1

“Modeling bulk and surface Pt using the "Gaussian and plane wave" density functional theory formalism: validation and comparison to k-point plane wave calculations”, J. Chem. Phys. (ISSN 0021-9606), 129, 234703-234714 (2008)

1ETHZ, Zurich, CH

2EMPA, Dübendorf, CH

SCHARMANN D., NEUHAUSEN J., HORN S., KUBIK P., GÜNTHER-LEOPOLD I.

“Radiochemical separation and analytical determination of 10Be from proton-irradiated graphite targets”, Radiochim. Acta (ISSN 0033-8230), 96, 31-34 (2008)

1Tohoku University, JP

SEIFERT H.P., RITTER S.

SEIFERT H.P., RITTER S.

SEIFERT H.P., RITTER S.

SEIFERT H.P., RITTER S., SHOJI T., PENG Q., TAKEDA Y., LU, Z.P.

SMITH B.L.

SMITH, B.L., DURY, T.V., NI, L., ZUCCHINI, A.

1 ENEA, Bologna, IT

SMITH B.L., SHEPEL S.V.

VAN DER VEEN R., MILNE C., PHAM V., EL NAHAS A., WEINSTEIN J., BEST J., BORCA C., BRESSLER C., CHERGUI M.

1 EPFL, Lausanne, CH
2 University of Sheffield, UK

VAN ENGEL SPIVEY A., BORCA C., CUNDIFF S.

1 University of Puget Sound, Washington, US
2 University of Colorado, US

VAN LOON L.R., GLAUS M.

VARGAS A., SANTAROSSA G., IANNUZZI MAURI M., BAIKER A.

1 ETHZ, Zurich, CH

VASILIEV A., FERROUKHI H., ZIMMERMANN M.A., CHAWLA R.

VASILIEV A., KOLBE E., FERROUKHI H., ZIMMERMANN M.A., CHAWLA R.

VASILIEV A., KOLBE E., ZIMMERMANN M.A.

WENK H., VOLTOLINI M., MAZUREK M., VAN LOON L.R., VINSOT A.
“Preferred orientations and anisotropy in shales: Callovo-Oxfordian shale (France) and Opalinus Clay (Switzerland)”, Clays Clay Miner. (ISSN 0009-8604), 56, 285-306 (2008)

1 UCB, Berkeley, US
2 University of Berne, CH
3 ANDRA, Bure, FR

WERSIN P., SOLER J., VAN LOON L.R., EIKENBERG J., BAEYENS B., GROLIMUND D., GIMMI T., DEWONCK S.

1 NAGRA, Wettingen, CH
2 CSIC-UA, Barcelona, ES
3 ANDRA, Bure, FR

WIELAND E., TITS J., KUNZ D., DAHN R.
Wiltzius J.1, Sievers S.1, Sawaya M.1, Cascio D.1, Popov D., Riekel C.2, Eisenberg D.1
“Atomic structure of the cross-beta spine of islet amyloid polypeptide (amylin)”, Protein Sci. (ISSN 0961-8368), 17, 1467-1474 (2008)
1 Howard Hughes Medical Institute, Los Angeles, US
2 ESRF, Grenoble, FR

Yadigaroglu G.1, Simiano M., Milenkovic R., Kubasz J., Milelli M., Zboray R., de Cachard F., Smith B.L., Lakehal D.1, Sign G.
“CFD4RNS with a focus on experimental and CMFD investigations of bubbly flows”, Nucl. Eng. Des. (ISSN 0029-5493), 238(3), 771-785 (2008)
1 ASCOMP, Zurich, CH

1 EPRI, Palo Alto, US
2 Eccotec Inc., Scarborough, CA
3 Studsvik Nuclear AB, Nyköping, SE
4 CE, Saclay, FR
5 Zircology Plus, Fremont, US
6 INER, Lung-Ten, KR
7 Global Nuclear Fuel, San Jose, US
8 Nuclear Fuel Industries, Osaka, JP
9 Ringhals AB, Varberg, SE
10 Institute for Energy Technology (IFE), Kjeller, NO

Yaroschuk A.1, Glau M., Vanloon L.R.
1 University of Catalonia, Barcelona, ES

YAROSCHUK A.1, VAN LOON L.R.
1 University of Catalonia, Barcelona, ES

Keynote Lectures at International Conferences

Smith B.L.

International Conferences with Proceedings

1 IRSN, Cadarache, FR
2 CEA, Grenoble, FR
3 FZK, Karlsruhe, DE
4 CEA, Cadarache, FR
5 KTH, Stockholm, SE
6 GRS, Garching, DE
7 EC-JRCISIS, Ispra, IT

Albiol T.1, Van Dorsselaere J.1, Chaumont B.2, Haste T., Journeau C.3, Meyer L.4, Sehgal B.5, Schwinges B.6, Beraha D.7, Annunziato A.8, Zeyen R.9
1 IRSN, Cadarache, FR
2 CEA, Cadarache, FR
3 CEA, Grenoble, FR
4 FZK, Karlsruhe, DE
5 KTH, Stockholm, SE
6 GRS, Garching, DE
7 EC-JRCISIS, Ispra, IT

Albiol T.1, Van Dorsselaere J.1, Tromm W.2, Journeau C.3, Kljenak I.4, Haste T.
1 IRSN, Cadarache, FR
ANDREANI M., PALADINO D., GEORGE T.¹

¹ Numerical Applications Inc., Richland, US

ALVINEN A.¹, BRILLANT G.², COLOMBANI J.³, DAVIDOVICH N.³, DICKSON R.⁴, DUCROS G.⁵, GIORDANO P.², HASTE T., HOLM J.⁶, KARKELA T.⁷, LAMY J.S.⁸, MUN C.², OHAI D.⁹, PONTILLON Y.¹⁰, STEINBRÜCK M.¹⁰, VER N.¹¹

¹ VTT Energy, Espoo, FI
² IRSN, Cadarache, FR
³ Ente per le nuove Tecnologie, Bologna, IT
⁴ AECL, Ottawa, CA
⁵ CEA, Cadarache, FR
⁶ Chalmers University of Technology, Gothenburg, SE
⁷ VTT, Helsinki, FI
⁸ EDF, France, FR
⁹ INRNE, Sofia, RO
¹⁰ FZK, Karlsruhe, DE
¹¹ KFKI, Budapest, HU

BERTOLOTTO D., MANERA A., PRASSER H.-M., CHAWLA R.

BERTOLOTTO D., MANERA A., SMITH B.L., PRASSER H.-M., CHAWLA R.

BIRCHLEY J., AUSTREGESILLO H.¹, BALS C.², DUBOURG R.², HASTE T., LAMY J.S.³, LINDESTED T., MALIVERNEY B.³, MARCHETTO C.², PINTER A.³, STEINBRÜCK M.³, STUCKERT J.³, TRAMBAUER K.¹

¹ GRIS, Garching, DE
² IRSN, Cadarache, FR
³ EDF, Clamart, FR
⁴ KFKI, Budapest, HU
⁵ FZK, Karlsruhe, DE

BIRCHLEY J., HASTE T., JAECKEL B.S.

“Preliminary assessment of MELCOR1.8.6 using integral data”, 14th Int. QUENCH Workshop, 4-6 November 2008, Karlsruhe, Germany, CD-ROM, 2008

BIRCHLEY J., HASTE T., JAECKEL B.S.

“PSI Analytical Support for QUENCH-14”, 14th Int. QUENCH Workshop, 4-6 November 2008, Karlsruhe, Germany, CD-ROM, 2008

BLANCHET D., PELLONI S., CODDINGTON P., MIKITYUK K.

COINDREAU O.¹, BALS C.², BIRCHLEY J., HASTE T., HOLLANDS T.³, KOCH M.³, TRAMBAUER K.²

¹ IRSN, Cadarache, FR
² GRIS, Garching, DE
³ RUB, Bochum, DE

DREIER J., PALADINO D., HUGGENBERGER M., ANDREANI M., YADIGAROGLO G.¹

¹ ASCOMP, Zurich, CH

DUBOURG R.¹, AUSTREGESILLO H.², BALS C.², BARRAUX M.¹, BIRCHLEY J., HASTE T., NAGY I.³, LAMY J.S.⁴, LIND T., MALIVERNEY B.⁴, MARCHETTO C.¹, PINTER A.³, STEINBRÜCK M.³, STUCKERT J.³, TRAMBAUER K.², VIMI A.³
1 IRSN, Cadarache, FR
2 GRS, Garching, DE
3 KFKI, Budapest, HU
4 EDF, France, FR
5 FZK, Karlsruhe, DE

DUMAZ P., EPINEY A., ALPY N., BROXTERMANN P., MALO J., TOSELLO A.
1 CEA, Cadarache, FR

DURY T.V., DHOTRE M.

EPINEY A., CODDINGTON P., MIKITYUK K., CHAWLA R.

EPINEY A., DUMAZ P., CODDINGTON P., MIKITYUK K., CHAWLA R.
“Comparative transient analysis of the 2400 MWth GFR with the TRACE and CATHARE codes”, Int. Conf. on the Physics of Reactors (PHYSOR’08), 14-19 September 2008, Interlaken, Switzerland, CD-ROM, 2008 (ISBN 978-3-9521409-5-6)
1 CEA, Cadarache, FR

FERROUKHI H., HOFER K., HOLLARD J.M., VASILEV A., ZIMMERMANN M.A.
“Core Modelling and Analysis of the Swiss Nuclear Power Plants for Qualified R&D Applications”, Int. Conf. on the Physics of Reactors (PHYSOR’08), 14-19 September 2008, Interlaken, Switzerland, CD-ROM, 2008 (ISBN 978-3-9521409-5-6)

FERROUKHI H., HOLLARD J.M., ZIMMERMANN M.A., CHAWLA R.

FERROUKHI H., ZERKAK O., CHAWLA R.

GIRARDIN G., MIKITYUK K., CODDINGTON P., CHAWLA R.

GIUST F., GRIMM P., JATUFF F., CHAWLA R.
“Comparison of reconstructed radial pin total fission rates with experimental results in full-scale BWR fuel elements”, Int. Conf. on the Physics of Reactors (PHYSOR’08), 14-19 September 2008, Interlaken, Switzerland, CD-ROM, 2008 (ISBN 978-3-9521409-5-6)
1 NOK AG, Baden, CH

GRIMM P., MURPHY M., JATUFF F., SEILER R.

GUENTAY S., DEBHI A., SOLDATI A., DEVILLE M.
1 University of Udine, IT
2 EPFL, Lausanne, CH

GUPTA S., PALADINO D., BENZ P., PRASSER H.-M.

HASTE T., BIRCHLEY J., KLUGE J.U.

10 27/05/2009

HASTE T., BIRCHLEY J., LAMY J.S., MALIVERNEY B., AUSTREGESILO H., BALS C., TRAMBAUER K., STEINBRUCK J., STUCKERT J.

HERRANZ L., BALL J., AUVINEN A., BOTTOMELY D., DEHBI A., HOUSIADAS C., PILUSO P., LALY V., PAROZZI F., REEKS M.

Hoffelner W., Samaras M., Bako B., Iglesias R.

JANSSENS K., NIFFENEGGER M., REICHLIN K.

JATUFF F., PERRET G., MURPHY M., GRIMM P., SEILER R., CHAWLA R.

Joneja O.P., Perret G., Grimm P., Jatuff F., Chawla R.

“MCNP analysis of generic configurations in the context of the LIFE@PROTEUS experiments”, Int. Conf. on the Physics of Reactors (PHYSOR’08), 14-19 September 2008, Interlaken, Switzerland, CD-ROM, 2008 (ISBN 978-3-9521409-5-6)

KAPULLA R., TUCHTENHAGEN J., MÜLLER A., DULLENKOPF K., BAUER H.-J.

Kholostov G., Zimmermann M.A., Ledergerber G., Kolstad E., Montgomery R.

Kholostov G., Zimmermann M.A., Stoinescu R., Ledergerber G.

“Definition of optimal parameters of fuel rod design and test conditions for the high temperature LOCA experiment IFA-650.7 using the FALCON fuel behaviour code”, Enlarged Halden Programme Group Meeting (EHPGM 2008), 18-23 May 2008, Loen, Norway, CD-ROM, 2008

Kholostov G., Zimmermann M.A., Sugiyama T., Fuketa T.

“On the use of the FALCON code for modeling the behaviour of high burn-up BWR fuel during the LS-1 pulse-irradiation test”, Int. Conf. on the Physics of Reactors (PHYSOR’08), 14-19 September 2008, Interlaken, Switzerland, CD-ROM, 2008 (ISBN 978-3-9521409-5-6)

Kim T.W.

KREPEL J., PELLONI S., MIKITYUK K.

KRÖHNERT H., MURPHY M., PERRET G., PLASCHY M.,1 WAGEMANS J.,2 CHAWLA R.

1 EOS, Lausanne, CH
2 SCK, Mol, BE

LEBER H., TIRBONOD B., NIFFENEGGER M., RAMESH M.

LIAO Y., VIEROW K.,1 HAN J.,2

“MELCOR validation against a PUMA facility Main Steam Line Break integral test”, Int. Conf. on Advanced Power Plants (ICAPP’08), 8 - 12 June 2008, Anaheim, USA, CD-ROM, 2008 (ISBN 0-89448-061-8)

1 Texas A&M University, College Station, US
2 US NRC, Rockville, US

NICENO B., SMITH B.L., PRASSER H.-M.

PALADINO D., HUGGENBERGER M., ANDREANI M., GUENTAY S., DREIER J., PRASSER H.-M.

PELLONI S., KREPEL J., MIKITYUK K.

PERRET G., MURPHY M., JATUFF F., CHAWLA R.

PETKEVIC P., MIKITYUK K., CODDINGTON P., CHAWLA R.

“GFR transient analysis employing a 2D thermomechanical model for the plate-type fuel”, Int. Conf. on the Physics of Reactors (PHYSOR’08), 14-19 September 2008, Interlaken, Switzerland, CD-ROM, 2008 (ISBN 978-3-9521409-5-6)

PFINGSTEN W.

POETTE C.,1 BRUN-MAGAUD V.,1 MORIN F.,1 DOR I.,1 PIGNATELA J.F.,1 BERTRAND F.,1 STAINSBY R.,2 PELLONI S., EVERY D.,3 DA CRUZ D.4

1 CEA, Cadarache, FR
2 AMEC NCC Ltd., Knutsford, UK
3 Nexia Solution LTD., Preston, US
4 NRG, Petten, NL

POUCHON M.A., FROIDEVAL A., DEGUELDRÈ C., GAVILLET D., HOFFELNER W.

PROFF C., ABOLHASSANI-DADARAS S., DADRAS M.
1 University of Neuchâtel, CH

REPETTO G.1, BIRCHLEY J., DRATH T.2, AUSTREGESILO H.3
1 IRSN, Cadarache, FR
2 Ruhr-University of Bochum, DE
3 GRS, Garching, DE

RICHNER M.1, ZIMMERMANN S.1, BIRCHLEY J., HASTE T.
1 NOK AG, Baden, CH

RITTER S., SEIFERT H.P.

RITTER S., SEIFERT H.P.

RITTER S., SEIFERT H.P.

RITTER S., SEIFERT H.P.

STUCKERT J.1, BIRCHLEY J., GROSSE M., HASTE T., SEPOLD L.1, STEINBRÜCK J.1
1 FZK, Karlsruhe, DE

SUCKOW D., GUENTAY S.

TITS J., FUJITA T.1, TSUKAMOTO M.1, WIELAND E.
1 JNC, Tokai, JP

VAN UFFELEN P.1, SCHUBERT A.1, VAN DE LAAR J.1, GYORI C.1, ELENKOV D.2, BONEVA S.3, GEORGIJEVA M.3, GEORGIJEV S.3, HOZER Z.4, MÄRTENS D.5, SPIKMAN G.5, HELLWIG C., NORDSTROEM A.L., LUZZI L.6, DI MARCELLO V.6, ABELA R., OTT L.7
1 JRC/ITU, Karlsruhe, DE
2 Aachen University of Technology, DE
3 Bulgarian Academy of Science, Sofia, BG
4 KFKI, Budapest, HU
5 TÜV NORD, Hannover, DE
6 Politecnico, Milan, IT
7 ORNL, Oak Ridge, US

VASILIEV A., FERROUKHI H., KOLBE E., ZIMMERMANN M.A.

13 27/05/2009
VINAI P., MACIAN-JUAN R.†, CHAWLA R.
† TUM, Garching, DE

ZERKAK O., FERROUKHI H.

ZHAO Z.†, RAMESH M., RAABE D.†, CUITIÑO A.†, RADDOVITZKY R.†
“Grain-scale roughness in ductile polycrystals”, 8th World Congr. on Computational Mechanics (WCCM8), 30 June - 4 July 2008, Venice, Italy, CD-ROM, 2008
† MIT, Cambridge, US
‡ Max-Planck-Institut, München, DE
§ Rutgers University, Piscataway, US

Talks delivered at Conferences, Workshops and Specialist Meetings (without Proceedings)

ABOLHASSANI-DADRA S.

ALAM A.
“Study of Hydride Behavior and Damage in Fuel Cladding Tubes at Paul Scherrer Institute, Switzerland”, PSI-CEA Meeting on Nuclear Fuel Cladding Mechanical Behavior, CEA, Saclay, France, 28 March 2008

BAKO B.
† University of Stuttgart, DE

BAKO B.
“Modeling of microstructure evolution in nuclear applications”, 4th Int. Conf. on Multiscale Materials Modelling (MMM2008), Tallahassee, USA, 27-31 October 2008

BERG T.†, BREDBERG J.†, SUCKOW D.
“CFD Simulation of ARTIST Break Stage and Comparisons with Measured Data”, ANS Annual Meeting, Anaheim, USA, 8-12 June 2008
† Epsilon High Tech, Göteborg, SE

BERTSCH J.
“Nuclear Fuels Research at PSI”, PSI-CEA Meeting on Nuclear Fuel Cladding Mechanical Behavior, CEA, Saclay, France, 28 March 2008

BERTSCH J.
“Mechanical Integrity Testing of Fuel Claddings”, GRS Project and Workshop on Structural and Release Behaviour of LWR High-Burnup Fuel under Transport Accident Conditions, Gesellschaft für Reaktorsicherheit (GRS), Hanover, Germany, 4-5 December 2008

BORCA C., GROLIMUND D., WILLIMANN M., MEYER B., MAASS R., VAN PEGEM S., VAN SWYGENHOVEN H., FARGES F.†, VAN HULLEBUSCH E.†, LENZ M.†, LENS P.†, FARQUHARSON M.†, FROIDEVAL A.
† CNRS UMR, Paris, FR
‡ University Wageningen, NL
§ City University, London, UK

BREDBERG J.†, BERG T.†, DEHBI A.
† Epsilon High Tech, Göteborg, SE

BRESSLER C.†, GROLIMUND D.
† EPFL, Lausanne, CH

BRUNA G.†, SCOTT-DE-MARTINVILLE E.†, STOREY P.†, TESCHENDORFF V.†, ZIMMERMANN M.A.

1 IRSN, Cadarache, FR
2 HSE, Bootle, UK
3 GRS, Garching, DE

BUDAI J., LARSON B.1, ICE G.1, LIU W.2, ROLLETT A.3, JANSSENS K., NORTON D.4, SARTMA D.5, SHENOY G.2

“Submicron-resolution mapping of domains, texture and strain using X-ray micro-diffraction”, 15th Int. Conf. on Textures of Materials (ICOTOM 15), The American Ceramic Society, Pittsburgh, USA, 1-6 June 2008

1 ORNL, Oak Ridge, US
2 ANL, Argonne, US
3 Carnegie Mellon University, Pittsburgh, US
4 University of Florida, Orlando, US
5 Indian Institute of Science, Bangalore, IN

Cammelli S., Degueldre C., KURI G., Bertsch J., Cammelli S., Lützenkirchen-Hecht D.1, Frahm R.1

1 BUGH, Wuppertal, DE

Chawla R.

Chen J.C., Pouchon M.A., Hoffelner W.

“Revisiting Irradiation Creep”, XVIIIth Int. Conf. on Physics of Radiation Phenomena and Radiation Material Science, National Academy of Sciences of Ukraine, Alushta, Ukraine, 8-13 September 2008

Churakov S.

“Ab initio modelling of crystalline cement phases”, Laboratory of Construction Materials, Invited Talk, EPFL, Lausanne, Switzerland, 15 May 2008

Churakov S.

Dahn R.

Dahn R., Vespa M., Shuh D.1, Tyliszczak T.1, Wieland E.

“Spectromicroscopic Investigation of Metal Precipitate Formation in Nuclear Waste Repository Materials”, 7th Int. Conf.on Nuclear and Radiochemistry, Budapest, Hungary, 24-29 August 2008

1 LBNL, Berkeley, US

Degueldre C.

Degueldre C., KURI G., FROIDEVAL A., BORCA C., GAVILLET D.

Degueldre C., KURI G., FROIDEVAL A., CAMMELLI S., POUCHON M.A., BERTSCH J.

“Advanced synchrotron radiation studies on nuclear materials at LNMs”, XAS-Meeting, PSI, Villigen, Switzerland, 7-8 October 2008

Dehbi A., Suckow D., Guentay S.

“Results from the ARTIST Flooded Bundle Tests”, ANS Annual Meeting, Anaheim, USA, 8-12 June 2008

Dilnes B.1, Lothenbach B.1, Wieland E., Ulrich A.1

1 EMPA, Dübendorf, CH

Freixa J.1, Manera A., Zerkak O.

“Post-Test Thermal-Hydraulic Analysis of ROSA Test 6.1 using TRACE”, Code Assessment and Maintenance Meeting (CAMP) SPRING’08 Meeting, Pisa, Italy, 28-30 May 2008

1 Politechnic University of Catalonia, Barcelona, ES
FROIDEVAUX A.

FROIDEVAUX A., ABOLHASSANI-DADARS S., GAVILLET D., GROLIMUND D., BORCA C., KRBNJECIC J., DEGUELDRE C.

FROIDEVAUX A., SAMARAS M., IGLESIAS R., POUCHON M.A., CHEN J.C., GROLIMUND D., RAABE J., SCHUPPLER S.1, VICTORIA M., HOFFELNER W.
“Application of synchrotron radiation techniques for modeling/validation of advanced structural materials”, Materials Science and Engineering Conf. (MSE 08), Nürnberg, Germany, 1-4 Sept. 2008
1 FZK, Karlsruhe, DE

GAVILLET D.

GIMMI T.

GROLIMUND D., BORCA C., GAVILLET D., WIELAND E., FROIDEVAUX A., MEYER B., WILLIMANN M.

GROLIMUND D., BORCA C., MEYER B., WILLIMANN M.

GUENTAY S., DEHBI A., SUCKOW D.
“Introduction to the ARTIST Program”, ANS Annual Meeting, Anaheim, USA, 8-12 June 2008

GÜNTHER-LEOPOLD I.

HOGAN K.1, LIAO Y., BEENY B.1, VIEROW K.1
“Implementation of a New Diffusion Layer Model for Condensation with Non-condensable Gases into MELCOR”, Cooperative Severe Accident Research Program (CSARP) and MELCOR Code Assessment Program (MCAP) Technical Review Meetings, Texas A&M University, Bethesda, USA, 16-19 September 2008
1 Texas A&M University, College Station, US

HUMMEL W.

JANSSENS K., NIFFENEGGER M., REICHLIN K.

JANSSENS K., NIFFENEGGER M., REICHLIN K.

KAPULLA R., DANNER S., GUENTAY S.
“Droplet Retention and Velocity Field in a Steam Generator”, ANS Annual Meeting, Anaheim, USA, 8-12 June 2008

KAPULLA R., TRAUTMANN M., GUENTAY S.

KIVEL N.
“Application of LA-MC-ICP-MS for the investigation of actinides in spent nuclear fuel”, Working Group on Techniques and Standards for Destructive Analysis (WGDA) of the European Safeguards Research and
Development Association (ESARDA) Workshop on Measurements of Minor Isotopes in Uranium, Institute for Reference Materials and Measurements (IRMM), Geel, Belgium, 10-11 April 2008

KIVEL N.

KIVEL N., KOBLER WALDIS J., WERNLI B., GÜNTHER-LEOPOLD I.
"Determination of xenon isotope ratios in fission gas by MC-ICP-MS", 7th Int. SF-ICP-MS Conf., Rutgers University, New Brunswick, USA, 8-12 September 2008

KOBLER WALDIS J.
"Bestimmung der Xenon-Isotopenzusammensetzung mittels MC-ICP-MS", 8th Symp. über massenspektrometrische Verfahren der Elementspurenanalyse, Dresden, Germany, 17-19 September 2008

KOSAKOWSKI G., JAKOB A.

KRACK M.
"Accelerating ab-initio molecular dynamics simulations", Invited Talk, Deutsches Zentrum für Luft- und Raumfahrt e.V., Cologne, Germany, 20 May 2008

KRACK M.

KULIK D.

KULIK D., BERNER U., CURTI E., HUMMEL W., THOENEN T.

LEUPIN O.\(^1\), DEWONCK S.\(^2\), SAVOYE S.\(^3\), WERSIN P.\(^4\), VAN LOON L.R., GIMMI T., SAMPER J.\(^5\), SOLER J.\(^6\), EIKENBERG J., BAEYENS B.

\(^1\) NAGRA, Wettingen, CH
\(^2\) ANDRA, Bure, FR
\(^3\) IRSN, Fontenay-aux-Roses, FR
\(^4\) Gruner AG, Basel, CH
\(^5\) University of La Coruna, ES
\(^6\) CSIC-UAB, Barcelona, ES

LIAO Y., GUENTAY S.
"Fission Product Release Boundary Conditions for a SGTR-Initiated Severe Accident", ANS Annual Meeting, Anaheim, USA, 8-12 June 2008

LIAO Y., GUENTAY S., DEHBI A.

LIND T., SUCKOW D., GUENTAY S.
"Particle Retention in ARTIST Dry Bundle Tests", ANS Annual Meeting, Anaheim, USA, 8-12 June 2008

LOTHENBACH B.\(^1\), WIELAND E., FIGI R.\(^1\), RENTSCH D.\(^1\), SCHWYN B.\(^2\)

\(^1\) EMPA, Dübendorf, CH
\(^2\) NAGRA, Wettingen, CH

MACÉ N., HARFOUCHE M., DÄHN R., TITS J., SCHEINOST A.\(^1\), WIELAND E.

\(^1\) ESRF, Grenoble, FR
MACE N., WIELAND E., TITS J., DÄH N., KUNZ D., GEIPEL G.¹, SCHEINOST A.²
¹ FZD, Rossendorf, DE
² ESRF, Grenoble, FR

MANERA A., ANTONI O.¹
¹ CEA, Grenoble, FR

MARQUES FERNANDES M., DÄH N., BAEYENS B., SCHEINOST A.¹, BRADBURY M.H.
¹ ESRF, Grenoble, FR

MARTIN M., GAVILLET D., PORTIER S.

MECA S.¹, COLAS E.¹, ROJO I.¹, GAONA J., GRIVÉ M.², DURO L.², ROVIRA M.¹, MARTI V.¹, DE PABLO J.¹
¹ CTM, Manresa, ES
² Amphos, Valldoreix, ES

MERINO J.¹, GUIMERA J.¹, GAONA J., LUNA M.¹, DELOS A.¹, BRUNO J.²
“Risk assessment of a landfill for wastes containing naturally occurring radionuclides through infiltration to groundwater”, Int. Conf. on Uranium Mining and Hydrogeology V, Freiberg, Germany, 14-18 September 2008
¹ Amphos, Valldoreix, ES
² ENVIROS, Valldoreix, ES

NICENO B., ANDREANI M., PRASSER H.-M.
“PSI-Boil, a Building Block Towards the Multi-Scale Modelling of Flow Boiling Phenomena”, Colloquium on Two-Phase Convective Boiling Flow Modelling, CEA, Grenoble, France, 8-9 September 2008

NIFFENEGGER M.
“Monitoring the Embrittlement of Reactor Pressure Vessel Steels by using the Seebeck Coefficient”, 12th Symp. on Thermo-Chemistry and Thermo-Physics of Nuclear Materials, University of Vienna, Austria, 30 August - 3 September 2008

OGINO M.¹, KAPULLA R., DEHBI A.
“Fluent Simulation of Separator and Dryer Aerodynamics and Comparison with Data”, ANS Annual Meeting, Anaheim, USA, 8-12 June 2008
¹ JAERI, Kashiwa, JP

PFINGSTEN W.
“Reactive Transport Modelling”, Swiss Bentonite Workshop, Berne, Switzerland, 9 June 2008

PFINGSTEN W., SHAO H.¹
¹ University of Tübingen, DE

POUCHON M.A., CHEN J.C., FROIDEVAL A., JANOUSCH M., DEGUELDER C.

POUCHON M.A., CHEN J.C., HOFFELNER W.
“He implantation-induced microstructure- and hardness-modification of the intermetallic γ-TiAl”, 16th Int. Conf. on Ion Beam Modification of Materials (IBMM 08), Dresden, Germany, 31 August - 5 September 2008

POUCHON M.A., CHEN J.C., HOFFELNER W.
“The Extended X-Ray Absorption Fine Structure as a Sensing Tool of Atomistic Defects”, Materials Science and Engineering 2008 (MSE 08), Nürnberg, Germany, 1-4 September 2008

RAMESH M., LEBER H., KUNZE K.¹, DIENER M.¹, SPOLENAK R.¹
“Fatigue crack initiation behaviour during thermomechanical cyclic loading in austenitic stainless steel”, 15th Int. Conf. on Textures of Materials (ICOTOM 15), Pittsburgh, USA, 1-6 June 2008
¹ ETHZ, Zurich, CH
RAMESH M., LEBER H., KUNZE K., DIENER M., SPOLENAK R.
“Thermomechanical and Isothermal Cyclic Loading in Austenitic Stainless Steel”, Material Science Engineering (MSE 08), Nürnberg, Germany, 1-4 September 2008
1 ETHZ, Zurich, CH

REEKS M., HASTE T.
1 University of Newcastle upon Tyne, UK

REPETO G., BIRCHLEY J., DRATH T., AUSTREGESILO H.
“Analysis of the Phoebus FPT3 Core Degradation using Severe Accidents Codes (ICARE/CATHARE, ATHLET-CD, MELCOR)”, ANS Annual Meeting, Anaheim, USA, 8-12 June 2008
1 IRSN, Cadarache, FR
2 Ruhr University of Bochum, DE
3 GRS, Garching, DE

ROTH A., SEIFERT H.P., HICKLING J.
1 AREVA NP GmbH, Erlangen, DE
2 EPRI, Palo Alto, US

ROZOV K., BERNER U., TAVIOT-GUEHO C.
1 University Blaise Pascal, Clermont-Ferrand, FR

SEIFERT H.P., HICKLING J., ROTH A.
1 EPRI, Palo Alto, US
2 AREVA NP GmbH, Erlangen, DE

SEIFERT H.P., RITTER S.

SVIDKAUSKAITE-LEGORE J., KIVEL N., GÜNTHER-LEOPOLD I.
“Online monitoring of fission products released from nuclear fuel samples by ICP-MS”, 7th Int. SF-ICP-MS Conf., Rutgers University, New Brunswick, USA, 8-12 September 2008

TIJ T., MACÉ N., GEIPEL G., EILZER M., WIELAND E.
1 FZD, Rossendorf, DE

TIJ T., MACÉ N., GEIPEL G., EILZER M., WIELAND E.
1 FZD, Rossendorf, DE

ULDIY A.C.

VAN LOON L.R.

VAN LOON L.R.
1 EMPA, Dübendorf, CH
2 ESRF, Grenoble, FR

WIELAND E., MANDALIEV P., DÄHN R., TITS J., STUMPF T., 1 “Mechanisms of lanthanide binding by cementitious materials”, 7th Int. Conf. on Nuclear and Radiochemistry (NRC-7), Budapest, Hungary, 24-29 August 2008
1 FZK, Karlsruhe, DE

ZIMMERMANN M.A. “Quantification of Safety Margins”, IAEA Regional Workshop, Protoroz, Slovenia, 22-26 September 2008

NES Colloquia

CHAWLA R. “PHYSOR’08: Nose, Palate and Finish”, 27 November 2008

MIKITYUK K. “Analytical studies related to liquid-metal flow phenomena in the frame of the FAST project”, 13 March 2008

PFINGSTEN W. “Macroscopic modelling of multi-species radionuclide transport using microscopic information”, 21 February 2008

SEIFERT H.P. “Integrität des Reaktor-Primärkreislaufs”, 29 May 2008

University Level Teaching

DEGUELDORE C. “Comportement des radionucléides dans l'environnement, impact des reacteurs dans l'environnement”, Centre universitaire d'étude des problèmes de l'énergie, Lecture Course, University of Geneva, Switzerland, Spring Semester, 2008

GIMMI T. “Determination of Transport Parameters at the Laboratory Scale”, “Determination of Transport Parameters at the Field Scale”, “Natural Tracers: Transport at Very Large Scales”; Lectures given in Training Course, Okayama University, Japan, 14-18 January 2008

GIMMI T. “Fluids in the Crust”, Masters Course in Environmental and Resource Geochemistry, University of Berne, Switzerland, Autumn Semester, 2008
GIRARDIN G.
“Reactor Experiments”, Lectures given in the Course: Master of Nuclear Engineering, EPFL, Lausanne, Switzerland, Autumn Semester, 2008

GROLIMUND D.
“Cook and Look: Synchrotron Techniques”, Masters Course on Hands-on Training, Villigen PSI, Switzerland, 23 June - 1 July 2008

GÜNLHER-LEOPOLD I.
“Spent Fuel Reprocessing”, Lectures given in the Course: Nuclear Energy Systems, ETHZ, Zürich, Switzerland, Spring Semester, 2008

GÜNLHER-LEOPOLD I.
“Kernbrennstoffe”, Strategic Exercise given in the Course: Analytische Chemie V, ETHZ, Zurich, Switzerland, 23 September 2008

HOFFELNER W.
“Structural materials for nuclear reactors”, “Structural materials for advanced energy applications”, Lectures given in the Course: Nuclear Fuels and Materials, Masters Course, EPFL, Lausanne, Switzerland, Autumn Semester 2008

HUMMEL W.
Lectures given in the Course: Nuclear Energy Systems, ETHZ, Zurich, Switzerland, Spring Semester, 2008

HUMMEL W.
“Landfilling, nuclear repositories and contaminated sites”, Lecture in Master of Biogeochemistry and Pollutant Dynamics and Master of Ecological Systems Design and Waste Management”, ETHZ, Zurich, Switzerland, Autumn Semester, 2008

JANSSSENS K.
“Cellular automata and microstructure evolution”, Lecture on Workshop on Multi-Scale Modeling of Moving Interfaces in Materials, Leuven University, Belgium, 2-4 July 2008

JONEJA O.P.
“Reactor Experiments”, Lecture Course, EPFL, Lausanne, Switzerland, Autumn Semester, 2008

KOLBE E.
“Kernenergie 2 KP”, Lecture Course, University of Basel, Switzerland, Autumn Semester, 2008

KOSAKOWSKI G.

KOSAKOWSKI G.
“Geostatistics I”, Lecture Course: Masters in Applied Environmental Geoscience, University of Tübingen, Germany, Spring Semester, 2008

KOSAKOWSKI G.
“Geostatistics II”, Lecture Course: Masters in Applied Environmental Geoscience, University of Tübingen, Germany, Autumn Semester, 2008

MAHERA A.
“Thermal Hydraulic Systems Codes including Hands-On Training”, Lectures given in the Kernreaktorpraktikum, ETHZ, Zurich, Switzerland, Spring Semester, 2008

POUCHON M.A.

SMITH, B.L.

ZIMMERMANN M.A.
“Nuclear Materials I”, Lectures given in the Course: Nuclear Fuels and Materials, Masters Course, EPFL, Lausanne, Switzerland, Autumn Semester, 2008

Habilitation, Doctoral, Master and Batchelor Theses

AMMAR Y.

BLAIR P.

MANDALIEV P.
“Mechanisms of Nd(II) and Eu(III) uptake by cementitious materials”, PhD Thesis No. 18095, ETHZ, Zurich, 2008

PETKEVIC P.

PSI and Other Reports

ALLISON C.M.1, BYKOV M.2, HASTE T., LEE S.3, MAKIYARA Y.3, TRICOT, N.3, UETSUKA, H.4
1 Innovative Systems Software, LLC, US
2 FSUE EDO “Gidropress”, Podolsk, RU
3 IAEA, Vienna, AT
4 JAEA, Tokyo, JP

GLAUS M., VAN LOON L.R.
“Chemical reactivity of α-isosaccharinic acid in heterogeneous alkaline systems”, PSI-Bericht Nr. 08-01, Nagra NTB 08-10

1 JRC, Petten, NL
2 Russian Academy of Sciences, Moscow, RU
3 GRS, Garching, DE
4 IRSN, Cadarache, FR
5 JRC/ITU, Karlsruhe, DE
6 FZK, Karlsruhe, DE
7 CEA, Cadarache, FR
8 ENEA, Bologna, IT
9 AEA Technology, Winfrith, UK

General Communications and Public Relations

GÜNTHER-LEOPOLD, I.
"Nukleare Energie und Nachhaltigkeit", Presentation in the course of the PSI event ‘Forscher im Zelt’, Waldshut, Germany, 30 August 2008

MANERA A.
“Nukleare Energie und Nachhaltigkeit”, Presentation in the course of the PSI event ‘Forscher im Zelt’, Aarau, Switzerland, 23 August 2008
LIST OF PUBLICATIONS: 2008

The Energy Departments (NES and ENE)

LEA — Laboratory for Energy Systems Analysis

Publications in Scientific and Technical Journals

BARRETO L., KEMP R.\(^1\)
\(^1\) UNU-MERIT, Maastricht, NL

BURGHERR P., HIRSCHBERG S.
"Severe accidents in the oil chain with emphasis on oil spills", Strategic Insights (ISSN 1938-1670), 7(1), 1-15 (2008)

BURGHERR P., HIRSCHBERG S.

FILIPPINI R., SEN S.\(^1\), BICCHI A.\(^1\)
\(^1\) UNIPI, Pisa, IT

KYPREOS S., BLES M.\(^1\), COSMI C.\(^2\), KANUDIA A.\(^3\), LOULOU R.\(^4\), SMEKENS K.\(^5\), SALVIA M.\(^2\), VAN REGEUMSORT ER D.\(^6\), CUOMO V.\(^2\)
\(^1\) University of Stuttgart, DE
\(^2\) Istituto di Metodologie Avanzate di Analisi Ambientale, Tito Scala, IT
\(^3\) KANLO Sarl, Lyon, FR
\(^4\) McGill University, Montreal, CA
\(^5\) Energy Research Centre, Petten, NL
\(^6\) University of Leuven, BE

LAFORCUE G.\(^1\), MAGNÉ B., MOREAUX M.\(^2\)
\(^1\) Toulouse Business School, FR
\(^2\) University of Toulouse, FR

PODOLFINI L., DANG V.N., THOMSEN K.
"Scoping-Level Probabilistic Safety Assessment of a complex experimental facility: challenges and first results from the application to a neutron source facility (MEGAPIE)\(^\text{\textregistered}\)", Nucl. Eng. Des. (ISSN 0029-5493), 238(10), 2726-2738 (2008)

PODOLFINI L., ZIO E.\(^1\)
\(^1\) Polytechnic of Milan, IT

PODOLFINI L., ZIO E.\(^1\)
\(^1\) Polytechnic of Milan, IT

RAFAY P.\(^1\), KYPREOS S.
\(^1\) IIASA, Laxenburg, AT

REEE B.

REEE B.
SCHULZ T., KYPREOS S., BARRETO L., WOKAUN A.

TURTON H.

TURTON H., MOURA F.¹
¹ Technical University of Lisbon, PT

Publications in Books

BURGHELL P., HIRSCHBERG S.

LAFORQUE G.¹, MAGNÉ B., MOREAUX M.²
¹ Toulouse Business School, FR
² University of Toulouse, FR

Keynote Lectures at International Conferences

DANG V.N.
“Quantifying the Human Factor — Time for a Change”, Keynote Lecture, 9th Int. Conf. on Probabilistic Safety Assessment and Management (PSAM9), 18-23 May 2008, Hong Kong, China, CD-ROM, 2008

International Conferences with Proceedings

BAUER C., DONES R., HECK T., HIRSCHBERG S.

BAUER C., DONES R., HECK T., HIRSCHBERG S.

BICCHI A.¹, BAVARO S.², BOCCADAMO G.¹, DE CARLI D.¹, FILIPPINI R., GRIOLI G.¹, PICCIGALLO M.¹, ROSI A.¹, SCHIAVI R.¹, SEN S.¹, TONIETTI G.¹
¹ Centro E. Piaggio, University of Pisa, IT
² University of Rome Tor Vergata, Italy

BURGHELL P.

BURGHELL P., HIRSCHBERG S.

BURGHELL P., HIRSCHBERG S.

CHANG Y.H., MERCURIO D., DANG V.N., MOSLEH A.¹
“Recent Developments and Insights from Application of ADS-IDAC Dynamic PRA Platform”, 9th Int. Conf. on Probabilistic Safety Assessment and Management (PSAM9), 18-23 May 2008, Hong Kong, China, CD-ROM, 2008
¹ University of Maryland, College Park, US

DANG V.N., BYE A.¹, LOIS E.², FORESTER J.³, BRAARUD P.¹

24 27/05/2009
“Benchmarking HRA methods against simulator data — design and organization of the international HRA Empirical Study”, 9th Int. Conf. on Probabilistic Safety Assessment and Management (PSAM9), 18-23 May 2008, Hong Kong, China, CD-ROM, 2008
1 OECD Halden Reactor Project, Halden, NO
2 US NRC, Rockville, US
3 SNL, Albuquerque, US

DANG V.N., FORESTER J., BYE A., LOIS E., BROBERG H., PARRY G., JULIUS J.
“Results from a pilot benchmarking study of HRA methods — a comparison of method predictions against the outcomes observed in the simulator study”, 9th Int. Conf. on Probabilistic Safety Assessment and Management (PSAM9), 18-23 May 2008, Hong Kong, China, CD-ROM, 2008
1 SNL, Albuquerque, US
2 OECD Halden Reactor Project, Halden, NO
3 US NRC, Rockville, US
4 US NRC, Bethesda, US
5 Scientech, EPRI, US

DANG V.N., PODOFILLINI L.

DANG V.N., SIU N., AMRI A.
1 US NRC, Bethesda, US
2 OECD/NEA, Paris, FR

FORESTER J., DANG V.N., BYE A., LOIS E.
1 SNL, Albuquerque, US
2 OECD Halden Reactor Project, Halden, NO
3 US NRC, Rockville, US

FORESTER J., DANG V.N., BYE A., LOIS E., PARRY G., JULIUS J.
“Benchmarking Human Reliability Analysis (HRA) method against simulator data — methods for the comparison”, 9th Int. Conf. on Probabilistic Safety Assessment and Management (PSAM9), 18-23 May 2008, Hong Kong, China, CD-ROM, 2008
1 SNL, Albuquerque, US
2 OECD Halden Reactor Project, Halden, NO
3 US NRC, Rockville, US
4 US NRC, Bethesda, US
5 Scientech, EPRI, US

HIRSCHBERG S.
“Nuclear energy risks and benefits in perspective”, Int. Conf. on the Physics of Reactors (PHYSOR’08), 14-19 September 2008, Interlaken, Switzerland, CD-ROM, 2008

HIRSCHBERG S., BAUER C., BURGHERR P., CAZZOLI E., DONES R., HEC T., SCHENLER W.
“Treatment of risks in sustainability assessment of energy systems”, 9th Int. Conf. on Probabilistic Safety Assessment and Management (PSAM9), 18-23 May 2008, Hong Kong, China, CD-ROM, 2008
1 Cazzoli Consulting, Nussbaumen, CH

LOIS E., PARRY G., JULIUS J., FORESTER J., BYE A., BROBERG H., DANG V.N.
1 US NRC, Rockville, US
2 US NRC, Bethesda, US
3 Scientech, EPRI, US
4 SNL, Albuquerque, US
5 OECD Halden Reactor Project, Halden, NO

PARRY G., LOIS E., FORESTER J., DANG V.N., JULIUS J., BYE A.
1 US NRC, Bethesda, US
2 US NRC, Rockville, US
PODOFILLINI L., DANG V.N., ZIO E., BARALDI P., LIBRIZZI M.
“Techniques for verification of expert models for dependence assessment in human reliability analysis”, 9th Int. Conf. on Probabilistic Safety Assessment and Management (PSAM9), 18-23 May 2008, Hong Kong, China, CD-ROM, 2008
1 Polytechnic of Milan, IT

PODOFILLINI L., REER B.

ROTH S., HIRSCHBERG S., BAUER C., BURGHERR P., DONES R., HECK T., SCHEINER W.
“Sustainability of electricity supply technology portfolio”, Int. Conf. on the Physics of Reactors (PHYSOR’08), 14-19 September 2008, Interlaken, Switzerland, CD-ROM, 2008 (ISBN 978-3-9521409-5-6)
1 AXPO, Zurich, CH

SANI L., FILIPPINI R., BOLOGNESI P., BRUNO O., MASINI P.
1 University of Pisa, IT

WILHELM E., BERRY I., STEVENS M., SCHEINER W.
1 MIT, Cambridge, US
2 University of Waterloo, CA

WILHELM E., SCHEINER W.

Talks delivered at Conferences, Workshops and Specialist Meetings (without Proceedings)

BAUER C.
“Energy supply”, 2nd Int. ecoinvent Meeting, EPFL, Lausanne, Switzerland, 14 March 2008

BAUER C., DONES R., HECK T., MAYER-SPOHN O., BLESI M.

GÜL T., KYPREOS S., TURTON H., BARRETO L.
“Cost-effective technology choices in personal transport”, 1st Int. Conf. on Mobility and Energy, Invited Talk, Vienna, Austria, 29 February 2008

GÜL T., TURTON H.
“Illustrating Perspectives of Energy and Mobility”, Invited Talk, World Energy Council (WEC), Europe Regional Meeting, Istanbul, Turkey, 16 October 2008

HIRSCHBERG S.

HIRSCHBERG S.

HIRSCHBERG S.

HIRSCHBERG S.
Hirschberg S.

Hirschberg S.
“Nuclear Energy versus other energy sources”, Conf. on Nuclear Energy in Poland: Opportunity or Necessity?, Invited Talk, Warsaw, Poland, 20-21 October 2008

Hirschberg S.

Hirschberg S.
“Selected topics in energy systems analysis”, Invited Talk, AREVA NP, Paris, France, 18 December 2008

Kypreos S.
“Linking MM with MERGE to study national policies under consistent global developments”, Invited Talk Energy Technology Systems Analysis Programme (ETSAP) Workshop, Paris, France, 3-4 July 2008

Kypreos S.

Kypreos S., Magné B.

Reiter U., Turton H.

Turton H.

Turton H., Magné B., Kypreos S.

Weidmann N.

Wilhelm E., Schenler W., Wokaun A.

NES Colloquia
Burgherr P.
“Comparative analysis of accident risks in the energy sector: latest developments and outlook”, 6 May 2008

University Level Teaching
Burgherr, P.
“Severe accident risks in the energy sector: comparative analysis and new developments”, Lecture given in the Course: Centre des sciences naturelles de l'environnement, University of Geneva, Switzerland, 1 December 2008

Dang V.N.
“Human Reliability Analysis (HRA) – An Introduction”, Lecture given in the Course: Methoden der Systemorientierten Risikoanalyse, ETHZ, Zurich, Switzerland, 1 October 2008

Hirschberg S.

Hirschberg S.
“Comparative analysis of energy systems”, Lecture given in the Course: Physique des systèmes énergetiques II, EPFL, Lausanne, Switzerland, 27 May 2008

27 27/05/2009
HIRSCHBERG S.
“Life-cycle analysis and multi-criteria assessment of energy systems in view of sustainability indicators”, Lecture given in the Course: Renewable Energy Technology I, ETHZ, Zurich, Switzerland, 30 September 2008

HIRSCHBERG S.
“Introduction: Overall approach, risk issues and technologies”, “PSA Methodology Overview”, Comparative Perspective on Risks”, Lectures given in the Course: Centre des sciences naturelles de l'environnement, University of Geneva, Switzerland, 1 December 2008

HIRSCHBERG S.

PODOFILLINI L.
“Genetic algorithms for the optimization of industrial systems: examples of applications on computer”, Lecture given in the Course: Innovative techniques for the evaluation of the reliability and availability of industrial plants, Polytechnic of Milan, Italy, 15-18 September 2008

PODOFILLINI L.

Habilitation, Doctoral, Master and Batchelor Theses

GÜL T.

KELLENBERGER M.

ULLMANN L.
“Effects of climate change on electricity production in Europe”, Bachelor Thesis, ETHZ, Zurich, 2008

PSI and Other Reports

BAUER C.
“Life-cycle assessment of fossil and biomass power generation chains. An analysis carried out for Alstom”, PSI-Bericht Nr. 08-05

BURGHEER P., HIRSCHBERG S.

DANG V.N.

General Communications and Public Relations

BAUER C.
“Nukleare Energie und Nachhaltigkeit”, Presentation in the course of the PSI event ‘Forscher im Zelt’, Baden, Switzerland, 16 August 2008

BAUER C.
“Die 2000-Watt-Gesellschaft, Patentlösung für mehr Nachhaltigkeit?”, TechDay@KSL, Kantonsschule, Urdorf, Switzerland, 30 October 2008

BURGHEER P.
“Energiesysteme im Vergleich: auf der Suche nach der besten Energiequelle”, Tag der offenen Tür - am Puls der Forschung, PSI, Villigen, Switzerland, 26 October 2008

HIRSCHBERG S.
“Energiesysteme im Vergleich”, Invited Talk, Delegiertenversammlung der CVP Frauen Schweiz, Basel, Switzerland, 8 March 2008

HIRSCHBERG S., SCHENLER W.
“Multi-Criteria Decision Analysis: Overview and Options for Trialog”, Energietrialog CH, Zurich, Switzerland, 1 April 2008
HIRSCHBERG S.
“Die Rolle der erneuerbaren, nuklearen und fossilen Technologien in der zukünftigen Schweizer Stromversorgung”, KKL & KKB Colloquium, Leibstadt, Switzerland, 24 April 2008

HIRSCHBERG S.
“Energieysteme im Vergleich”, Invited Talk, Young Generation, ETHZ, Zurich, Switzerland, 13 May 2008

HIRSCHBERG S.
“Stärken und Schwächen der Kernenergie: Vergleich mit anderen Optionen”, Invited Talk, Schweizerische Energie-Stiftung (SES) Fachtagung, Zurich, Switzerland, 12 September 2008

HIRSCHBERG S.

HIRSCHBERG S.
“Life-cycle analysis of carbon dioxide emissions from different energy sources”, Invited Talk, Confrontations Europe: Conf. on Optimizing the Mitigation of Carbon Dioxide Emissions in Europe, Sauvons Le Climat et Confrontations Europe, Brussels, Belgium, 7 October 2008

HIRSCHBERG S.

HIRSCHBERG S.

HIRSCHBERG S.
“Szenarien für die Entwicklung eines wettbewerbsfähigen Energiesystems unter Berücksichtigung von Klimaschutzzieilen und Versorgungssicherheit”, PSI Veranstaltungsabend, Berne, Switzerland, 2 and 9 December 2008

PREVOT A., HECK T., BALTENSPERGER U.
“Caution – Particulates!”, PSI Newsletter on Comprehensive Assessment of Energy Systems, Energie-Spiegel 19, 2008 (ISSN 1661-5093)

SCHENLER W.
“Strom aus Wellenkraft”, Invited Talk, AGORA-Tagung, Pfäffikon, Switzerland, 28 February 2008

SIMONS A.
“Ökobilanzen: eine ganzheitliche Betrachtung”, Schweizerische Interessengemeinschaft Baubiologie/Bauökologie (SIB), Invited Talk, Berne, Switzerland, 15 October 2008
LIST OF PUBLICATIONS

ENE – General Energy

PROJECT COLLABORATIONS WITH EXTERNAL PARTNERS

ASTRA

PM10-Emissionsfaktoren von Abriebpartikeln des Straßenverkehrs (APART)
1 EMPA Dübendorf

AXPO NATURSTROMFONDS

Projektleiter: S.M.A. Biollaz
Holz - Brennstoffzelle

Projektleiter: S.M.A. Biollaz
Graskraftwerk

Projektleiter: F. Vogel
Effiziente Vergasung und Verstromung von Gülle

BAFU

Projektleiter: S. Andreani, J. Keller, A.S.H. Prévôt
* Aerosol-Modelling – Schadstoffbilanzen*

Projektleiter: S. Andreani, A.S.H. Prévôt
Ozon in der Schweiz 1985-2010

Projektleiter: U. Baltensperger, A.S.H. Prévôt
AEROWOOD (Aerosols from Wood Burning)

Projektleiter: A.S.H. Prévôt, U. Baltensperger
Aerosolmassenspektrometer-Messungen während der EMEP-Kampagne

BAFU / Kantone

Projektleiter: J. Keller, A.S.H. Prévôt
Ozontrends in der Schweiz

Projektleiter: A.S.H. Prévôt, U. Baltensperger
14C im Feinstaub der Schweiz

BBW

Projektleiter: W. Durisch
FULLSPECTRUM: A new PV wave making more efficient use of the solar spectrum
EU-Forschungsprogramm, FP6, Energy

BFE

Projektleiter: S.M.A. Biollaz
Experimenteller Nachweis des Methanverlusts von Biogas-Aufbereitungsanlagen

Projektleiter: S.M.A. Biollaz
Hochtemperatur-Entschwefelung für biogene Produktgase - Design und Optimierung

Projektleiter: F.N. Büchi
Cal.PEF-CH: Model based investigation of PE fuel cell performance with focus on porous layer properties with ZHAW, Winterthur
Projektleiter: T. Gerber
Investigation of reactions and species dominating low temperature combustion

Projektleiter: L. Gubler
Lebensdauer Limitierungen von Brennstoffzellen-Membranen: Mechanismen, Methoden und Innovationen

Projektleiter: L. Gubler, I.A. Schneider
go.PEF-CH: Enhancing PEFC durability and reliability under application-relevant conditions
Partner: Berner Fachhochschule Technik und Informatik (BFH-TI, Biel BE), CEKA Elektrowerkzeuge AG & Co. KG (Wattwil SG), MES-DEA SA. (Stabio TI)

Projektleiter: W. Hubenschmid
Laserdiagnostik in sehr mageren Flammen

Projektleiter: P. Jansohn
Verbrennung von wasserstoffhaltigen Synthesegasen: Grundlagen und Designregeln für Gasturbinen

Projektleiter: Ch. Ludwig
MOPSID: Monitoring of process gases with a surface ionization detector

Projektleiter: A. Meier
IEA Implementing Agreement

Projektleiter: A. Meier
Solar Production of Zinc and Hydrogen – Reactor Optimization for Scale-up Research Project

Projektleiter: A.S.H. Prévôt
Erweiterte Partikelanalytik für Holzfeuerungsabgase

Projektleiter G.G. Scherer, L. Gubler
Protonen-leitende Polymermembranen für Brennstoff- und Elektrolysezellen

Projektleiter: F. Vogel
Optimierung der Hydrolyse und Salzabtrennung bei der hydrothermalen Vergasung von Biomasse

Bayerische Forschungsstiftung (BFS)

Projektleiter: O. Kröcher, Ch. Gerhart
N₂O-Reduzierung im motorischen Abgas mit Guanidinsalzen
Prof. Dr. Th. Sattelmayer, Lehrstuhl für Thermodynamik, TU München, Germany
Prof. Dr. G. Wachtmeister, Lehrstuhl für Verbrennungskraftmaschinen, TU München, Germany

¹ AlzChem Trostberg GmbH, Germany

NIGU Chemie GmbH, Germany

CCEEM

Projekt:
Woodgas SOFC (Integrated Biomass - Solid Oxide Fuel Cell Cogeneration):
WP2: Gas Analysis (Projektleiter: J. Wochele)
WP4: Development of GC/SCD for S- and N-species measurement (Projektleiter: S.M.A. Biollaz)
(Pilot Demonstration)

Projektleiter: F.N. Büchi
hy muve: Development of hydrogen powered municipal vehicle
with EMPA Dübendorf and Industrial Partners
Projektleiter: P. Dimopoulos¹, M. Ammann, U. Baltensperger, K. Boulouchos², H. Burtscher³, N. Heeb¹, O. Kröcher, M. Mohr¹

NEADS (Next Generation Exhaust Aftertreatment for Diesel Propulsion Systems)

¹ EMPA Dübendorf
² ETH Zürich
³ FHNW Windisch

Projektleiter: P. Jansohn

Clean and Efficient Large Diesel Engines (CELaDE)

Projektleiter: U. Lohmann¹, Th. Peter¹, U. Baltensperger, Th. Heck, Ch. Hüglin², H. Burtscher³, I. Bey⁴

IMBALANCE (IMpact of Biomass burning Aerosol on Air quality aNd Climate)

¹ ETH Zürich
² EMPA Dübendorf
³ FHNW Windisch
⁴ EPF Lausanne

Projektleiter: I. Mantzaras

Computational engineering of multiscale transport in small-scale surface based energy conversion

Projektleiter: S. Stucki

Second generation biogas

Projektleiter: S. Ulli-Beer, F. Büchi

Technische und wirtschaftliche Datenanalyse eines wasserstoffbetriebenen Brennstoffzellen-Fahrzeuges im Alltagstest

with Hy-Muve, BFE

Projektleiter: F. Vogel

Hydrogen-enriched fuel on demand for future hybrid powertrains (HEFD-HY)

Projektleiter: A. Wokaun

Transition to Hydrogen Based Transportation

Project Part: Dynamics of transportation technology development and diffusion (Projektleiter: S. Ulli-Beer)

in collaboration with MIT (Alliance for Global Sustainability)

Projektleiter: A. Wokaun, S. Ulli-Beer

Transition to Hydrogen Based Transportation – Challenges and Opportunities

with MIT (Alliance for Global Sustainability)

Projektleiter: M. Zimmermann, S. Ulli-Beer

Advanced Energy-Efficient Renovation of Buildings

(Project Part: Diffusion dynamics of energy efficient renovations)

with IEA, SNF, BFE, Stadt Zürich, Novatlantis

CompactGTL

Projektleiter: I. Mantzaras

Gas-to-liquid catalytic technologies

Energie Trialog Schweiz

Projektleiter: A. Wokaun, Ph. Dietrich, S. Hirschberg

Studies on Energy Efficiency, Renewable Electricity, Scenarios, Multi-Criteria Decision Analysis

ETH

Projektleiter: D. Cziczo¹, U. Lohmann¹, E. Weingartner, U. Baltensperger

The relationship between aerosol chemical composition and hygroscopic growth

¹ ETH Zürich
ETH-Rat

Projektleiter: A. Wokaun, S. Ulli-Beer
- Erdgas-/ Biogasfahrzeuge
- Wasserstoff-Fahrzeuge
Erlebnisraum Nachhaltige Mobilität Basel
novatlantis – Nachhaltigkeit im ETH Bereich

EU

Projektleiter: U. Baltensperger, J. Dommen
EUROCHAMP (Integration of European Simulation Chambers for Investigating Atmospheric Processes)

Projektleiter: U. Baltensperger, E. Weingartner, M. Gysel
EUSAAR (European Supersites for Atmospheric Aerosol Research)

Projektleiter: U. Baltensperger, J. Dommen
POLYSOA (Polymers in secondary organic aerosols)

Projektleiter: U. Baltensperger, A.S.H. Prévôt, E. Weingartner
EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality Interactions)

Projektleiter: U. Baltensperger, E. Weingartner
CLOUD-ITN (Cosmos Leving Outdoor Droplets, Initial Training Network)

Projektleiter: U. Baltensperger, A.S.H. Prévôt, E. Weingartner
MEGAPOLI (Emissions, urban, regional and Global Atmospheric POLLution and climate effects, and Integrated tools for assessment and mitigation)

Projektleiter: P. Jansohn
HERCULES (High efficiency engine R&D on combustion with ultra low emissions for ships)

Projektleiter: A. Meier
SOLHYCARB (Hydrogen from Solar Thermal Energy: High Temperature Solar Chemical Reactor for Co-production of Hydrogen and Carbon Black from Natural Gas Cracking)

Projektleiter: A.S.H. Prévôt
CIRCE (Climate change and Impact Research: The Mediterranean Environment)

Projektleiter: M. Saurer
MILLENNIUM, (European climate of the last millennium)

Projektleiter: G.G. Scherer
CARISMA

Projektleiter: I.A. Schneider
Nanoglowa (Diagnostics workpackage)

Projektleiter: E. Weingartner, M. Gysel
QUANTIFY (Hygroscopic properties of ship exhaust particles)

Projektleiter: E. Weingartner, U. Baltensperger
GeoMon (Global Earth Observation and Monitoring of the atmosphere)

EU-PROJECTS (6. FWP)

Projektleiter: S.M.A. Biollaz
BIOCELLUS

Projektleiter: T. Schildhauer
AER-Gas II
Projectleiter: S. Stucki
Bio-SNG

HSK

Projectleiter: F. Gassmann
ADPIC- Aktualisierung

Industry

Projectleiter: P. Boillat, G.G. Scherer
Diagnostics of polymer electrolyte fuel cells
Automotive industry

Projectleiter: P. Boillat, G.G. Scherer
Diagnostics of polymer electrolyte fuel cells
Nissan Motor Co. Ltd., Yokohama, Japan

Projectleiter: F.N. Büchi
Diagnostics of polymer electrolyte fuel cells
Automotive Industry

Projectleiter: J.-L. Hersener, S. Bioillaz
Verfügbarkeit von Gras für Kombikraftwerke in der Schweiz
Ingenieurbüro Hersener, Ernst Basler und Partner AG

Projectleiter: O. Kröcher, A. Johansson\(^1\)
Development and parameterization of a catalyst model for NO/NO\(_2\) SCR
\(^1\) Sweno AB, Schweden

Projectleiter: O. Kröcher
Development of a TG-FTIR system for exhaust gas aftertreatment
Mettler-Toledo AG
Thermo Fisher AG

Projectleiter: O. Kröcher, R. Althoff\(^1\)
Development of new metal-exchanged zeolites for NH\(_3\)/urea-SCR
\(^1\) Süd-Chemie AG, Germany

Projectleiter: O. Kröcher
Investigation of the decomposition of urea in the SCR process
Anonymous industry partners, France

Projectleiter: O. Kröcher, P. Hirth\(^1\)
Investigation of the influence of ammonia on the soot oxidation in Diesel particulate filters
\(^1\) Emitec GmbH, Germany

Projectleiter: O. Kröcher
Thermoanalytic investigation of the urea decomposition
Abgaszentrum der Automobilindustrie (ADA), Germany

Projectleiter: P. Maire
Electrochemical characterization of polymeric organic active materials
Ciba, Basel

Projectleiter: W. Märkle
Graphite für Lithiumionen-Batterien
TIMCAL SA, Bodio

Projectleiter: S. Rabe
Confidential
Methanol Casale
Projektleiter: F. Vogel
Gasoline reforming kinetics
Toyota Central Research and Development Laboratories, Inc.

Projektleiter: F. Vogel
Kinetik der präferentiellen Oxidation von CO
Umicore AG

KTI

Projektleiter: I. Mantzaras
Sequential combustion technology for gas turbine power generation with CO₂ mitigation

METEO SCHWEIZ

Projektleiter: U. Baltensperger, E. Weingartner, M. Gysel
GAW-CH (Aerosol Monitoring Programm auf dem Jungfraujoch)

Projektleiter: U. Baltensperger, E. Weingartner, M. Gysel
Cloud Condensation Nuclei and Carbonaceous Aerosol Characterisation at the Jungfraujoch Research Station

MIT

Projektleiter: F. Vogel
Ecogas: Nutrient salt recovery during conversion of wet biomass into methane

NATIONALFONDS

Projektleiter: U. Baltensperger
Investigation of Secondary Organic Aerosol Formation in the PSI Smog Chamber

Projektleiter: A. Foelske-Schmitz
Degradation mechanisms of electro-catalysts used in Polymer electrolyte fuel cells
PSI

Projektleiter: M. Geiser Kamber¹, M. Kalberer², J. Ricka¹, J. Dommen
From aerosol to health effects: Mobile system for controlled, standardized studies of health-effects by inhaled (nano)particles and gases
¹ University of Bern
² University of Cambridge, UK

Projektleiter: Ch. Körner¹, R.T.W. Siegwolf
Swiss Canopy Crane Project: CO₂—enrichment
¹ University of Basel

Projektleiter: P. Novák, R. Kötz, T. Lippert, R. Nesper¹
Advanced materials for efficient portable energy supplies
PSI und ETHZ
¹ ETH Zürich

Projektleiter: F. Nüesch, M. Nagel¹, T. Lippert, A. Wokaun
Fabrication of patterned organic multilayer devices using dynamic release layer assisted Laser Induced Forward Transfer
¹ EMPA Dübendorf

Projektleiter (CCMX): J. Rupp¹, L. Gauckler¹, T. Lippert, K. Conder, T. Graule², S. Pratsinis¹
NANCER (Nanocrystalline ceramic thin film coating without sintering)
¹ ETH Zürich
² EMPA Dübendorf
Projektleiter: M. Saurer, R.T.W. Siegwolf
Climatic changes, tree-ring growth and C- and O-isotope variations along longitudinal transects in Siberia and in the Urals

Projektleiter (MaNEP): L. Schlapbach¹, A. Weidenkaff¹, T. Lippert, A. Wokaun
Plasma enhanced anionic substitution (PEAS) for the generation of perovskite phases with different properties
¹ EMPA Dübendorf

Projektleiter: F. Vogel
Salt particle formation in near- and supercritical water

Projektleiter: A. Wokaun, T. Lippert
Laser ablation of inorganic materials and thin film deposition studied by mass spectrometry and in-situ surface analysis

Projektleiter: A. Wokaun, T. Lippert
Thin Metal Oxide Films by PLD: “Tracing” the oxygen and understanding its role

NATO

Projektleiter: M. Dinescu¹, E. Verona², T. Lippert
Polymers based piezoelectric sensor array for chemical warfare agents detection
¹ National Institute for Lasers, Plasma and Radiation Physics, Romania
² CNR-IDAC Rome, Italy

NOVATLANTIS

Projektleiter: A. Wokaun, S.F. Lienin, S. Ulli-Beer, C. Bach
Erlebnisraum Mobilität: Aufbau einer sozio-technologischen Feldversuchsumgebung
Nachhaltigkeit im ETH Bereich

Projektleiter: S. Ulli-Beer
Innovative Fahrzeugflotte Basel
Nachhaltigkeit im ETH Bereich

OSTLUFT

Projektleiter: A.S.H. Prévôt
Mobile Aerosolmassenpektrometer-Messungen im Rheintal und in Zürich

SBF

Projektleiter: U. Baltensperger, A.S.H. Prévôt
ACCENT (Atmospheric Composition Change, the European Network of Excellence)

Projektleiter: J. Keller
COST 728: Linking meteorological and photo-chemical dispersion models: development and tests of an interface with improved turbulence schemes

Projektleiter: R.T.W. Siegwolf
COST 639 (Carbon cycling in alpine soils in a warmer world)

SNF

Projektleiter: R. Kaufmann¹, S. Ulli-Beer, S. Brüppacher¹
Diffusions dynamics of energy efficient buildings
¹ Uni Bern

Projektleiter: I. Mantzaras
Direct Numerical Simulation of Catalytic Combustion
Projektleiter: A. Wokaun, Th. Lippert
Thin oxide films by PLD: "Tracing" the oxygen and understanding its role

Projektleiter: A. Wokaun
NCCR-Climate
Project Task 4.1: Energy Technology Strategies

STIFTUNG AUTO RECYCLING SCHWEIZ SARS

Projektleiter: Ch. Ludwig, S. Stucki
KVA plus

Swisselectric (CCEM)

Projektleiter: I. Mantzaras, P. Jansohn
Technologies for Gas Turbine Power Generation with CO₂ Mitigation

Swisselectric Research

Projektleiter: S.M.A. Biollaz
Methan aus Holz

Projektleiter: J. Wochele, Ch. Ludwig
TREPGAS: Trace Elements in Product Gases

UGZ

Projektleiter: E. Weingartner, J. Brunner
Entwicklung eines SMPS-Systems für den kontinuierlichen Einsatz

1 Amt für Umwelt- und Gesundheitsschutz, Zürich

Universities

Projektleiter: Ch. Ludwig
Hydrothermal methane from microalgae (the SunChem process)

Projektleiter: P.P. Radi
Detection of Weak Overtone and Combination Bands of Methane
Dr. D. Kozlov, General Physics Institute, Moscow, Russia

Projektleiter: P.P. Radi
DFWM and TC-RFWM Spectroscopy on Transient Molecules and Radicals
Prof. J.P. Maier, Universität Basel

Projektleiter: P.P. Radi
REMPI and Photoelectron-Spectroscopy on Formaldehyde
Prof. F. Merkt, ETH Zürich

Projektleiter: P.P. Radi
Unimolecular Dissociation of Formaldehyde
Prof. R. Marquardt, Laboratoire de Chimie Quantique, Institut de Chimie - Université Louis Pasteur 4, Strasbourg, France

Projektleiter: E. Weingartner, P. Villani
Development of new Differential Mobility Analyzers
VELUX STIFTUNG

1 Laboratoire de Météorologie Physique, University of Clermont-Ferrand (France)
TEACHING ACTIVITIES (LECTURES)

University Level Teaching

Prof. Dr. U. Baltensperger, Prof. Dr. H. Burtscher, Dr. C. Marcolli
Aerosole II
ETH Zürich, FS 2008.

Prof. Dr. U. Baltensperger, Prof. Dr. H. Burtscher, Dr. C. Marcolli
Aerosole I
ETH Zürich, HS 2008.

Prof. Dr. U. Baltensperger
European Research Courses on Atmospheres
- *Sources, sinks and global distribution of aerosols*
- *Direct and indirect aerosol effect on climate*
- *Smog chamber activities and other new directions of research*
ERCA, Grenoble, France, January 7 – February 8, 2008.

Prof. Dr. K. Boulouchos¹, Dr. O. Kröcher
IC-Engines and Propulsion Systems II
ETH Zürich, FS 2008.
¹ ETH Zürich

Dr. F. Gassmann, Prof. Dr. F. Stähli²
Wege zu einer nachhaltigen Energiezukunft
² FHA, Brugg-Windisch

Dr. P. Jansohn
Verbrennung in Gasturbinen
ETH Zürich, FS 2008.

PD Dr. T. Lippert
Mikro- und Nanostrukturen: Laseranwendungen in Industrie und Forschung
ETH Zürich, HS 2008.

Prof. Dr. Ch. Ludwig
Advanced Solid Waste Treatment
Master 7th and 9th semester
EPF Lausanne, FS 2008.

Prof. Dr. Ch. Ludwig, Dr. Felippe de Alencastro¹
Analyse des polluants dans l'environnement
Bachelor 5th semester
EPF Lausanne, FS 2008.
¹ EPFL

PD Dr. I. Mantzaras and Dr. C. Frouzakis
Theoretical and Numerical Combustion
ETH Zürich, HS 2008.

PD Dr. P. Novák, Prof. Dr. A. Wokaun
Technische Elektrochemie
ETH Zürich, HS 2008.

Dr. A.S.H. Prévôt, Prof. J. Staehelin
Tropospheric Chemistry
ETH Zürich, FS 2008.
Dr. R.T.W. Siegwolf, Dr. M. Saurer
Einsatz stabiler Isotope in der Ökologie und Physiologie der Pflanzen I
University of Basel, HS 2008.

Dr. R.T.W. Siegwolf, Dr. M. Saurer
Stabile Isotope in der Ökologie
University of Zürich, WS 2007/2008.

Prof. Dr. A. Steinfeld, Prof. Dr. R. Abhari
Energy Systems and Power Engineering
ETH Zürich, FS 2008.

Prof. Dr. A. Steinfeld, Prof. Dr. R. Abhari
Thermodynamics III
ETH Zürich, HS 2008.

Prof. Dr. A. Steinfeld, Dr. W. Lipinski
Energieübertragung durch Wärmestrahlung
ETH Zürich, HS 2008.

Prof. Dr. A. Steinfeld, Prof. Dr. A. Wokaun
Renewable Energy Technologies I
ETH Zürich, HS 2008.

Dr. F. Vogel (gemeinsam mit Prof. Dr. Ph. Rudolf von Rohr)
Einführung in die Verfahrenstechnik / Vorlesung 5. Semester Maschinenbau und Verfahrenstechnik
ETH Zürich, HS 2008.

Prof. Dr. A. Wokaun, Dr. G.G. Scherer, Prof. Dr. K. Boulouchos
Renewable Energy Technologies II
ETH Zürich, FS 2008.
Contributions to Courses at Universities, FH, and Other Institutes

Dr. S.M.A. Biollaz
Renewable Energy Technologies I (lectures on biomass, biofuels)
ETH Zürich, WS 2007/08.

M. Brandenberger
Biological Gas Treatment
Master in environmental engineering, environmental sciences and engineering, SSIE, EPFL
EPF Lausanne, HS 2008/09.

Dr. P.F. DeCarlo
Online measurement of Organic Aerosols - Summer School on Organic Aerosols
University of Gothenburg, Sweden, June 24, 2008.

Dr. W. Durisch
Photovoltaik - Strom aus Sonnenlicht

Dr. W. Durisch
Photovoltaik - Strom aus Sonnenlicht

Dr. F. Gassmann
Die Physik des Fliegens für Kinder von 6-12 Jahren
Kinderuniverstität Waldshut, Dogern, Germany, November 8, 2008.

Dr. F. Gassmann
Realität des Klimawandels

PD Dr. T. Lippert
Inorganic Thin Films: Processing, Properties and Applications
Contributions (4 lectures on the topic: *Vacuum thin film deposition techniques* and *Thin film industrial applications*) to the lecture: by L. Gauckler, J. Rupp, A. Bieberle.
ETH Zürich, FS 2008.

PD Dr. T. Lippert
Der Laser – vom Kuriosum zum Werkzeug: Anwendungen aus Industrie und Forschung
Senioren Universität Zürich, October 2008.

Prof. Dr. Ch. Ludwig (joint course with Prof. Dr. J.-L. Scartezzini, Dr. D. Robinson, Prof. Dr. A.G. Dumont, Dr. J.-J. Heftl, Prof. Dr. A. Mermoud, Prof. Dr. R. Schlaepfer, Dr. M. Soutter)
Quartiers urbains, infrastructures et aménagements durables
Bachelor 6th semester
EPF Lausanne, HS 2008.

A.S.H. Prévôt, M. Hallquist
Summer school on organic aerosols
University of Gothenburg, June 23-27, 2008.

Dr. S. Ulli-Beer
Systeme, Komplexität – und wie Menschen damit umgehen können

Dr. S. Ulli-Beer
Methodological issues on “Diffusion dynamics of energy efficient buildings” (DeER)
Seminar of the Geographical Department of the University of Zürich, December 12, 2008.
PUBLICATIONS

Books and Reviewed Book Chapters

S. Alkan-Gürsel, L. Gubler, B. Gupta, G.G. Scherer
Radiation grafted membranes
In Fuel Cells I
doi: 10.1007/12_2008_153

Contribution of biogenic emissions on carbonaceous aerosols in summer and winter in Switzerland:
A modelling study
29th NATO/CCMS International Technical Meeting on Air Pollution Modelling and its Application, Aveiro,

U. Baltensperger, M. Furger
Aerosol chemistry in remote locations
(2008).

K.A. Friedrich, F.N. Büchi
Fuel cells using hydrogen
Edited by A. Züttel, A. Borgschulte, L. Schlapbach, Wiley VCH, Weinheim, Germany,
ISBN: 978-3-527-30817-0.

L. Gubler, G.G. Scherer
A proton-conducting polymer membrane as solid electrolyte – Function and required properties
In Fuel Cells I
doi: 10.1007/12_2008_156

B. Mishra, Ch. Ludwig, S. Das (Eds.)
Proceedings of the global symposium on recycling, waste treatment and clean technology

G.G. Scherer, Ed.
Fuel Cells I,

G.G. Scherer, Ed.
Fuel Cells II,

M. Schwaninger, S. Ulli-Beer, R. Kaufmann-Hayoz
Transdisciplinary Modelling, Policy Analysis and Design: A System Dynamics Approach
Germany (2008).

A. Steinfield
Editor-in-Chief
Peert Revieved Papers

M.H. Aguirre¹, S. Canulescu, R. Robert¹, N. Homazava¹, D. Logvinovich¹, L. Bocher¹, T. Lippert, M. Döbeli², A. Weidenkaff¹
Structure, microstructure and high temperature transport properties of La₁₋₄CaₓMnO₃₋₅ thin films and polycrystalline bulk materials
¹ EMPA Dübendorf
² ETH Zürich and PSI

O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high resolution time-of-flight aerosol mass spectrometer

S. Alkan Gürsel, J. Schneider¹, H. Ben youcef, A. Wokaun, G.G. Scherer
Thermal properties of proton-conducting radiation grafted membranes
¹ ETH Zürich

Clouds and aerosols in Puerto Rico - a new evaluation

I. Alxneit
Assessing the feasibility of separating a stoichiometric mixture of zinc vapor and oxygen by a fast quench – Model calculations

Influence of various emission scenarios on ozone in Europe

Secondary aerosols in Switzerland and northern Italy: Modeling and sensitivity studies for summer 2003

S. Arcidiacono, J. Mantzaras, I. Karlin¹
Lattice Boltzmann simulation of catalytic reactions
¹ ETH Zürich

A.R. Armstrong¹, D.W. Tee¹, F. La Mantia, P. Novák, P.G. Bruce¹
Synthesis of tetrahedral LiFeO₂ and its behavior as cathode in rechargeable lithium batteries
¹ University of St. Andrews, UK

F. Atchison, A. Bergmaier¹, M. Daum, M. Döbeli, G. Dollinger¹, P. Fierlinger, A. Foelske, R. Henneck, S. Heule, M. Kasprzak², K. Kirch, A. Knecht, M. Kuzniak³, A. Pichilmaier, R. Schelldorfer, G. Zsigmond
Surface characterization of diamond-like carbon for ultracold neutron storage
¹ Universität der Bundeswehr München, Germany
² Stefan Meyer Institute, Vienna, Austria
³ Jagiellonian University, Cracow, Poland
S. Brandenberger, O. Kröcher, A. Tissler¹, R. Althoff¹
The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts
¹ Süd-Chemie AG, Bruckmühl, Germany

F.N. Büchi, M. Reum
Measuring the local membrane resistance in PEFC on the sub-mm scale

X-ray fluorescence spectrometry for high throughput analysis of atmospheric aerosol samples: The benefits of synchrotron X-rays

E.C. Buriana¹, L. Hahui¹, T. Buriana¹, L. Urech, T. Lippert
New polyacrylates with photosensitive triazene groups designed for laser ablation. Synthesis, structure and properties
¹ Petru Poni Institute of Macromolecular Chemistry, Romania

F.P. Campana, H. Buqa, P. Novák, R. Kötz, H. Siegenthaler¹
In situ atomic force microscopy study of exfoliation phenomena on graphite basal planes
¹ University of Bern

S. Canulescu, T. Lippert, A. Wokaun
Mass and kinetic energy distribution of the species generated by laser ablation from a manganate target

X.Chen¹, T.B. Settersten¹, P.P. Radi, A.P. Kouzov²
Two-color resonant four-wave mixing spectroscopy: New perspectives for direct studies of collisional state-to-state transfer
¹ Sandia National Laboratories, Livermore, California, USA
² Saint-Petersburg State University, Peterhof, Russia

The influence of small aerosol particles on the properties of water and ice clouds

J. Cozic, S. Mertes, B. Verheggen, D.J. Cziczo, S.J. Gallavardin, S. Walter, U. Baltensperger, E. Weingartner
Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds

Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch

I. Czekaj, O. Kröcher, G. Piazzesi
DFT calculations, DRIFT spectroscopy and kinetic studies on the hydrolysis of isocyanic acid on the TiO₂-anatase (101) surface
Fast airborne aerosol size and chemistry measurements above Mexico City and Central Mexico during the MILAGRO campaign

Apportionment of primary and secondary organic aerosols in Southern California during the study of organic aerosols in Riverside (SOAR-1)

Cloud forming potential of secondary organic aerosol under near atmospheric conditions

P.E. Dyer¹, M. Pervolaraki¹, C.D. Walton¹, T. Lippert, M. Kuhnke, A. Wokaun
Ionization in vacuum ultraviolet F₂ laser ablated polymer plumes
¹University of Hull, UK

M. Epstein¹, G. Olalde², S. Santén³, A. Seinfeld, C. Wieckert
Towards the industrial solar carbothermal production of zinc
¹The Weizmann Institute of Science, Rehovot, Israel
²PROMES-CNRS, Odeillo, France
³ScanArc Plasma Technologies AG, Hofors, Sweden

R. Fardel¹, M. Nageli², T. Lippert, F. Nüesch², A. Wokaun, B. Luk'yanchuk³
Influence of thermal diffusion on the laser ablation of thin polymer films
¹EMPA Dübendorf and PSI
²EMPA Dübendorf
³Data Storage Institute, Singapore, Malaysia

P. Farquet, C. Pedaste, H.H. Solak, S.A. Gürsel, G.G. Scherer, A. Wokaun
Extreme UV-radiation grafting of glycidyl methacrylate nanostructures onto fluoropolymer foils by RAFT-mediated polymerization

P. Farquet, C. Pedaste, M. Börner¹, H. Ben youcef, S. Alkan-Gürsel, G.G. Scherer, H.H. Solak, V. Saile³, A. Wokaun
Microstructured proton conducting membranes by synchrotron radiation induced grafting
¹Forschungszentrum Karlsruhe, Germany

R. Felder, A. Meier
Well-to-wheel analysis of solar hydrogen production and utilization for passenger car transportation

Anisotropic, effective diffusivity of porous gas diffusion layer materials for PEFC

S.A. Freunberger, I.A. Schneider, P.-C. Sui¹, A. Wokaun, N. Djilali¹, F.N. Büchi
Cell interaction phenomena in polymer electrolyte fuel cell stacks
¹University of Victoria, Victoria BC, Canada

R. Gadiou¹, A. Didion¹, R.I. Gearba¹, D.A. Ivanov¹, I. Czekaj, R. Kötz, C. Vix-Guterl¹
Synthesis and properties of new nitrogen-doped nanostructured carbon materials obtained by templating of mesoporous silicas with aminosurgars
1 CNRS, Mulhouse, France

Residential wood burning in an Alpine valley as a source for oxygenated volatile organic compounds, hydrocarbons and organic acids

E. Gálvez1, I. Hischier1, A. Frei, A. Steinfeld
Ammonia production via a 2-step Al2O3/AlN thermochemical cycle – III. Influence of the carbon reducing agent and cyclability
1 ETH Zürich

E. Gálvez1, A. Frei, G. Albisetti1, G. Lunardi1, A. Steinfeld
Solar hydrogen production via a 2-step thermochemical process based on MgO/Mg redox reactions – thermodynamic and kinetic analyses
1 ETH Zürich

E. Gálvez1, P.G. Louzenhiser, I. Hischier1, A. Steinfeld
CO2 splitting via 2-step solar thermochemical cycles with Zn/ZnO and FeO/Fe2O4 redox reactions – Thermodynamic analysis
1 ETH Zürich

J.K. Gietl, T. Tritscher, O. Klemm
Size-segregated analysis of PM10 at two sites, urban and rural, in Münster (Germany) using five-stage Berner type impactors

D. Gstoehl, A. Brambilla, L.O. Schunk, A. Steinfeld
A quenching apparatus for the gaseous products of the solar thermal dissociation of ZnO

L. Gubler, H. Ben Youcef, S. Alkan Gürsel, A. Wokaun, G.G. Scherer
Crosslinker effect in ETFE based radiation grafted proton conducting membranes I. Properties and fuel cell performance characteristics

U. Gurudus1, E. Brooks1, D.M. Bubb1, S. Heiroth, T. Lippert, A. Wokaun
Saturable and reverse saturable absorption in silver nanodots at 532 nm using picoseconds laser pulses
1 Rutgers – The State University of New Jersey, USA

M. Hahn, H. Buqa, P.W. Ruch, D. Goers1, M.E. Spahr1, J. Ufheil, P. Novák, R. Kötz
A dilatometric study of lithium intercalation into powder-type graphite electrodes
1 TIMCALS A, Bodio

M. Halmann1, A. Frei, A. Steinfeld
Magnesium production by the pidgeon process involving dolomite calcination and MgO silicothermic reduction: Thermodynamic and environmental analyses
1 Weizmann Institute of Science, Rehovot, Israel

L.J. Hardwick, P.W. Ruch, M. Hahn, W. Scheifele, R. Kötz, P. Novák
In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects

R.M. Healy, J.C. Wenger, A. Metzger, J. Duplissy, M. Kalberer, J. Dommen
Gas/particle partitioning of carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene
S. Heiroth, T. Lippert, A. Wokaun, M. Döbeli
Microstructure and electrical conductivity of YSZ thin films prepared by pulsed laser deposition

Using proton transfer reaction mass spectrometry for online analysis of secondary organic aerosols

H. Herich, L. Kammermann, M. Gysel, E. Weingartner, U. Baltensperger, U. Lohmann, D.J. Cziczo
In situ determination of atmospheric aerosol composition as a function of hygroscopic growth

C. Hoose, U. Lohmann, P. Stier, B. Verheggen, E. Weingartner
Aerosol processing in mixed-phase clouds in ECHAM5-HAM: Model description and comparison to observations

W. Hubschmid, R. Bombach, A. Inauen, F. Güthe, S. Schenker, N. Tylli, W. Kreutner
Thermoacoustically driven flame motion and heat release variation in a swirl-stabilized gas turbine burner investigated by LIF and chemiluminescence

Can we use CO₂ concentrations determined with IRMS from small samples for the Keeling plot approach? Comparison of LICOR 8100 and IRMS measurements.

Effects of environmental parameters, leaf physiological properties and leaf water relations on leaf water δ18O enrichment in different Eucalyptus species

The impact of reducing the maximum speed limit on motorways in Switzerland to 80 km h⁻¹ on emissions and peak ozone

Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: from newly assimilated organic carbon to respired carbon dioxide

R. Kötz, M. Hahn, P.W. Ruch, R. Gallay
Comparison of pressure evolution in supercapacitor devices using different aprotic solvents

G. Kopitkovas, V. Deckert, T. Lippert, F. Raimondi, C.W. Schneider, A. Wokaun
Chemical and structural changes of quartz surfaces due to structuring by laser-induced backside wet etching

D.N. Kozlov, P.P. Radi
Detection of vibrational overtone excitation in methane by laser-induced grating spectroscopy

D. Kramer, S.A. Freunberger, R. Flückiger, I.A. Schneider, A. Wokaun, F.N. Büchi, G.G. Scherer
Electrochemical diffusimetry of fuel cell gas diffusion layers
O. Kröcher, M. Elsener
Chemical deactivation of $\text{V}_2\text{O}_5/\text{WO}_3$–TiO$_2$ SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution. I. Catalytic studies

O. Kröcher, M. Elsener
Combination of $\text{V}_2\text{O}_5/\text{WO}_3$–TiO$_2$, Fe-ZSM5, and Cu-ZSM5 catalysts for the selective catalytic reduction of nitric oxide with ammonia

The role of VOC oxidation products in continental new particle formation
Atmos. Chem. Phys. 8, 2657-2665 (2008).

F. La Mantia, P. Novák
Online detection of reductive CO$_2$ development at graphite electrodes in the 1 M LiPF$_6$ EC: DMC battery electrolyte

F. La Mantia, J. Vetter, P. Novák
Impedance spectroscopy on porous materials: A general model and application to graphite electrodes of lithium-ion batteries

F. La Mantia, R. Rosciano, N. Tran, P. Novák
Direct evidence of oxygen evolution from $\text{Li}_{2-x}\text{Mn}_x\text{Mg}_y\text{Co}_z\text{O}_2$ at high potentials

Source attribution of submicron organic aerosols during wintertime inversions by advanced factor analysis of aerosol mass spectra

W. Lipinski1, E. Guillot2, G. Olalde2, A. Steinfeld
Transmittance enhancement of packed-bed particulate media

P. Maire, A. Evans, H. Kaiser, W. Scheifele, P. Novák
Colorimetric determination of lithium content in electrodes of lithium-ion batteries

A. Mantion1, A.G. Guex1, A. Foelske, L. Mirollo2, K.M. Fromm2, M. Painsi3, A. Taubert1,4,5
Silver nanoparticle engineering via oligovaline organogels

J. Mantzarakas
Catalytic combustion of syngas
I. Marozau, A. Shkabko, G. Dinescu, M. Döbeli, T. Lippert, D. Logvinovich, M. Mallepalli, A. Weidenkaff, A. Wokaun
RF-plasma assisted pulsed laser deposition of nitrogen-doped SrTiO₃ thin films
1 EMPA Dübendorf
2 National Institute for Lasers, Plasma and Radiation Physics, Romania
3 ETH Zürich and PSI

F.J. Mazzotti, E. Achkasova, R. Chauhan, M. Tulej, P. Radi, J. Maier
Electronic spectra of radicals in a supersonic slit-jet discharge by degenerate and two-color four-wave mixing
1 University of Basel

The $^3 \Pi_{3/2} - ^3 \Pi_{3/2}$ electronic transition of HC₃S isotopologues
1 University of Basel

T. Melchior, C. Perkins, A.W. Weimer, A. Steinfeld
A cavity-receiver containing a tubular absorber for high-temperature thermochemical processing using
concentrated solar energy
1 ETH Zürich
2 University of Colorado, Boulder, USA

T. Melchior, A. Steinfeld
Radiative transfer within a cylindrical cavity with diffusely/specularly reflecting inner walls containing an array
of tubular absorbers
1 ETH Zürich

A. Metzger, J. Dommen, K. Gaeggeler, J. Duplissy, A.S.H. Prévôt, J. Kleffmann, Y. Elshorbany, A. Wisthaler,
U. Baltensperger
Evaluation of 1,3,5 trimethylbenzene degradation in the detailed tropospheric chemistry mechanism,
MCMv3.1, using environmental chamber data

I. Morier, C. Guenat, R. Siegwolf, J.-C. Védy, P. Schleppi
Dynamics of atmospheric N deposition in a temperate calcareous forest soil

I. Morier, P. Schleppi, R. Siegwolf, H. Knicker, C. Guenat
N-15 immobilization in forest soil: a sterilization experiment coupled with (15)CPMAS NMR spectroscopy

Structural characterization of radiation grafted block copolymer films, using SANS technique
1 University of Copenhagen, Denmark

R. Müller, A. Steinfeld
H₂O-splitting thermochemical cycle based on ZnO/Zn-redox: Quenching the effluents from the ZnO
dissociation
1 ETH Zürich

R. Müller, W. Lipinski, A. Steinfeld
Transient heat transfer in a directly-irradiated solar chemical reactor for the thermal dissociation of ZnO
1 ETH Zürich
F.P. Nagel, T.J. Schildhau, S.M.A. Biollaz, A. Wokaun
Performance comparison of planar, tubular and Delta8 solid oxide fuel cells using a generalized finite volume model

F.P. Nagel, T.J. Schildhau, S.M.A. Biollaz, S. Sticki
Charge, mass and heat transfer interactions in SOFCs operated with different fuel gases - A sensitivity analysis

M. Nagel1, R. Fardel2, P. Feurer1, M. Häberl1, F.A. Nüesch1, T. Lippert, A. Wokaun
Aryltriazene photopolymer thin films as sacrificial release layers for laser-assisted forward transfer systems: study of photoablative decomposition and transfer behaviour
1 EMPA Dübendorf
2 EMPA Dübendorf and PSI

S.H. Ng, C. Vix-Guterl1, Ph. Bernardo, N. Tran, J. Ufheil, H. Buqa, J. Dentzer1, R. Gadiou1, M.E. Spahr2, D. Goers3, P. Novák
Correlations between surface properties of graphite and the first cycle specific charge loss in lithium-ion batteries
1 CNRS UPR 9069, Mulhouse, France
2 TIMCAL SA, Bodio

S.H. Ng, F. La Mantia, P. Novák
A multiple working electrode for electrochemical cells: A tool for current density distribution studies

S.H. Ng, N. Tran, K. G. Bramnik1, H. Hibst3, P. Novák
A feasibility study on the use of Li2V2O4 as a high capacity cathode material for lithium-ion batteries.
1 BASF SE, Ludwigshafen, Germany

D. Nicosia, I. Czekaj, O. Kröcher
Chemical deactivation of V2O5/WO3–TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution. I. II. Characterization study of the effect of alkali and alkaline earth metals

V. Nikulshina1, N. Ayesa1, E. Gálvez1, A. Steinfeld
Feasibility of Na-based thermochemical cycles for the capture of CO2 from Air – thermodynamic and thermogravimetric analyses
1 ETH Zürich

K. Pangarkar1, T.J. Schildhau, R. van Ommen1, J. Nijenhuis1, F. Kapteijn1, J.A. Mouljin1
Structured packings for multiphase catalytic reactors
1 TU Delft, Netherlands

T.J. Patey, S.H. Ng, R. Büchel1, N. Tran, F. Krumpeich1, J. Wang2, H.K. Liu2, P. Novák
Electrochemistry of LiV2O4 nanoparticles made flame spray pyrolysis
1 ETH Zürich
2 University of Wollongong, Australia

J. Pecho, T.J. Schildhau, M. Sturzenegger, S.M.A. Biollaz, A. Wokaun
Reactive bed materials for improved biomass gasification in a circulating fluidised bed reactor

A.A. Peterson, P. Vontobel, F. Vogel, J.W. Tester
In situ visualization of the performance of a supercritical-water salt separator using neutron radiography
J. Supercritical Fluids 43, 490-499 (2008).
Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies
Energy & Environmental Science 1, 32-65 (2008).

J. Petrasch¹, F. Meier¹, H. Friesi¹, A. Steinfeld
Tomography based determination of permeability, Dupuit-Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics
¹ ETH Zürich

J. Petrasch¹, P. Wyss², R. Stämpfli², A. Steinfeld
Tomography-based multi-scale analyses of the 3D geometrical morphology of reticulate porous ceramics
¹ ETH Zürich
² EMPA Dübendorf

J. Petrasch¹, B. Schrader¹, P. Wyss², A. Steinfeld
Tomography-based determination of the effective thermal conductivity of fluid-saturated reticulate porous ceramics
¹ ETH Zürich
² EMPA Dübendorf

A. Petzold, J. Hasselbach, P. Lauer, R. Baumann, K. Franke, C. Gurk, H. Schlager, E. Weingartner
Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

N. Piatkowski¹, A. Steinfeld
Solar-driven coal gasification in a thermally irradiated packed-bed reactor
¹ ETH Zürich

G. Pizza, C. Frouzakis¹, J. Mantzaras, A. Tomboulides², K. Boulouchos¹
Dynamics of premixed hydrogen/air flames in mesoscale channels
¹ ETH Zürich
² University of Western Macedonia, Greece

G. Pizza, C. Frouzakis¹, J. Mantzaras, A. Tomboulides², K. Boulouchos¹
Dynamics of premixed hydrogen/air flames in microchannels
¹ ETH Zürich
² University of Western Macedonia, Greece

S. Rabe, F. Vogel
A thermogravimetric study of the partial oxidation of methanol for hydrogen production over a Cu/ZnO/Al₂O₃ catalyst

R. Robert¹, M.H. Aguirre¹, L. Bocher¹, M. Trottmann¹, S. Heiroth, T. Lippert, M. Döbeli², A. Weidenkaff¹
Thermoelectric properties of polycrystalline samples and epitaxial LaCo₃,Ni₃O₃ thin films
¹ EMPA Dübendorf
² ETH Zürich and PSI

N. Rogiers, F. Conen, M. Furger, R. Stöckli, W. Eugster
Impact of past and present land-management on the C-balance of a grassland in the Swiss Alps
R. Rosciano, M. Holzapfel, W. Scheifele, P. Novák
A novel electrochemical cell for in situ neutron diffraction studies of electrode materials for lithium-ion batteries

Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter

J. Sandradewi, A.S.H. Prévôt, E. Weingartner, R. Schmidhauser, M. Gysel, U. Baltensperger

An investigation of the common signal in tree-ring stable isotope chronologies at temperate sites

T.J. Schildhauer, E. Newson, A. Wokaun
Closed cross flow structures – Improving the heat transfer in fixed bed reactors by enforcing radial convection

A. Schneider, J. Mantzaras, S. Eriksson
Ignition and extinction in catalytic partial oxidation of methane-oxygen mixtures with large H2O and CO2 dilution
1 KTH Sweden

I.A. Schneider, H.M. Bayer, A. Wokaun, G.G. Scherer
Impedance response of the proton exchange membrane in polymer electrolyte fuel cells

A.M. Schulenburg 1, M. Meisinger, P.P. Radi, F. Merkt
The formaldehyde cation: Rovibrational energy level structure and Coriolis interaction near the adiabatic ionization threshold
1 ETH Zürich

L.O. Schunk, P. Haeberling, S. Wepf, D. Wuillemin, A. Meier, S. Steinfeld
A receiver-reactor for the solar thermal dissociation of zinc oxide

Isotopic composition (δ13C, δ18O) in Siberian tree-ring chronology

F. Simmen, T. Lippert, P. Novák, B. Neuenschwander 1, M. Döbeli 2, M. Mallepell 2, A. Wokaun
The influence of lithium excess in the target on the properties and compositions of Li1+xMn2O4-δ thin films prepared by PLD
1 Berner Fachhochschule, Burgdorf
2 PSI and ETH Zürich

Generating highly active partially oxidized platinum during oxidation of carbon monoxide over Pt/Al2O3:
In situ, time-resolved and high energy-resolution X-ray absorption spectroscopy
Hygroscopicity of the submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m a.s.l., Switzerland

R.P.W.J. Struijs, Ch. Ludwig, T. Barrelet, U. Krähenbühl, H. Rennenberg
Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy

Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments - a review

N. Tran, K.G. Branmik†, H. Hibst†, J. Pröß†, N. Mronga†, M. Holzapfel, W. Scheifele, P. Novák
Spray-drying synthesis and electrochemical performance of lithium vanadates as positive electrode materials for lithium batteries
† BASF SE, Ludwigshafen, Germany

W.J. Tobler, W. Durisch
Plasma-spray coated rare-earth oxides on molybdenum disilicide – high temperature stable emitters for thermophotovoltaics

W.J. Tobler, W. Durisch
High-performance selective Er-doped YAG emitters for thermophotovoltaics

S. Ulli-Beer
What if the multiple-process cognitive model is misleading for the question at hand? Comment on the paper by Bakken

O. Vesna, S. Sjogren, E. Weingartner, V. Samburova, M. Kalberer, H.W. Gaggeler, M. Ammann
Changes of fatty acid aerosol hygroscopicity induced by ozonolysis under humid conditions

Source apportionment of particulate matter in Europe: A review of methods and results

X. Wei, A. Reiner, E. Müller†, A. Wokaun, G.G. Scherer, L. Zhang†, K.-Y. Shou†, B.J. Nelson†
Electrochemical surface reshaping of polycrystalline platinum: morphology and crystallography
† ETH Zürich

A. Weidenkaff†, R. Robert†, M. Aguirre†, L. Bocher†, T. Lippert, S. Canulescu
Development of thermoelectric oxides for renewable energy conversion technologies
† EMPA Dübendorf

Organic aerosol mass spectral signatures from wood-burning emissions: influence of burning conditions and wood type
L. Winkel, J. Wochele, Ch. Ludwig, I. Alxneit, M. Sturzenegger
Decomposition of copper concentrates at high temperatures: An efficient method to remove volatile impurities

L. Winkel, I. Alxneit, M. Sturzenegger
Thermal decomposition of copper concentrates under concentrated radiation – Mechanistic aspects of the separation of copper from iron sulphide phases

Biotic, abiotic, and management controls on the net ecosystem CO₂ exchange of European mountain grassland ecosystems

K. Yoshizawa¹, K. Ikezoe¹, Y. Tasaki¹, D. Kramer, E.H. Lehmann, G.G. Scherer
Analysis of gas diffusion layer and flow-field design in a PEMFC using neutron radiography
¹ Nissan Research Center, Yokosuka-shi, Japan

A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

Optimization of automated gas sample collection and IRMS analysis of δ¹³C of CO₂ in air

A. Z’Graggen¹, A. Steinfeld
A two-phase reactor model for the steam-gasification of carbonaceous materials under concentrated thermal radiation
¹ ETH Zürich

A. Z’Graggen¹, P. Haueter¹, G. Maag¹, M. Romero², A. Steinfeld
Hydrogen production by steam-gasification of carbonaceous materials using concentrated solar energy – IV. Reactor experimentation with vacuum residue
¹ ETH Zürich
² CIEMAT, Spain

A. Z’Graggen¹, A. Steinfeld
Hydrogen production by steam-gasification of carbonaceous materials using concentrated solar energy – V. reactor modeling, optimization, and scale-up
¹ ETH Zürich

A.M. Zhektikov¹, P.P. Radi
New developments in nonlinear spectroscopy: ECONOS meeting in St. Petersburg
¹ International Laser Centre, Moscow State University, Russia

Measurements of HNO₃ and N₂O₅ using ion drift-chemical ionization mass spectrometry during the MILAGRO/MCMA-2006 campaign
Conference Proceedings / Other Papers

An aerosol modelling study of winter and summer periods in Switzerland

Seasonal variability of aerosol composition in Switzerland: A modelling study

S.M.A. Biollaz, F.P. Nagel, M. Jenne, A. Schuler¹
Long-term tests of a complete biomass integrated gasification fuel cell system
¹ HEXIS AG, Winterthur

M. Bosshardt, S. Ulli-Beer, F. Gassmann, A. Wokaun
The effect of multi incentive policies on the competition of drive-train technologies

M. Bosshardt, S. Ulli-Beer, F. Gassmann, A. Wokaun
Diffusion of different competing drivetrain technologies: model based policy analysis

F.N. Büchi, R. Flückiger, D. Tehlar, F. Marone, M. Stamparoni
Determination of liquid water distribution in porous transport layers

S.Y. Chew¹,², T.J. Patey, R. Büchel³, J. Wang², S.E. Pratsinis³, H.K. Liu², P. Novák
LiMnO₂ thin films synthesized via an in situ annealing-assisted flame spray deposition method
¹ PSI Villigen
² University of Wollongong, Australia
³ ETH Zürich

Impact of a diesel car on primary and secondary organic aerosols

M.C. Coen, E. Weingartner, O. Schmid, R. Schmidhauser, A. Petzold, U. Baltensperger
Minimizing light absorption measurement artifact of the Aethalometer: A new correction evaluation based on a 4-year dataset

P. Coray, W. Lipinski¹, A. Steinfeld
Experimental and numerical determination of thermal radiative properties of ZnO particulate media
¹ ETH Zürich

S. Daniele, P. Jansohn, K. Boulouchos¹
Lean premixed combustion of undiluted syngas at gas turbine relevant conditions: NOₓ emissions and lean operational limits
¹ ETH Zürich

Aircraft based measurement of organic aerosol: Characterization and evolution during the MILAGRO 2006 field campaign

Intercomparison of 6 different HTDMAs

W. Durisch, J.-C. Mayor, K.-H. Lam¹, S. Stettler²

Efficiency and annual output of a monocrystalline module under actual operating conditions

¹ University of Hong Kong, China
² Enecolo AG, Mönchaltorf

R. Felder, A. Meier, A. Wokaun

Solar hydrogen as future transportation fuel – well-to-wheel analysis and economic assessment

D. Goers¹, M.E. Spahr¹, A. Leone¹, W. Märkle, S.H. Ng, P. Novák

Graphite negative electrode materials for power oriented lithium-ion batteries

¹ TIMCAL SA, Bodio

S. Groesser, S. Ulli-Beer

Innovation diffusion in the building construction industry: Empirically-based theory generation

L. Gubler, S. Alkan Gürsel, H. Ben youcef, F. Wallasch, A. Wokaun, G.G. Scherer

Recent advances in radiation grafted fuel cell membranes

A.G. Haiduc, M. Brandenberger, S. Suquet, Ch. Ludwig, F. Vogel, R. Bernier-Latmani, S. Stucki

Hydrothermal methane from microalgae

P. Jansohn

Forschungsprogramm “Kraftwerk 2020”

M. Kamphus, S. Borrmann, S. Walter, J. Curtius, J. Schneider, S. Mertes, E. Weingartner

Mass spectrometric analysis of small ice crystal residuals in mixed phase clouds during the CLACE projects

S. Karagiannidis, J. Mantzaras, R. Bombach, S. Schenker, K. Boulouchos¹

Experimental and numerical investigation of the hetero-/homogenous combustion of lean propane/air mixtures over platinum

Proc. 32nd Int. Symposium on Combustion, McGill University, Montreal, Canada, August 3-8 (2008).
¹ ETH Zürich

J. Keller, A. Prévôt, A.F. Béguin, V. Jutzi, C. Ordonez

Trends of Ozone and Ox in Switzerland from 1992 to 2007: Observations at Selected Stations of the NABEL, OASI and ANU Networks Corrected for Meteorological Variability

Paul Scherrer Institute, PSI, Villigen, Report ISSN-Nr. 1019-0643, November (2008).

J. Kopyscinski, T.J. Schildhauer, S.M.A. Biollaz

Employing catalyst fluidization to enable carbon management in the SNG-production from biomass

Proc. 9th Int. Conf. on Circulating Fluidized Beds CFB-9, Hamburg, Germany, May 13-16 (2008).
O. Kröcher, M. Elsener, E. Jacob¹

Neue Reduktionsmittel für die Low NOₓ-SCR-Technik / New reducing agents for the low-NOₓ SCR technology

¹ Emissionskonzepte, Krailling, Germany

F. La Mantia, F. Rosciano, N. Tran, P. Novák

Oxygen evolution from Liₓ+ₓ(NiₓMn₁₋ₓCo₁₋ₓ)₂O₄ at high potentials

T. Lippert, L. Urech, R. Fardel¹, M. Nagel², C.R. Phipps³, A. Wokaun

Materials for laser propulsion: “liquid” polymers

¹ EMPA Dübendorf/PSI

² EMPA Dübendorf

³ Photonic Associates, Santa Fe, USA

P.G. Loutzenhiser, E. Gálvez¹, I. Hischier¹, A. Steinfeld

Thermodynamic design analysis of a two-step thermochemical cycle for reducing CO₂ using FeO as an intermediary

Proc. 14th SolarPACES Int. Symposium, Las Vegas, Nevada, USA, March 4-7 (2008).¹

¹ ETH Zürich

G. Maag¹, F.J. Gutierrez², A. Steinfeld

Effect of laden particles on the thermal decomposition of methane using a particle-flow solar reactor

Proc. 14th SolarPACES Int. Symposium, Las Vegas, Nevada, USA, March 4-7 (2008).¹

¹ ETH Zürich

² Universidad Rey Juan Carlos, Madrid, Spain

J. Mantzaras, R. Bombach, R. Schaeren

Hetero-homogeneous combustion of hydrogen/air mixtures over platinum at pressures up to 10 bar

Proc. 32nd Int. Symposium on Combustion, McGill University, Montreal, Canada, August 3-8 (2008).

A. Meier

Task II: Solar Chemistry

S. Mertes, B. Verheggen, M. Kamphus, S. Walter, M. Ebert, B. Nilius, J. Schneider, D. Cziczo, J. Curtius, J. Cozic, A. Worringen, E. Weingartner

Physico-chemical characterisation of ice particle residuals in tropospheric mixed-phase clouds based on ice particle collection using the counterflow virtual impactor technique

M. Müller, S. Ulli-Beer

DeeR: Diffusiodynamics of energy-efficient renovations: Outline of a transdisciplinary research project

M. Müller, S. Ulli-Beer

Modeling the Diffusiodynamics of a new Renovation Concept

P. Mueller¹, D. Winkler¹, T. Griffin¹, S. Daniele, P. Jansohn

Combustion of Syngases: Fundamental combustion studies at gas turbine conditions

¹ University of Applied Science Northwestern, Institute of Thermo- and Fluid-Engineering

Commissioning of the QEXAFS monochromator at the Swiss Light Source

F.P. Nagel, S. Biollaz, M. Jenne, A. Schuler
Long-term tests of a complete biomass integrated gasification fuel cell system
1 HEXIS AG, Winterthur

P. Novák
Beyond the conventional approach: An in situ look at battery materials
49th Battery Symposium in Japan, Book of Abstracts, Sakai, Japan, November 5-7 (2008).

P. Novák, F. Rosciano, F. La Mantia, S.H. Ng, A. Evans, W. Scheifele, P. Maire
In situ characterization methods - the scientific key to battery materials

T. J. Patey, A. Hinternach, P. Novák
How to make electrodes with nanoparticles better

T.J. Patey, R. Büchel1, S.E. Pratsinis1, P. Novák
Flame co-synthesis of nano-LiMn2O4 and carbon black
1 ETH Zürich

N. Piatkowski1, C. Wieckert, A. Steinfield
Experimental investigation of a packed-bed solar reactor for the steam-gasification of biomass charcoal
1 ETH Zürich

G. Pizza, J. Mantzaras, C. Frouzakis1, A. Tomboulides2, K. Boulouchos1
Suppression of combustion instabilities of premixed hydrogen/air flames in microchannels using heterogeneous reactions
Proc. 32nd Int. Symposium on Combustion, McGill University, Montreal, Canada, August 3-8 (2008).
1 ETH Zürich
2 University of Western Macedonia, Greece

N.I. Prasianakis, I.V. Karlin1, J. Mantzaras
Lattice Boltzmann method for simulation of compressible flows on standard lattices,
17th Discrete simulation of fluid dynamics (DSFD 2008), Santa Catarina University, Florianopolis, Brazil, August 4-8 (2008)
1 ETH Zürich

A comparison of new and classic methods to estimate the contribution of wood smoke at different sites in Switzerland

S. Regenspurg1, Ch. Ludwig, N. Benitez2, F. Mendez2
Pollutant characterization from a municipal waste disposal site (Navarro) in Cali, Colombia
1 EPF Lausanne
2 Universidad del Valle, Colombia

S. Regenspurg1, V. Silberstein1, Ch. Ludwig
Prediction of trace elemental flows during the reaction of bottom ashes with chloride-rich cement dusts
1 EPF Lausanne

P.W. Ruch, D. Cercola, S.H. Ng, A. Foelske, R. Kötz
Single wall carbon nanotubes for supercapacitors studied by in situ Raman spectroscopy
and in situ dilatometry
Proc. 18th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, USA, December 8-10 (2008).

Study of aerosol from wood burning versus other sources (AEROWOOD) using a multiwavelength aethalometer

Aerosol light scattering at high relative humidity

L.O. Schunk, D. Gstoehl, A. Meier, A. Steinfeld

Technological advances toward scale-up of solar chemical reactor for thermal ZnO decomposition

Reaction of siberian subarctic larch trees to abrupt climatic changes derived from tree ring and isotope data

B. Steubing1, Ch. Ludwig, H. Böni1

E-waste generation in Chile: Analysis of the aeneration of computer waste using material flow analysis

1 EMPA Dübendorf

P. Tomeš1, R. Robert1, L. Bocher1, M. Trottmann1, M. Aguirre1, A. Weidenkaff1, P. Haueter2, A. Steinfeld, J. Hejtmánek1

Direct conversion of simulated solar radiation into electrical energy by a perovskite thermoelectric oxide module (TOM)

1 EMPA Dübendorf
2 ETH Zürich

S. Ulli-Beer, M. Bosshardt, A. Wokaun

Der Weg zum emissionsarmen Fahrzeugfuhrpark

S. Ulli-Beer, M. Bosshardt, F. Gassmann, A. Wokaun

Citizens’ Choice: Modeling long term technology transition in the automobile industry

S. Ulli-Beer, M. Bosshardt, F. Gassmann, A. Wokaun

Guiding citizens’ choice towards smart energy technologies

A. Vidal1, T. Denk1, A. Valverde1, L. Zacarías2, A. Steinfeld, M. Romero1

Upscaling of a 500 kW solar powered reactor for steam gasification of petroleum coke

1 CIEMAT, Spain
2 PDVSA, Venezuela

F. Vogel, K. Boulouchos, K. Steurs, P. Dietrich, P. Soltic

A smart concept for a gasoline hybrid powertrain with zero local emissions
M. Zaglio, G.A. Schuler, A. Wokaun, J. Mantzaras, F.N. Büchi
Parameter extraction from experimental data using multiparameter optimization algorithms
DISSEER TATIONS

S. Canulescu
Growth and characterization of thin manganite films and in-situ analysis of the laser-induced plasma

J. Duplissy
Hygroscopicity properties of secondary organic aerosols

P. Farquet
Synchrotron radiation grafting: A lithographic method to create polymer micro- and nanostructures

K. Gaggeler
Small molecular weight organic acids in the gas and aerosol phase

T. Gül
An energy economic scenario analysis of alternative fuels for transport

S. Heule
Production, characterization and reflectivity measurements of diamond-like carbon and other ultracold neutron guide materials

F. La Mantia
Characterization of electrodes for lithium-ion batteries through electrochemical impedance spectroscopy and mass spectrometry

F. Loviat
Photo-assisted activation of methane over supported catalysts with a xenon excimer lamp

A. Metzger
Chamber studies of secondary organic aerosol formation: From gas phase degradation to aerosol yields

F.P Nagel
Electricity from wood through the combination of gasification and solid oxide fuel cells
Ph.D. Theses, No. 17856, ETH Zürich, June 10, 2008.

M. Reum
Sub-millimeter resolved measurement of current density and membrane resistance in polymer electrolyte fuel cells (PEFC)

F. Rosciano
In situ synchrotron and neutron diffraction based methods for the characterization of cathodic materials for lithium-ion batteries

J. Sandradewi
A study of wood burning versus traffic aerosols using a multi-wavelength aethalometer (AEROWOOD)

L.O. Schunk
Solar thermal dissociation of zinc oxide – reaction kinetics, reactor design, experimentation and modeling
A.M. Walser
Time resolved four wave mixing spectroscopy of gaseous formaldehyde

S. Weimer
Particle emission of traffic and wood combustion and its impact on spatial distributions of submicron particulate matter
DIPLOMA-/MASTER THeses

X. Antoñanzas De Andrés
Design of a passive and active control system for flashback
PSI Villigen and Berner Fachhochschule, March 2008.

N. Badawi
Analysis of pollutants emissions from a landfill in soil and water, Cali, Colombia: Heavy metals
PSI Villigen, EPF Lausanne and Uni Valle, Cali, Colombia, June 2008.

M. Burger
Steady-state fuel processor modeling for the on-board production of hydrogen-enriched fuel blend from gasoline
PSI Villigen and ETH Zürich, 2008.

C. Caprez
Wood burning emission and diesel exhaust experiments at the smog chamber: PTR-MS results
University of Zürich, 2008.

D. Douçot
Municipal waste and recycled material flow analysis of Ho Chi Minh City
PSI Villigen, EPF Lausanne and National University of HCMC, Vietnam, June 2008.

A. Evans
In situ colorimetric analysis of lithium intercalation into graphite electrodes of lithium-ion batteries
ETH Zürich, February 2008.

A. Fleischer
Experimental study of solar steam gasification of cabonaceous materials
PSI and ETH Zürich, September 2008.

C. Good
Source apportionment of a highly time and spatially resolved organic aerosol dataset from the Rhine valley by the use of positive matrix factorization
ETH Zürich, August 2008.

V. Klass
AMS/MAN copolymerization onto ETFE base film using DIPB as crosslinking agent
ETH Zürich, April 2008.

A. Maric
Identification of As-Cu-FA complexes in Laboratory samples and characterization of association between arsenic and dissolved organic matter in China’s groundwater
PSI Villigen and EPF Lausanne and Chinese Academy of Sciences, Beijing, China, 2008.

M. Nso
Assessment of high-temperature electrolysis for solar hydrogen production
PSI and ETH Zürich, October 2008.

D. Rätz
Sub-mm Membranwiderstand in PEFC – Methodenentwicklung und Bestimmung des Einflusses der Gaszusammensetzung an der Kathode
ETH Zürich, February 2008.

J. Regler
Untersuchungen zur kontinuierlichen Salztrennung aus wässrigen Lösungen unter Bedingungen der hydrothermalen Vergasung von Biomasse
PSI Villigen and Fachhochschule Weihenstephan, Abteilung Triesdorf, Germany, May 2008.

V. Silberstein
Prédiction des flux des éléments traces au cours de la réaction des mâchefers avec les poussières de climent enrichies en chlore
PSI Villigen and EPF Lausanne, January 2008.
M. Steiger
An overview of diesel and wood burning soot smog chamber experiments and a loading effect correction for aethalometer measurements
ETH Zürich, July 2008.

C. Suter
Development and experimental investigation of quench unit for a solar thermal rotary reactor
PSI and ETH Zürich, May 2008.

D. Tehlar
Investigation of the cross-convection in PEFC serpentine flow-fields
ETH Zürich, March 2008.

M. Uldry
Elektrochemische Charakterisierung von gesputterten Pt/C-Katalysatoren

T. Ulrich
An in-situ XAFS investigation of a ruthenium on carbon catalyst during the gasification of ethanol in supercritical water
PSI Villigen and ETH Zürich, October 2008.

K. Volkart
Test von Katalysatoren für die Methanisierung, die Umsetzung von Schwefelspezies, die Wassergaskonvertierung und die Ethylenhydriderung in einem Teilstrom eines Holzvergasers
PSI Villigen and ETH Zürich, 2008.
BACHELOR THESES

J. Aubert
Untersuchungen zur kontinuierlichen Salzabtrennung aus wässrigen Lösungen unter Bedingungen der hydrothermalen Vergasung von Biomasse
PSI Villigen and ETH Zürich, June 2008.

S. Möllencamp
CO2 reduction via a solar thermochemical cycle based on metal oxide redox reactions
PSI and ETH Zürich, October 2008.

T. Müller
Simulation of the hydrolysis and pyrolysis of a wood particle under hydrothermal conditions
PSI Villigen and ETH Zürich, June 2008.

M. Wirz
Solar steam gasification: Characterization and study of thermal behaviour/kinetics of industrial sludges
PSI and ETH Zürich, July 2008.

G. Zanganah
Solar thermal cracking of methane - experimental campaign at the PSI solar furnace
PSI and ETH Zürich, December 2008.
SEMESTER THESES

L. Besnier
Characterisation of carbonaceous particles with an ECOC instrument
PSI Villigen, 2008.

J. Gaabab
Characterization of a packed bed of carbonaceous materials during gasification
PSI Villigen and ETH Zürich, September 2008.

A. Kirstopuryan
Fluorite-type solid electrolyte layers by aerosol assisted CVD & PLD
PSI Villigen and ETH Zürich, April 2008.

A. Paillet
Contribution to the production of improved iron-exchanged zeolite SCR catalysts
Université d’Orléans, April 1 – August 31, 2008.

N. Rizwan Farid
Chemical simulation of syngas flames
PSI Villigen and ETH Zürich, March 2008.

H. Wallimann
Experimental investigation of the aerodynamic protection of a solar reactor’s window
PSI Villigen and ETH Zürich, June 2008.
TALKS

Invited Talks

U. Baltensperger
Atmospheric aerosols - recent development in elucidating their sources
4th Aarhaus Winter Meeting, Trends in Modern Chemistry, Aarhus, Denmark, February 1, 2008.

U. Baltensperger
Sources of organic aerosols in the atmosphere - recent results from lab and field experiments
University of Copenhagen, Sweden, January 31, 2008.

U. Baltensperger
Feinstaub in der Schweiz - Zusammensetzung, Quellen, Auswirkungen
Forum Medizin und Energie, Aarau, March 6, 2008.

U. Baltensperger
Aerosole - winzige Teilchen beeinflussen globales Klima
Klimasonntag, PSI Villigen, April 13, 2008.

U. Baltensperger
Chemical and physical properties of organic aerosols
EGU, Vienna, Austria, April 13-18, 2008.

U. Baltensperger
Aerosol research at the high-alpine site Jungfraujoch
Grosses Physikalisches Kolloquium an der Universität zu Köln, Germany, May 6, 2008.

U. Baltensperger
Sekundärorganisches Aerosol, HULIS, Polysäuren, hochmolekulare Verbindungen: Eine Wanderung durch den Terminologie-Dschungel und erste Einblicke in Bildungsprozesse und Eigenschaften

U. Baltensperger
Atmospheric aerosols - sources, transformation, processes and impact

U. Baltensperger
Das CLOUD-Projekt am CERN

U. Baltensperger
Primary and secondary organic aerosol from Diesel engines
12th ETH-Conference on Combustion Generated Nanoparticles, Zürich, June 23-25, 2008.

U. Baltensperger
Formation and transformation of secondary organic aerosols
University of Colorado, Boulder, USA, August 1, 2008.

U. Baltensperger
Nucleation, growth, and aging of secondary organic aerosol
Workshop on Organic Aerosols, Telluride, USA, August 4-8, 2008.

U. Baltensperger
Secondary organic aerosols: formation, transformation, and source apportionment
University of California, Berkeley, CA, USA, August 11, 2008.

U. Baltensperger
Feinstaub: Kleine Teilchen mit grossen Auswirkungen
Forschung im Zelt, PSI, Aarau, August 20, 2008.
U. Baltensperger
New Frontiers on Organic Aerosols

U. Baltensperger
Der Beitrag der Holzfeuerungen zum Feinstaub-Hintergrund und Forschung am PSI
Medienkonferenz Feinstaub aus Holzeizungen, Balsthal, October 2, 2008.

U. Baltensperger
Aerosole und ihre abkühlende Wirkung auf das Klima
Lokal messen, Global verstehen. Schweizer Klimabechobtung als globaler Beitrag, Swiss GCOS, Zürich, October 21, 2008.

U. Baltensperger, E. Weingartner
Aerosol measurements in the context of the global atmosphere watch programme and several EC projects

U. Baltensperger, E. Weingartner
Aerosol Measurements at the High-Alpine Station Jungfraujoch, Switzerland
CANDAC Workshop, Toronto, Canada, November 27-29, 2008.

S.M.A. Biollaz
Vergasung von Biomasse

S.M.A. Biollaz
Biomasse im Erdgasnetz - SNG für die KWK -
OTI Profiforum, KWK mit Biomasse, Regenstauf bei Regensburg, Germany, April 7-8, 2008.

S.M.A. Biollaz
Erzeugung von Erdgassubstituten (SNG) aus Vergasungsgasen

A. Bodi
Imaging photoelectron photoion coincidence spectroscopy at the Swiss Light Source
Group Seminar (Prof. John P. Meier) University of Basel, October 27, 2008.

M. Brandenberger
BrandenbergerSunCHEM: A 3rd generation biofuel technology to produce methane from algae
36th Discussion Forum LCA of Future Biofuels, EMPA Dübendorf, November 17, 2008.

F.N. Büchi
Hydrogen based mobility: Developments in Europe

F.N. Büchi
Sizing of fuel cell powertrains for mobile applications

I. Czekaj
How can combination of experimental and theoretical methods contribute to the development of catalysts at macroscopic scale?

P.F. DeCarlo
Characterizing Submicron Aerosols with the High Resolution Time-of-Flight Aerosol Mass Spectrometer

W. Durisch
Fuel-fired TPV at PSI
7th FULLSPECTRUM Meeting, Freiburg, Germany, May 28, 2008.
W. Durisch
Fuel-fired TPV Activity Report

M. Furger
Feinstaub: Kleine Teilchen mit grossen Auswirkungen
Forschung im Zelt, PSI, Waldshut, Germany, August 27, 2008.

F. Gassmann
Erneuerbare Energie – 2000 Watt Gesellschaft
Aargauische Naturforschende Gesellschaft, Naturama Aarau, January 9, 2008.

F. Gassmann
Unser Klima im Wandel
– Electra Schneisingen, March 27, 2008.

F. Gassmann
Klimawandel – Ursachen und Auswirkungen auf unser Leben

F. Gassmann
Der Klimawandel ist voll im Gang

F. Gassmann
Treibhauseffekt und Klimawandel
Delegation der Axpo, PSI, November 15, 2008.

F. Gassmann
Wellen als zentrales Thema der Physik – Experimente mit Schallwellen
Volkshochschule der Region Zürach, PSI, November 20, 27, 2008.

F. Gassmann
Erneuerbare Energie
Thurgauische Naturforschende Gesellschaft, Frauenfeld, December 9, 2008.

F. Gassmann
Klimaveränderungen und Auswirkungen auf den Wasserkreislauf
Axporama, Böttstein, December 12, 2008.

F. Gassmann
Erneuerbare Energie – wie weit reicht sie?
Ringvorlesung "Energie" der Zürcher Hochschule der Künste (ZHDK), Zürich, December 16, 2008.

L. Gubler
Trends for fuel cell membrane development
12th Aachener Membran Kolloquium, Aachen, Germany, October 29, 2008.

M. Gysel
Hygroscopic properties of laboratory generated and atmospheric aerosol particles and their interaction with clouds
Johann Wolfgang Goethe Universität, Frankfurt (Main), Germany, June 26, 2008.

M.P. Hofer, M. Papra, F.N. Buechi, T. Gloor
Freezing of PEFC

P. Jansoh
Perspektiven in der Energieversorgung
Manfred Eigen Nachwuchswissenschaftler Gespräche, Deutsche Bunsen-Gesellschaft für Physikalische Chemie, Bad Herrenalb, Germany, April 24, 2008.
P. Jansohn
Kraftwerk 2020 – An option for swiss power generation in a carbon constrained world
ABB Corporate Research Lunch Talk, Baden-Dättwil, November 17, 2008.

G. Knopp
Prospective experiments on catalytic surfaces
PSI-XFEL Science Workshop on Sub-ps Solution Chemistry and Surface Catalysis, EPF Lausanne, October 10, 2008.

R. Kötz
SuperCaps basics

R. Kötz
Applications of SuperCaps

O. Kröcher
Chemical challenges in the development of urea-SCR systems
Seminar for Caterpillar, USA, January 14, 2008.

O. Kröcher
Ein neues TG-FTIR-System für die Abgasnachbehandlung
Forschungsvereinigung Verbrennungskraftmaschinen (FVV), Frankfurt (Main), Germany, August 19, 2008.

O. Kröcher
Guanidinium formate as new reductant for the low NOx-SCR technique

O. Kröcher, M. Casapu
Katalysatormaterialien für die NOX-Reduktion
VDI forum, Nürnberg, Germany, December 11, 2008.

O. Kröcher
New reducing agents for the low-NO, SCR technology

O. Kröcher
Zukunft der Mobilität: Das Auto von morgen
Am Puls der Forschung, Waldshut, Germany, August 23, 2008.

T. Lippert
Der Laser – vom Kuriosum zum Werkzeug: Anwendungen aus Industrie und Forschung

T. Lippert
Excimer laser for the deposition/transfer of thin films and structuring: Applications for fuel cells and OLEDs

T. Lippert
Thin films prepared by pulsed laser deposition for renewable energy applications
FZ Karlsruhe, Germany, November 2008.

T. Lippert
Laser-induced forward transfer (LIFT) of polymers using a sacrificial layer
– University of Southampton, Optoelectronics Research Centre, UK, February 2008.

T. Lippert
Laser interaction with materials: From structuring to thin film deposition
RIKEN, Wako, Japan, August 2008.
T. Lippert
From laser ablation to laser transfer techniques – experiences and current developments
IMM Mainz, Germany, June 2008.

T. Lippert
Materials for laser propulsion
7th International conference on High Power Laser Ablation, Taos, USA, April 2008.

T. Lippert
Thin film deposition by laser based methods
University of Vienna, Physical Chemistry Department, Austria, April 2008.

Ch. Ludwig
RESH Behandlung mit KVA\(^\text{Plus}\)

Ch. Ludwig
Understanding the fate of elements in industrial processes and the environment
IMX seminar series on Advances in Materials, EPF Lausanne, November 10, 2008.

A. Meier
Concentrating solar power – present status and future prospects

C. Mohr
Analyse primärer organicher Feinstaub-Emissionen aus Grillaktivitäten
Bundesamt für Umwelt BAFU, Bern, November 4, 2008.

C. Mohr
Partikelzusammensetzung im Rheintal und in der Stadt Zürich

Commissioning of the QEXAFS monochromator at the Swiss Light Source

F.P. Nagel
Verstromung von Holz über die Hochtemperaturbrennstoffzelle
SAH Statusseminar, EMPA, Akademie, Zürich, March 19, 2008.

P. Novák
Beyond the conventional approach: An in situ look at battery materials
– Seminar in the Laboratory for Inorganic Chemistry, ETH Zürich, February 19, 2008.
– Seminar at Toyota Central R&D Labs., Inc., Nagoya, Japan, June 20, 2008.
– 49th Battery Symposium in Japan, Sakai, Japan, November 6, 2008.

P. Novák
Oxygen loss from NMC materials
BASF SE, Ludwigshafen, Germany, July 18, 2008.

P. Novák
In situ investigations of battery materials
Seminar at the State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, China, July 9, 2008.

P. Novák
Materials for lithium-ion batteries
Seminar at the Department of Chemistry, Zhejiang University, Hangzhou, China, July 3, 2008.
P. Novák
In situ characterization methods - the scientific key to battery materials
14th Int. Meeting on Lithium Batteries, Tianjin, China, June 22-28, 2008.

P. Novák
Energy storage in advanced batteries
Seminar “A Physics Perspective on Climate Change and Energy Supply” of the German Physical Society, Bad Honnef, Germany, May 29, 2008.

T.J. Patey
Nanoparticles in lithium-ion batteries – opportunities and challenges
Particle Formation Symposium, Vitznau, July 5, 2008.

A.S.H. Prévôt
Organic carbon source analysis in aerosols
Organics in the Atmosphere, Vienna, Austria, October 6-8, 2008.

A.S.H. Prévôt
Source apportionment of particulate organics in ambient air and secondary organic aerosol formation studies in the smogchamber at the Paul Scherrer Institute in Switzerland
University of Stockholm, Sweden, September 26, 2008.

A.S.H. Prévôt
Fine and ultrafine particle measurements in Central Europe in ambient air
International Workshop on Environmental Nanoparticles, Tsukuba, Japan, January 18, 2008.

A.S.H. Prévôt
Fine and ultrafine particle measurements in Switzerland in ambient air
University of Tokyo, Japan, January 21, 2008.

A.S.H. Prévôt
Aerosolmassepektrometer

M. Saurer
The climatic content of carbon and oxygen isotope ratios in tree-rings from northern Eurasia
Barnaul, Russia, June 1-6, 2008.

M. Saurer
The use of isotopes in ecosystem studies

G.G. Scherer
Radiation grafted membranes as solid electrolyte in fuel cell applications
Advances in Polymer Science and Technology, plenary lecture, New Delhi, India, January 28-31, 2008.

G.G. Scherer
Fuel cells for transportation - an overview on European activities
Nissan Motor Company, Research Center, Kanagawa, Japan, February 6, 2008.

G.G. Scherer
The lithium-ion battery - activities at PSI's Electrochemistry Laboratory
Dainippon Screen, Kyoto, Japan, February 7, 2008.

G.G. Scherer
Fuel Cells I
Fuel Cells II

G.G. Scherer
Die Funktionsweise der Polymer Elektrolyt Brennstoffzelle
G.G. Scherer
Radiation grafted polymer membranes for fuel cell applications achievements and challenges

G.G. Scherer
Radiation grafted fuel cell membranes
IPEN, Centro de Química e Meio Ambiente, Sao Paulo, Brazil, October 23, 2008.

G.G. Scherer
Polymer electrolyte fuel cells: In situ diagnostic methods & materials development
IPEN, Centro de Células a Combustível, Sao Paulo, Brazil, October 24, 2008.

G.G. Scherer
Electrochemical energy conversion and storage - R & D at Paul Scherrer Institut
IPEN, Centro de Química e Meio Ambiente, Sao Paulo, Brazil, October 25, 2008.

T. Schildhauer
Methane from wood: Reducing deactivation by carbon “management” on nickel catalysts

I.A. Schneider, M.H. Bayer, A. Wokaun, G.G. Scherer
Impedance response of the proton exchange membrane in polymer electrolyte fuel cells
5*th* Symposium on FC Modelling and Validation, Winterthur, March 12, 2008.

I.A. Schneider, M.H. Bayer, P. Boillat, A. Wokaun, G.G. Scherer
Recent insights obtained from local in situ diagnostics in polymer electrolyte fuel cells

M. Schubert, J.W. Regler, F. Vogel
Effiziente Salzabscheidung als ein wichtiger Schritt bei der katalytischen, hydrothermalen Vergasung nasser Biomasse

L.O. Schunk
Erneuerbare Energien – heute und morgen
– TecDay@KME, Kantonale Maturitätsschule für Erwachsene, Zürich, November 13, 2008.
– TecDay@KantiBaden, Kantonsschule Baden, November 26, 2008.

B.C. Seyfang
Micro polymer electrolyte fuel cells – simple, small, but still sophisticated enough
Catalysis Group Seminar, University of Cape Town, South Africa, February 14, 2008.

A. Steinfeld
High-temperature thermochemical processing of fuels using concentrated solar energy

A. Steinfeld
Solar Hydrogen – Present and Future
Int. Conf. Renewable Energy and Beyond, Tel Aviv, Israel, May 22, 2008.

A. Steinfeld
In-situ formation and hydrolysis of Zn nanoparticles for H₂ production via a 2-step solar thermochemical cycle

A. Steinfeld
Die Versorgungssicherheit – Potenzial erneuerbarer Energien
Climate Forum, Thun, October 9, 2008.
A. Steinfeld
Concentrated solar power & fuels – early pioneering research, present status, and future prospects
Symposium honoring the 90th birthday of Prof. Dostovsky “Outward Bound; From Nuclear Chemistry to Solar Neutrinos”, Weizmann Institute, Rehovot, Israel, October 26, 2008.

A. Steinfeld
Global potential of renewable energy technologies
Ringvorlesung Energie, University of Zürich, October 30, 2008.

R.P.W.J. Struis
Studying sulfur deactivation of Ni-based methanation catalysts using X-ray absorption spectroscopy

S. Sticki
Neue Technologien im Bereich Holzenergie

S. Sticki
Biotreibstoffe: Aktuelle Möglichkeiten, künftige Bedürfnisse
AWEL Werkstatt, Zürich, October 21, 2008.

S. Sticki
New pathways to efficient use of biomass for power and transportation
CEEM Project 2nd Generation Biogas, SVGW Arbeitsgruppe „Koordination Biogas“, Zürich, June 6, 2008.

S. Ulli-Beer
Wege zu sparsameren Autos: Die Autowahl vor dem Hintergrund sich verändernder Technologie-Landschaften
Mitgliederversammlung der Gruppe Energieperspektiven, Baden, March 27, 2008.

S. Ulli-Beer
Die gelebte Erlebnisraum-Mobilität Strategie. Was macht uns aus, wie können wir uns erhalten und verbessern

S. Ulli-Beer
Nachhaltigkeitsmanagement im Fuhrpark: Energieeffiziente und umweltfreundliche Flotten
Event für Schweizer Fuhrparkmanager, organisiert von aboutFleet, Zürich, November 26, 2008.

F. Vogel
Catalytic Process Engineering at PSI

F. Vogel
Technologien und Perspektiven der Energiegewinnung aus Biomasse – Hydrothermale Vergasung von nasser Biomasse
ETH Alumni - Process Alumni event, Zürich, April 3, 2008.

F. Vogel, M. Schubert, M. Brandenberger, J.W. Regler
Recent advances in catalytic hydrothermal gasification of biomass to synthetic natural gas

F. Vogel
Katalytische Aspekte der hydrothermalen Vergasung nasser Biomasse zu Methan
Kolloquium am Institut für Technische Chemie, Forschungszentrum Karlsruhe, Germany, July 8, 2008.

E. Weingartner
Study of Aerosol from Wood Burning Versus Other Sources (AEROWOOD) Using a Multiwavelength Aethalometer
E. Weingartner
Current Aerosol Mesurement at the Jungfraujoch
Air Pollution and Climate Change at Contrasting Altitude and Latitude, Murten, September 11, 2008.

E. Weingartner
CPC, SMPS, APS im Messbetrieb

E. Weingartner
Feinstaub: Kleine Teilchen mit grossen Auswirkungen
Forschung im Zelt, PSI, Baden, August 13, 2008.

A. Wokaun
Erneuerbare Energien in der Schweiz – Stand der Forschung und aktuelle Beispiele

A. Wokaun
Energie – Perspektiven und Optionen für die Zukunft
Departement Bau, Verkehr und Umwelt, Aarau "Klimawandel im Aargau: Folgen, Chancen und Risiken",
Baden, September 8, 2008.

A. Wokaun
Klimaprognosen versus Energieprognosen
Energie Schweiz, Energie Apéro, Baden and Lenzburg, October 14 and 16, 2008.

A. Wokaun
Alternative Fuels and Propulsion Concepts for a Sustainable Mobility

A. Wokaun
Mobilität und Energie
Ringvorlesung "Energie", ETH Zürich, December 11, 2008.
Contributions to Media

U. Baltensperger
Feinstaub aus Holzhierzungen: Heute agieren, nicht morgen reagieren

U. Baltensperger
Mögliche wenig Staub aufwirbeln

U. Baltensperger
Holzfönenbauer gehen gegen den Feinstaubausstoss vor

U. Baltensperger
Forschung für saubere Öfen
Zeitungsartikel: Solothurner Tagblatt, October 4, 2008.

U. Baltensperger
Schadstoffärmere Holzfeuerungen
Zeitschriftenartikel: TEC21, October 27, 2008.

U. Baltensperger
Fortschritte dank oberem Abbrand und Blähglimmer

U. Baltensperger
Organische Aerosole als wichtiger Schadstoff

U. Baltensperger
Milliarden Tonnen von Mineralstaub belasten jährlich die Atmosphäre

U. Baltensperger
Auf höchstem Niveau, Klimaforschung auf dem Jungfraujoch

P. Jansohn
CO₂: ausfiltern und speichern – oder vermeiden?
Automobil Revue, Salon Genf Special, Nr. 10s, March 2008.

P. Jansohn
Schweiz forsch für saubere Gaskraftwerke
energia, Ausgabe 4, Juli 2008.

P. Jansohn
Vollbremsung bei den Gaskraftwerken
Handelszeitung, Nr. 38, September 2008.

A. Prévôt
Jetzt handeln ist wichtig

Vorsicht Feinstaub

S. Stucki
Holz in die Gasleitung
S. Ulli-Beer, M. Bosshardt, W. Alexander
Der Weg zum emissionsarmen Fahrzeugfuhrpark: Emissionsarme Flottenfahrzeuge - Erfolgsfaktoren und Stolpersteine bei der Umstellung
aboutFleet (Flottenmagazin der Schweiz), September/Oktober 4, 2008.

E. Weingartner
Die Partei befiehlt Sonne

A. Wokaun
Möglichkeiten und Grenzen des Energiesystems – Energiebereitstellung, Anwendung, energetisches Recycling

A. Wokaun
Visionen Elektrizitätsversorgung 2030 Schweiz / Europa / Global
ClimateForum, Breakout-Session zum Thema "Versorgungssicherheit", October 9, 2008.
Other Talks

S. Andreani-Aksoyoglu
Ergebnisse eines regionalen Modells für schweizerische Ozonveränderungen im Mittelland
Ozon und Sommersmog, Fachtagung zum Stand der Forschung und zur Reduktionsstrategie, Bern, October 30, 2008.

An aerosol modelling study of winter and summer periods in Switzerland

Sezonal variability of aerosol composition in Switzerland: A modeling study
GLOREAM/ACCENT Workshop, Antwerp, Belgium, October 29-31 2008.

U. Baltensperger
Neue Ergebnisse zur sommerlichen Partikelbildung
Ozon und Sommersmog, Fachtagung zum Stand der Forschung und zur Reduktionsstrategie, Bern, October 30, 2008.

U. Baltensperger
Secondary organic aerosol formation in a smog chamber and its link to source apportionment in the real atmosphere
39th Int. Conf. on Carbonaceous Particles in the Atmosphere, Berkeley, CA, USA, August 12-14, 2008.

U. Baltensperger
Umweltforschung am PSI
Besuch UWIS Department, Villigen, May 29, 2008.

U. Baltensperger
Astrophärentchmie am PSI

A comparison of new and classic methods to estimate the wood smoke contribution to particulate matter for several field campaigns
European Aerosol Conference, Thessaloniki, Greece, August 24-29, 2008.

Refined 14C source apportionment of organic carbon
39th Int. Conf. on Carbonaceous Particles in the Atmosphere, Berkeley, CA, USA, August 12-14, 2008.

Micro-structured proton conducting membranes by synchrotron radiation induced grafting for fuel cell applications
Europolymer Conference, Gargnano, Italy, June 1-5, 2008.

S.M.A. Biolaz
- _Successful demonstration of long term catalyst stability in the methane from wood process_
- _Long term Tests on a Complete Biomass Integrated Gasification Fuel Cell System (B-IGFC)_
16th European Biomass Conference and Exhibition, Valencia, Spain, June 2-6, 2008.

P. Bornhauser, P.P. Radi
_Depturbation of the d^3T_1g Electronic State (v’ = 0, 1, 2) of C2 by Two-Color Resonant Four-Wave Mixing_
Swiss Chemical Society – Fall Meeting, University of Zürich, September 11, 2008.

F.N. Büchi
Determination of liquid water distribution in porous transport layers
214th Meeting of The Electrochemical Society, Honolulu HI, USA, October 14, 2008.
Impact of a diesel car on primary and secondary organic aerosols

I. Czekaj
Adsorption of isocyanic acid and water over the TiO$_2$ (101) and γ-Al$_2$O$_3$ (100) surfaces: Theoretical modelling of catalyst behaviour
Swiss Chemical Society Fall Meeting, University of Zürich, September 11, 2008.

P.F. DeCarlo, A.S.H. Prévôt
Analysis of Aerodyne q-AMS spectra of stationary and mobile measurements with advanced statistical methods

Determination of isoprene yields in an organic seed by carbon isotope analysis
EGU General Assembly, Vienna, Austria, April 13-18, 2008.

Carbon isotope analysis as a tool to determine SOA yields in an organic seed
European Aerosol Conference, Thessaloniki, Greece, August 24-29, 2008.

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, A. Wokaun
Shadowgraphy analysis of the laser-induced forward transfer process

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, A. Wokaun
Polymer light-emitting diodes fabrication by laser-assisted forward transfer
Plastic Electronics 08, Berlin, Germany, October 2008.

R. Flückiger
Effective diffusivity of porous gas diffusion materials for PEFC

R. Flückiger
Anisotropic diffusivity of gas diffusion materials and current density distribution over channel and rib of PEFC

Closure study between hygroscopic growth and cloud condensation nuclei activity of secondary organic aerosol
EGU General Assembly, Vienna, Austria, April 13-18, 2008.

Hygroscopic properties and chemical composition of the free tropospheric submicrometer aerosol at the high-alpine site Jungfraujoch, 3580 m above sea level
European Aerosol Conference, Thessaloniki, Greece, August 24-29, 2008.

A.G. Haiduc, M. Brandenberger, S. Suquet, Ch. Ludwig, F. Vogel, R. Bernier-Latmani, S. Stucki, Hydrothermal methane from microalgae

Aerosol chemical composition as a function of the hygroscopic growth: Results from Abisko, Northern Sweden
European Aerosol Conference, Thessaloniki, Greece, 2008.
Aerosol chemical composition as a function of the hygroscopic growth: Results from urban, remote and polar field sites

P. Jansohn
H2IGCC - low emission gas turbine technology for hydrogen-rich syngas

P. Jansohn
Combustion of hydrogen (en-)rich(ed) fuel gases in gas turbines

S. Karagiannidis
Experimental and numerical investigation of the hetero-/homogenous combustion of lean propane/air mixtures over platinum
32nd Int. Symposium on Combustion, McGill University, Montreal, Canada, August 3-8, 2008.

S. Karagiannidis
Experimental and numerical investigation of a propane-fueled, catalytic mesoscale combusctor
7th Int. Workshop on catalytic Combustion (IWCC7), Pfäffikon, September 29 – October 1, 2008.

G. Knopp
Spectral effects in dispersed off-resonant fs-transient gratings

R. Kötz, P.W. Ruch, D. Cericola, S.H. Ng, A. Foelske
Single wall carbon nanotubes for supercapacitors studied by in situ Raman spectroscopy and in situ dilatometry
18th International Seminar on Double Layer Capacitors and Hybrid Energy Storage Devices, Deerfield Beach, USA, December 8-10, 2008.

J. Kopyscinski
Employing catalyst fluidization to enable carbon management in the SNG-production from biomas
9th Int. Conf. on Circulating Fluidized Beds CFB-9, Hamburg, Germany, May 12-17, 2008.

D.N. Kozlov, P.P. Radi
Study of spectroscopic and relaxation characteristics of methane vibrational overtone states using laser-induced gratings

A. Kress, M. Saurer
Calibration issues of Carbon and Oxgen Isotopes
Southern Proxies Intercomparison Worship Bohinjska Bistrica, Slovenia, November 6-10, 2008.

A. Kress, M. Saurer
Paper Writing Workshop for Young Scientists

A. Kress, M. Saurer, R. Siegwolf, H. Bugmann
The Role of Climate and Larch Budmoth Outbreaks reflected in δ¹³C- and δ¹⁸O-Signatures of an Alpine Tree-Ring Chronology
EGU General Assembly, Vienna, Austria, April 13-18, 2008.

A. Kress, M. Saurer, R. Siegwolf, H. Bugmann
The Lötschtal-Simplon-Isotope-Chronology
WSL, Birmesdorf, 2008.
O. Kröcher
Hydrolysis of isocyanic acid over TiO₂ (Anatase): DFT calculations, DRIFT spectroscopy and kinetic studies
5th International Congress on Environmental Catalysis, Belfast, Northern Ireland, August 31 – September 3, 2008.

O. Kröcher
Hydrolysis of isocyanic acid over TiO₂ (Anatase): Unraveling the reaction mechanism by a combination of DFT calculations, DRIFT spectroscopy and kinetic studies
5th International Congress on Environmental Catalysis, Belfast, Northern Ireland, August 31 – September 3, 2008.

F. La Mantia, F. Rosciano, N. Tran, P. Novák
Oxygen evolution from Li₂Fe₂(NiFe₉Mn₁₀Co₁₃)₉.5O₂ at high potentials

W. Lipinski, A. Steinfeld
Radiative transfer in high-temperature multi-phase solar thermochemical reactors

T. Lippert, S. Heiroth, A. Wokaun
Thin films of ion conductive materials by Pulsed Laser Deposition

T. Lippert A. Wokaun, R. Fardel, M. Nagel, F. Nüesch
Laser-Induced Forward Transfer (LIFT) of sensitive materials using a photolabile dynamic release layer: Analysis of the Process
6th International Conference on Photoexcited Processes and Applications (ICPEPA), Sapporo, Japan, September 2008.

P.G. Loutzenhiser, G. Maag, F.J. Gutierrez, A. Steinfeld
Effect of laden particles on the thermal decomposition of methane using a particle-flow solar reactor

P. Maire, A. Evans, W. Scheifele, H. Kaiser, P. Novák
In situ colorimetric determination of lithium content in graphite anodes of lithium-ion batteries

W. Märkle, N. Tran, P. Novák, D. Goers, M.E. Spahr, E. Grivei
Influence of the electrolyte composition and graphite particle size on the electrochemical intercalation of hexaffluorophosphate anions

J. Mantzaras
Hetero-/homogeneous combustion of hydrogen/air mixtures over platinum at pressures up to 10 bar
32nd Int. Symposium on Combustion, McGill University, Montreal, Canada, August 3-8, 2008.

Evaluation of 1,3,5 trimethylbenzene degradation in the detailed tropospheric chemistry mechanism, MCMv3.1, using environmental chamber data
EGU General Assembly, Vienna, Austria, April 13-18, 2008.

Source apportionment of ambient aerosol applying PMF on AMS mobile and stationary data
S.H. Ng, T.J. Patey, R. Büchel1, F. Kromeich1, J.Z. Wang2, H.K. Liu2, S.E. Pratsinis1, P. Novák
Electrochemical properties of flame spray-pyrolyzed vanadium oxide cathode nanomaterial in lithium battery
7th International Symposium on New Nano Materials for Electrochemical Systems, Montréal, Canada, June
26, 2008.
1 ETH Zürich
2 University of Wollongong, Australia

P. Novák, M. Hahn, P.W. Ruch, D. Goers1, M.E. Spahr1, J. Ufheil, R. Kötz
In situ electrochemical dilatometry: Lithium intercalation into carbon electrodes
1 TIMCAL SA, Bodio

D.C. Oderbolz, S. Andreani-Aksoyoglu, J. Keller, I. Barmpadimos, M. Tinguely
Improving aerosol modelling in an air quality model for Switzerland

T.J. Patey, M. Nakayama1, P. Novák
Advanced characterization of LiMn2O4 nanoparticles
Seminar at Tokyo Institute of Technology, Tokyo, Japan, December 3, 2008.
1 Tokyo Institute of Technology, Tokyo, Japan

G. Pizza
Flame dynamics in catalytic and non-catalytic mesoscale microreactors
7th Int. Workshop on catalytic Combustion (IWCC7), Pfäffikon, September 29 – October 1, 2008.

G. Pizza
Suppression of combustion instabilities of premixed hydrogen/air flames in microchannels using
heterogeneous reactions
32nd Int. Symposium on Combustion, McGill University, Montreal, Canada, August 3-8, 2008.

N.I. Prasianakis
Lattice Boltzmann method for simulation of compressible flows on standard lattices
17th Discrete simulation of fluid dynamics (DSFD 2008), Santa Catarina University, Florianopolis, Brazil,
August 4-8 (2008).

A.S.H. Prévôt
Statistische Analyse der Ozonspitzenwerte im schweizerischen Mittelland und Datenanalyse des
Hintergrundozons
Ozon und Sommersmog, Fachtagung zum Stand der Forschung und zur Reduktionsstrategie, Bern,
October 30, 2008.

A. Kasper-Giebl, H. Puxbaum, U. Baltensperger
Recent 13C analyses in Switzerland and combination with multi-wavelength aethalometer, levoglucosan, and
AMS (aerosol mass spectrometer) measurements
EGU General Assembly, Vienna, Austria, April 14-18, 2008.

A comparison of different wood smoke markers in ambient aerosol
AAAR, Orlando, USA, October 20-24, 2008.

Mobile measurements of composition (AMS, MAAP) and size distributions (FMPS) in different cities and
regions
AAAR, Orlando, USA, October 20-24, 2008.

S. Rabe, J. Requies, P.L. Arias, F. Vogel
Reforming of methane over rhodium and ruthenium catalysts: Influence of thiophene
7th International Workshop on Catalytic Combustion, Pfäffikon, September 29 - October 1, 2008.

S. Rabe, T. Ulrich, M. Nachtsgaal, F. Vogel
Catalytic supercritical water gasification of wet biomass: An in-situ XAS study
M. Reum
High resolution measurement of current distribution and, ionic resistance in PEFCs: Insights into the channel-rib, partition of current generation

Elemental analysis of ambient aerosol samples with synchrotron XRF
European Conference on X-Ray Spectrometry, Cavtat, Dubrovnik, Croatia, June 16-20, 2008.

Measurements of trace elements with Rotating Drum Impactors and subsequent X-ray fluorescence spectroscopy
EGU General Assembly, Vienna, Austria, April 13-18, 2008.

Trace elements in wood combustion performed with different domestic heating stoves
12th ETH-Conference on Combustion Generated Nanoparticles, Zürich, June 23-25, 2008.

F. Rosciano, M. Holzapfel, N. Tran, F. La Mantia, P. Novák
A new approach to in situ neutron diffraction applied to lithium-ion batteries

P. Ruch, D. Cericola, A. Foelske, R. Kötz
In situ studies of single-walled carbon nanotubes and activated carbon in non-aqueous supercapacitor electrolytes
59th Annual Meeting of the International Society of Electrochemistry, Seville, Spain, September 7-12, 2008.

P. Ruch, D. Cericola, A. Foelske, R. Kötz
Electrochemical in situ studies of supercapacitor electrodes - comparing activated carbon, single-walled carbon nanotubes and graphite
Electrochemistry: Crossing Boundaries, Giessen, Germany, October 6-8, 2008.

M. Saurer, A. Kress
Comparison of isotope chronologies in the Alps
Southern Proxies Intercomparison Worship, Bohinjska Bistrica, Slovenia, November 6-10, 2008.

Effects of relative humidity on aerosol light scattering

Aerosol light scattering at high relative humidity

I.A. Schneider, M.H. Bayer, A. Wokaun, G.G. Scherer
Millisecond resolved transient response of the high frequency resistance in polymer electrolyte fuel cells

I.A. Schneider, M.H. Bayer, A. Wokaun, G.G. Scherer
Impedance response of the proton exchange membrane in polymer electrolyte fuel cells
41th Heyrovsky Discussion, 8th Symposium on Electrochemical Impedance Spectroscopy, Trest, Czech Republic, June 16, 2008.

G.A. Schuler
Experimental investigation of the local membrane degradation in PEFC
Fuel Cells Science & Technology, Copenhagen, Denmark, October 10, 2008.

B.C. Seyfang, P. Boillat, G.G. Scherer, T. Lippert, A. Wokaun
Liquid water in micro polymer electrolyte fuel cells without gas diffusion layer
59th Annual Meeting of the International Society of Electrochemistry, Seville, Spain, September 7-12, 2008.
B.C. Seyfang, P. Boillat, G.G. Scherer, T. Lippert, A. Wokaun
Micro polymer electrolyte fuel cells: A novel design without gas diffusion layer
5th Symposium on Fuel Cell Modelling and Experimental Validation, Winterthur, March 11-12, 2008.

O.V. Sidorova, R.T.W. Siegwolf, M. Saurer, E.A. Vaganov
Response of Siberian larch trees to climatic changes inferred from tree ring width and stable isotopes (13C, 18O) for the Recent and Medieval period

F. Simmen, T. Lippert, P. Novák, B. Neuenschwander1, M. Döbeli, M. Mallepall, A. Wokaun
Influence of the substrate material on the properties of pulsed laser deposited thin Li$_{1+x}$Mn$_2$O$_{4.5}$ films

S. Ull-Beer, M. Bosshardt
Penetration of alternative propulsion technologies in the European car fleet under different scenarios and policies. Before a Transition to Hydrogen Based Transport
6th MIT-PSI Workshop AGS, Dearborn, Detroit, USA May 8–9, 2008.

F. Vogel, M. Schubert, J.W. Regler
Rückgewinnung der Nährstoffe bei der hydrothermalen Vergasung von Biomasse – Abtrennung von Salzen aus überkritischem Wasser

F. Vogel, M. Brandenberger, Ch. Ludwig, S. Stucki, A.G. Haiduc, S. Suquet, R. Bernier-Latmani
SunChem – An integrated algae-based approach for producing Bio-SNG with a closed nutrient cycle
16th European Biomass Conference & Exhibition, Valencia, Spain, June 2-6, 2008.

F. Wallasch, L. Gubler, G.G. Scherer, A. Wokaun
Advanced radiation grafted fuel cell membranes
6th Swiss Snow Symposium, Fiesch, February 15-17, 2008.

F. Wallasch, L. Gubler, M. Slaski, G.G. Scherer, A. Wokaun
Novel polymer electrolyte fuel cell membranes: Preparation, characterization, and fuel cell tests
Europolymer Conference, Gargnano, Italy, June 1-5, 2008.

E. Weingartner, U. Baltensperger
GAW related climate relevant aerosol research at Jungfraujoch
GAW-CH, Landesausschusssitzung, Zürich, October 23, 2008.

Intercomparison of 6 different HTDMAs
European Aerosol Conference, Thessaloniki, Greece, August 24-29, 2008.

Study of aerosol from wood burning versus other sources
(AEROWOOD) Using a Multiwavelength Aethalometer
Aerosol & Atmospheric Optics: Visual Air Quality and Radiation

E. Weingartner, P. Zieger, R. Schmidhauser, U. Baltensperger
Effects of relative humidity on aerosol light scattering
GEOmon Act.3 meeting, Lund, Schweden, October 20, 2008.

A. Wokaun
Energien nach dem Peak Oil – Träume und Realität
A. Wokaun
Potentiale von Effizienzmassnahmen und erneuerbaren Energien
Informationsveranstaltung für National- und Ständerat, Bern, December 2 and 9, 2008.

M. Zaglio
Parameter extraction from experimental data using multiparameter optimization algorithms
POSTERS

R. Bader¹, P. Coray, S. Hausener¹, I. Hischier¹, G. Maag¹, T. Melchior¹, N. Piatkowski¹
4th SOLLAB Doctoral Colloquium, CIEMAT-PSA, Spain, September 10-12, 2008.
¹ ETH Zürich

I. Barmpadimos
Evaluation and intercomparison of meteorology-chemistry models in Po basin, Italy

M.H. Bayer, A. Wokaun, G.G. Scherer, I.A. Schneider
2D impedance model for low humidity PEFCs
59th Annual Meeting of the International Society of Electrochemistry, Seville, Spain, September 7-12, 2008.

M.H. Bayer, A. Wokaun, G.G. Scherer, I.A. Schneider
A 2-dimensional ac impedance model for polymer electrolyte fuel cells
214th Meeting of The Electrochemical Society, Honolulu, Hawaii, USA, October 12-17, 2008.

H. Ben youcef, S. Alkan-Gürsel, L. Gubler, A. Wokaun, G.G. Scherer
Effect of crosslinker concentration on performance and properties of radiation grafted ETFE based membranes
Advances in Polymer Science and Technology, New Delhi, India, January 28-31, 2008.

H. Ben youcef, S. Alkan-Gürsel, L. Gubler, A. Wokaun, G.G. Scherer
Radiation grafted ETFE based membranes: Properties, fuel cell performance, and degradation analysis
Europolymer Conference, Gargnano, Italy, June 1-5, 2008.

J. Bernard, F.N. Büchi
Fuel cell hybrid drivetrain design tool for fuel economy optimization

A. Bodi, M. Johnson, T. Gerber
A new VUV beamline at the Swiss Light Source
Gordon Research Conferences, Photoions, Photoionization & Photodetachment, Barga (LU), Italy, January 27 – February 1, 2008.

A. Bodi, Z. Gengeliczki¹, B. Hornung¹, B. Sztáray¹,², T. Baer²
Bonding, H-transfer and photodissociation pathways in energy-selected X(CH₃)₃⁺ (X = N, P, As) – A TPEPICO study
Gordon Research Conferences, Photoions, Photoionization & Photodetachment, Barga (LU), Italy, January 27 – February 1, 2008.
¹ Institute of Chemistry, Eötvös University, Budapest, Hungary
² Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA

A. Bodi, M. Johnson, T. Gerber
iPEPICO Experiments @ SLS

M. Brandenberger, M. Schubert, J.W. Regler, A. Haiduc, Ch. Ludwig, F. Vogel
SunChem – Bio-Synthetic Natural Gas from Microalgae

M. Casapu, O. Kröcher, M. Elsener
Screening of doped MnOₓ–CeO₂ catalysts for low-temperature NO-SCR

D. Cericola, P. Ruch, R. Kötz, P. Novák, A. Wokaun
Towards lithium ion battery and electrochemical double layer capacitor hybridization
S.Y. Chew, T.J. Patey, R. Büchel¹, J. Wang², S.E. Pratsinis¹, H.K. Liu², P. Novák
LiMn₂O₄ thin films synthesized via an in situ annealing-assisted flame spray deposition method
14th Int. Meeting on Lithium Batteries, Tianjin, China, June 22-28, 2008.
¹ ETH Zürich
² University of Wollongong, Australia

J. Cozic, B. Verheggen, E. Weingartner, U. Baltensperger, S. Mertes, D.J. Cziczo, S.J. Gallavardin,
Partitioning of aerosol particles in mixed-phase clouds
International conference on clouds and precipitation, Cancun, Mexico, July 7-11 2008.

I. Czekaj, O. Kröcher, G. Piazzesi
Hydrolysis of isocyanic acid over the TiO₂ (Anatase): DFT calculations, DRIFT spectroscopy and kinetic studies
– XL Annual Polish Conference on Catalysis “Catalysis for Society”, ICSC PAS, Cracow, Poland,
– 7th International Workshop on Catalytic Combustion, Lake of Zürich, Switzerland,
 September 29 – October 1, 2008.

I. Czekaj, F. Loviat, J. Wambach, A. Wokaun
Nickel particles behaviour at the alumina support: DFT modelling and XPS studies of model catalyst
CAMD Summer School, Electronic Structure Theory and Materials Design, Lyngby, Denmark,
August 18-29, 2008.

I. Czekaj, F. Loviat, J. Wambach, A. Wokaun
Nickel deposition on γ-Al₂O₃. Modelling of metal particles behaviour at the support
Swiss Chemical Society Fall Meeting, University of Zürich, September 11, 2008.

S.M. Dockheer, A.S. Domazou¹, L. Gubler, G.G. Scherer, W.H. Köppenol¹, A. Wokaun
Reaction of the OH with model molecules representing a polymer membrane used in PEMFCs
Swiss Chemical Society Fall Meeting, Zürich, September 11, 2008.
¹ ETH Zürich

J. Dommen, A. Metzger, K. Gaeggeler, Y. Elshorbany, J. Kleffmann
Increased HONO formation in smog chamber photo-oxidation experiments of 1,3,5 trimethylbenzene
Nitrous acid: Tropospheric Chemistry, Measurement Methods and Future Directions, Wuppertal, Germany,
March 3-5, 2008.

W. Durisch, J.-C. Mayor, K.-H. Lam¹, S. Stettler²
Efficiency and annual output of a monocrystalline module under actual operating conditions
¹ University of Hong Kong, China
² Enecolo AG, Mönchaltorf

A. Foelske-Schmitz, P. Ruch, R. Kötz
Intercalation and film formation on HOPG in supercapacitor electrolyte – an x-ray photoelectron
spectroscopy and atomic force microscopy study

Trace elements in hourly ambient aerosol samples determined with synchrotron XRF
European Conference on X-Ray Spectrometry, Cavtat, Dubrovnik, Croatia, June 16-20, 2008.

Wood burning emissions in an Alpine valley: Measurements of oxygenated volatile organic compounds,
hydrocarbons and organic acids
EGU General Assembly, Vienna, Austria, April 13-18, 2008.

A. Gaschen, M. Kalberer, J. Dommen, J. Duplissy, U. Baltensperger
Quantification of peroxides in secondary organic aerosols by UV-VIS photometry
EGU General Assembly, Vienna, Austria, April 13-18, 2008.
Y. Ghermay, J. Mantzaras, R. Schaeren
Hydrogen catalytic precombustor
7th Int. Workshop on catalytic Combustion (IWCC7), Pfäffikon, September 29 – October 1, 2008.

D. Goers1, M.E. Spahr1, A. Leone1, W. Märkle, S.H. Ng, P. Novák
Graphite negative electrode materials for power oriented lithium-ion batteries
14th Int. Meeting on Lithium Batteries, Tianjin, China, June 22-28, 2008.
1 TIMCAL SA, Bodio

L. Gubler, G.G. Scherer
Aging phenomena in radiation grafted fuel cell membranes

L. Gubler, M.M. Menamparambath, G.G. Scherer
Comprehensive durability characterization of radiation grafted fuel cell membranes
International Workshop on Accelerated Testing in Fuel Cells, Ulm, Germany, October 6-7, 2008.

Hygroscopic growth and cloud condensation nuclei activity of secondary organic aerosol formed through photo-oxidation of alpha-pinene

M. Gysel, G.B. McFiggans, H. Coe
New approach for inversion of tandem differential mobility analyser measurements

S. Haussener1, J. Petrasch1, H. Friess1, W. Lipiński1, A. Steinfeld
Direct simulations of radiative heat transfer in porous media
1 ETH Zürich

S. Heiroth, T. Lippert, A. Wokaun, M. Döbeli1, J.L.M. Rupp2, B. Scherrer2, R. Tölke2, L.J. Gauckler2
Microstructural and compositional control in thin film deposition of oxide ion conductors by laser ablation
1 ETH Zürich and PSI
2 ETH Zürich

S. Heiroth, C.W. Schneider, A. Wokaun, M. Döbeli1, M.H. Aguirre2, R. Robert2, A. Weidenkaff2, T. Lippert
Thermoelectric Ni-doped rare earth cobaltate thin films by PRCLA
1 ETH Zürich and PSI
2 EMPA Dübendorf

S. Heiroth, T. Lippert, A. Wokaun
Laser ablation & thin film deposition of yttria-stabilized ZrO2
CCMX 2nd annual meeting, Bern, April 2008.

Investigation of primary and secondary aerosols from wood combustion with online aerosol mass spectrometry
European Aerosol Conference, Thessaloniki, Greece, August 24-29, 2008.

M. Johnson, A. Bodi, T. Gerber
VUV Beamline @ SLS
Latsis Conference, ETH Zürich, September 6-10, 2008.
J. Judex, S.M.A. Biollaz, P. Jansohn, J.-L. Hersener
Conceptual analysis for biomass co-fired Natural gas Combined Cycles
16th European Biomass Conference and Exhibition, Valencia, Spain, June 2-6, 2008.

Z. Juranyi, L. Besnier, J. Cozic, N. Perron, E. Weingartner, U. Baltensperger
Measurement at low carbon concentration with a semi-continuous OEC therm-optical analyzer
12th ETH-Conference on Combustion Generated Nanoparticles, Zürich, June 23-25, 2008.

Cloud forming potential of secondary organic aerosol
International Conference on Clouds and Precipitation (ICCP2008), Cancun, Mexico, July 7-11, 2008.

Z. Juranyi, M. Gysel, E. Weingartner, P. DeCarlo, M. Heringa, R. Chirico, U. Baltensperger
Measuring and modeling the CCN concentration at the Alpine site Jungfraujoch

L. Kammermann, H. Herich, D.J. Cziczo, M. Gysel, T. Holst, A. Arneth, E. Weingartner, U. Lohmann,
U. Baltensperger
Hygroscopy and CCN activation behavior of a remote aerosol: First results from a campaign in Northern Sweden
European Aerosol Conference, Thessaloniki, Greece, August 24-29 2008.

L. Kammermann, H. Herich, D.J. Cziczo, M. Gysel, T. Holst, A. Arneth, E. Weingartner, U. Lohmann,
U. Baltensperger
Hygroscopy and CCN activation behavior of atmospheric aerosols

K. Kaur1, D.P. Banks1, R. Gazia1, C. Grivas1, R. Fardel2, M. Nagel3, T. Lippert, R.W. Eason1
Femtosecond laser-induced forward transfer of thin films using a triazene polymer sacrificial layer and an active carrier
1 University of Southampton, UK
2 EMPA Dübendorf and PSI
3 EMPA Dübendorf

J. Keller, A. Prévôt, A.F. Béguin, V. Jutzi, C. Ordonez
Trends of ozone in Switzerland from 1992 to 2007: observations at air quality stations of 3 monitoring networks corrected for meteorological variability
IGAC 10th International Conference. Bridging the scales in Atmospheric Chemistry: Local to Global, Annecy, France, September 7-12, 2008.

Resonant femtosecond two color UV-FWM spectroscopy of H2CO
Latsis-Symposium "Intramolecular Dynamics, Symmetry and Spectroscopy", ETH Zurich, September 6-10, 2008.

Spectral effects in dispersed off-resonant fs-transient gratings

High sensitivity of an alpine isotope tree-ring series to temperature and precipitation
– Joint European Stable Isotope User Meeting (JESIUM), Toulon, France, August 31 - September 5, 2008.

A. Kress, M. Saurer, R. Siegwolf, H. Bugmann
An alpine isotope tree-ring series
O. Kröcher, M. Elsener, D. Nicosia, I. Czekaj
Chemical deactivation of V₂O₅/WO₃–TiO₂ SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution
5th International Congress on Environmental Catalysis, Belfast, Northern Ireland, August 31 – September 3, 2008.

O. Kröcher, K. Tikhomirov, M. Elsener, M. Widmer, A. Wokaun
Manganese based materials for diesel exhaust SO₂ traps
5th International Congress on Environmental Catalysis, Belfast, Northern Ireland, August 31 – September 3, 2008.

O. Kröcher, M. Elsener
New insights into the reactions between NH₃, NO and NO₂ over Fe-ZSM5
5th International Congress on Environmental Catalysis, Belfast, Northern Ireland, August 31 – September 3, 2008.

F. Loviat, I. Czekaj, J. Wambach, A. Wokaun
Experimental and theoretical investigations of Ni-based model catalysts: Nickel deposition on γ-Al₂O₃ Catalysis for Society, XL Annual Polish Conference on Catalysis, ICSC PAS, Cracow, Poland, May 11-15, 2008.

W. Märkle, J.-F. Colin, D. Goers¹, M.E. Spahr¹, P. Novák
Investigation of graphites at high potentials with synchrotron based in situ XRD
MRS Fall Meeting 2008, Boston, USA, December 1-5, 2008.
¹ TIMCAL SA, Bodio

I. Marozau, A. Shkabko¹, G. Dinescu², M. Döbeli³, T. Lippert, D. Logvinovich¹, M. Mallepelli², C.W. Schneider, F. Simmen, A. Weidenkaff¹, A. Wokaun
Pulsed laser deposition and characterisation of nitrogen-substituted SrTiO₃ thin films
¹ EMPA Dübendorf
² National Institute for Lasers, Plasma and Radiation Physics, Romania
³ ETH Zürich and PSI

I. Marozau, A. Shkabko¹, T. Lippert, M. Döbeli³, G. Dinescu², D. Logvinovich¹, M. Mallepelli², F. Simmen, A. Weidenkaff¹, A. Wokaun
Pulsed laser deposition of nitrogen-doped SrTiO₃:N thin films
¹ EMPA Dübendorf
² National Institute for Lasers, Plasma and Radiation Physics, Romania
³ ETH Zürich and PSI

M. Mehring, O. Kröcher, M. Elsener, A. Wokaun
Development of a TGA-FTIR system as R&D tool in exhaust gas aftertreatment
12th ETH-Conference on Combustion Generated Nanoparticles, Zürich, June 23-25, 2008.

M. Meisinger, A. Schulenburg¹, F. Merkt¹, P. Radi
Coriolis coupling in the 1A2(3px) Rydberg State of Formaldehyde
Latsis-Symposium "Intramolecular Dynamics, Symmetry and Spectroscopy.", ETH Zürich, September 6-10, 2008.
¹ ETH Zürich

S.H. Ng, Ph. Bernardo, N. Tran, M.E. Spahr¹, D. Goers, C. Vix-Guterl², P. Novák
Correlations between surface properties of graphite and the first cycle irreversible capacity in lithium-ion batteries
¹ TIMCAL SA, Bodio
² CNRS UPR, Mulhouse, France
S.H. Ng, F. La Mantia, W. Märkle, M.E. Spahr1, C. Vix-Guterl2, P. Novák
The influence of electrode density on the electrochemical performance of highly crystalline graphites in Li-ion batteries
1 TIMCA SA, Bodio
2 CNRS UPR, Mulhouse, France

T.J. Patey, A. Hintennach, P. Novák
How to make electrodes with nanoparticles better
14th Int. Meeting on Lithium Batteries, Tianjin, China, June 22-28, 2008.

T.J. Patey, R. Büchel1, S.E. Pratsinis1, P. Novák
Flame co-synthesis of nano-LiMn2O4 and carbon black
14th Int. Meeting on Lithium Batteries, Tianjin, China, June 22-28, 2008.
1 ETH Zürich

Optimised separation of OC and EC for radiocarbon-based source apportionment of carbonaceous aerosol

N. Perron, S. Szidat, A.H.S. Prévôt, M. Ruff, S. Fahrni, U. Baltensperger
Improved separation of OC and EC for radiocarbon-based source apportionment of carbonaceous aerosol
EUCAARI annual meeting, Helsinki, Finland, November 17-21, 2008.

P. Radi, M. Tulej, M. Meisinger, P. Bornhauser, A. Walser, T. Gerber, D. Kozlov1
Single and double-resonance spectroscopy by applying four-wave mixing techniques
Latsis-Symposium "Intramolecular Dynamics, Symmetry and Spectroscopy." ETH Zürich,
September 6-10, 2008.
1 General Physics Institute, Moscow, Russia

Elemental analysis of ambient aerosol samples with synchrotron XRF
Workshop on X-ray absorption spectroscopy and advanced XAS techniques, PSI Villigen, October 7-8, 2008.

A. Savouchkina, A. Foelske-Schmitz, R. Kötz, G.G. Scherer, A. Wokaun
Degradation mechanisms of electro-catalysts used in polymer electrolyte fuel cells

Aerosol light scattering at high relative humidity

C.W. Schneider, S. Thiel1, C. Chen2, G. Hammerl1, B. Kießig1, C. Richter1, J. Levy2, J. Mannhart1
Micro- and nanolithography of highly mobile electron-gases formed at interfaces in oxide heterostructures
1 Uni Augsburg, Germany
2 University of Pittsburgh, PA, USA

M. Schubert, M. Brandenberger, Ch. Ludwig, F. Vogel
Methangewinnung durch heterogen katalysierte, hydrothermale Vergasung nasser Biomasse

M. Schubert, J. W. Regler, M. Brandenberger, Ch. Ludwig, F. Vogel
Salt Separation as a crucial step in continuous catalytic hydrothermal gasification of wet biomass to SNG
16th European Biomass Conference and Exhibition, Valencia, Spain, June 2-6, 2008.

H. Schulenberg, E. Müller1, G. Kheshlashvili2, T. Roser, H. Bönnemann2, A. Wokaun, G.G. Scherer
Heat-treated PCl2O3 nanoparticles as catalyst for oxygen reduction
Faraday Discussion 140: Electrocatlysis – Theory and Experiment at the Interface
University of Southampton, UK, July 7-9 2008.
1 FZK, Eggenstein-Leopoldshafen, Germany
2 ETH Zürich
L.O. Schunk, D. Gstoehl, A. Meier, A. Steinfeld
Solar thermal dissociation of ZnO for H₂ production via a 2-step water splitting cycle

B. Schwanitz, H. Schulenburg, A. Wokaun, G.G. Scherer
Characterization of Pt and Pt/C (co)-sputtered electrodes for polymer electrolyte fuel cells

B.C. Seyfang, P. Boillat, G.G. Scherer, T. Lippert, A. Wokaun
Micro-structuring of glassy carbon for micro polymer electrolyte fuel cells: Ns-shadowgraphy during laser ablation

O. Sidorova, R. Siegwolf, M. Saurer, A.V. Kirdyanov, A. Shashkin
Climatic changes in Central Siberia inferred from tree ring width and stable isotope data for the last century

O.V. Sidorova, R.T.W. Siegwolf, M. Saurer, E.A. Vaganov
Response of Siberian larch trees to major volcanic eruptions reflected in tree ring and isotope data

Properties of aged combustion aerosols. First results from smog chamber experiments
12th ETH-Conference on Combustion Generated Nanoparticles, Zürich, June 23-25, 2008.

Hygroscopic growth of pure secondary organic aerosols (SOA) and aged diesel soot particles
European Aerosol Conference, Thessaloniki, Greece, August 24-29, 2008.

M. Tulej, M. Meisinger, G. Knopp, A.M. Walser, T. Gerber, P.P. Radi
Degenerate and two-color resonant four-wave mixing of C₂ in a molecular beam

SunChem – A smart strategy to produce biofuels and capture CO₂ using an algae-based process
Smart Energy Strategies, Meeting the Climate Change Challenge, ETH Zürich, September 8-10, 2008.

F. Wallasch, L. Gubler, M. Slaski, G.G. Scherer, A. Wokaun
Advanced fuel cell membranes: Graft copolymerization of AMS and MAN
Advances in Polymer Science and Technology, New Delhi, India, January 28-31, 2008.

F. Wallasch, L. Gubler, M. Slaski, G.G. Scherer, A. Wokaun
Advanced fuel cell membranes: Graft copolymerization of AMS and MAN
Europolymer Conference, Gargnano, Italy, June 1-5, 2008.

F. Wallasch, L. Gubler, G.G. Scherer, A. Wokaun
Fuel cell test results of membranes prepared via a pre-irradiation / graft polymerization / sulfonation sequence
Europolymer Conference, Gargnano, Italy, June 1-5, 2008.

F. Wallasch, L. Gubler, M. Slaski, G.G. Scherer, A. Wokaun
Membranes for polymer electrolyte fuel cells: The pre-irradiation / graft polymerization / sulfonation sequence
7th PSI Summer School on Condensed Matter Research, Zuoz, August 16-22, 2008.

F. Wallasch, L. Gubler, M. Slaski, G.G. Scherer, A. Wokaun
Advanced fuel cell membranes: Graft copolymerization of AMS and MAN
59th Annual Meeting of the International Society of Electrochemistry, Seville, Spain, September 7-12, 2008.
F. Wallasch, H. Ben youcef, M. Slaski, L. Gubler, D. Henkensmeier, A. Wokaun, G.G. Scherer
Improved radiation grafted membranes for PEFC

F. Wallasch, L. Gubler, M. Slaski, A. Wokaun, G.G. Scherer
Advanced polymer electrolyte fuel cell membranes prepared by graft copolymerization of AMS and MAN
IRAP2008, 8th International Symposium on Ionizing Irradiation and Polymers
Angra Dos Reis, Brasil, October 12-17, 2008.

F. Wallasch, L. Gubler, M. Slaski, A. Wokaun, G.G. Scherer
Advanced polymer electrolyte fuel cell membranes: Fuel cell tests and post mortem analysis
IRAP2008, 8th International Symposium on Ionizing Irradiation and Polymers
Angra Dos Reis, Brasil, October 12-17, 2008.

E. Weingartner, R. Schmidhauser
Aerosol Light Scattering at High Relative Humidity

H.C. Zellweger, A. Wokaun, G.G. Scherer, I.A. Schneider
AC impedance based characterization of CO₂ separation membranes
Europolymer Conference, Gargnano, Italy, June 1-5, 2008.

P. Ziegler, R. Schmidhauser, M. Gysel, L. Kammermann, E. Weingartner, U. Baltensperger
Effects of relative humidity on aerosol light scattering
\- EGU General Assembly, Vienna, Austria, April 14-19, 2008.
\- Light Scattering: Mie and More - Commemorating 100 Years Mie’s 1908 Publications, Forschungszentrum Karlsruhe, Germany, July 3-4, 2008.
PATENT APPLICATIONS

O. Kröcher, M. Elsener
A method and a system for a treatment of a NO₂-containing exhaust gas

CONFERENCES, WORKSHOPS & EXHIBITIONS

S. Andreani-Aksoyoglu
International Symposium on Air Quality Management at Urban, Regional and Global Scales
Scientific Advisor

W. Dürisch
World Renewable Energy Congress
Steering Committee Member

M. Furger
Jahrestagung der Schweizerischen Gesellschaft für Meteorologie

P. Jansohn
Forschungsprogramm “Kraftwerk 2020” (Jahrestagung)
Bundesamt für Energie (BFE), Bern, Juni 26, 2008.
Organisator/Programmeiter

R. Kötz
59th Annual Meeting of the International Society of Electrochemistry
Seville, Spain, September 7-12, 2008.
Co-Organizer and Chair of Symposium 8b, Electrochemical Energy Conversion and Storage

R. Kötz
ESSCAP 2008, 3rd European Symposium on Supercapacitors and Applications
Roma, Italy, November 6-7, 2008.
Member of Scientific Committee

S. Lienin, S. Perret, S. Ulli-Beer
Strategie-Workshop
Erlebnisraum Mobilität, Basel, September 17, 2008.
Organizers

Ch. Ludwig
REWAS 2008, Global Symposium on Recycling, Waste Treatment and Clean Technology
Cancun, Mexico, 2008.
Co-chair

I. Mantzaras, P. Jansohn, A. Wokaun
IWCC7 – 7th International Workshop on Catalytic Combustion
Seedamm Plaza, Pfäffikon, September 29 – October 1, 2008.
Veranstalter/Gastgeber

J. Mantzaras
Int. Symposium on Combustion
Chairman of committee in heterogeneous combustion and materials synthesis section

A. Meier
European Energy Research Alliance (EEA) Workshop on Concentrated Solar Power (CSP)
PSI Villigen, December 4, 2008.
Organizer
M. Nachttegaal
Workshop on X-ray absorption spectroscopy and advanced techniques
PSI Villigen, October 6-10, 2008.
Organiser

P. Novák
59th Annual Meeting of the International Society of Electrochemistry
Seville, Spain, September 14-19, 2008.
Organizing Committee

P. Novák
IMLB-14, 14th Int. Meeting on Lithium Batteries
Tianjin, China, June 22-28, 2008.
Int. Scientific Committee

A.S.H. Prévôt, J. Staehelin, M. Sosonkin
Summer school on Atmospheric Chemistry
Kiev, Ukraine, September 16-18, 2008.
Organizing Committee

A.S.H. Prévôt, J. Staehelin, O. Tarasova
Summer school on Atmospheric Chemistry
Borok, Russia, May 19-21, 2008.
Organizing Committee

A.S.H. Prévôt, H. Gygax, J. Staehelin
Ozon und Sommersmog, Fachtagung zum Stand der Forschung und zur Reduktionsstrategie
Bern, October 30, 2008.
Organizing Committee

P.P. Radi
European Conference on Nonlinear Optical Spectroscopy
Steering Committee

G.G. Scherer
Advances in Polymer Science and Technology - Asian Polymer Association
New Delhi, India, January 28-31, 2008.
Int. Advisory Board

G.G. Scherer
59th Annual Meeting of the International Society of Electrochemistry
Seville, Spain, September 7–12, 2008.
Co-Organizer and Chair of Symposium 8b, Electrochemical Energy Conversion and Storage

G.G. Scherer, R. Kötz
Electrochemical Materials Processing
24th One-Day-Symposium, PSI Villigen, May 7, 2008.
Organizers

A. Steinfeld
2nd IASTED Africa Conference on Power and Energy Systems, Botswana
Scientific Committee

A. Steinfeld
Smart Energy Strategies, Zürich
Scientific Committee

S. Ulli-Beer, M. Müller
Projekt-Workshop DeeR - Diffusionsdynamik energieeffizienter Renovationen
Aktiersanalyse inkl. Workshop Bericht, Zürich, Juni 20, 2008.
Organizers
S. Ulli-Beer, S. Grösser, S. Bruppacher
Projekt-Workshop DeeB – Diffusionsdynamik energieeffizienter Bauten. Entwicklung Effizienzsteigerung im Neubau
Organizers

A. Wokaun
iamf EET-2008, Forum focused on the mobility of the future, Geneva, March 11-13, 2008
Member of Scientific Committee

A. Wokaun
Energy Com: Conference Moderation
Swiss Re Centre for Global Dialogue, Rüschlikon, December 5, 2008.
MEMBERSHIPS IN EXTERNAL COMMITTEES

Urs Baltensperger
Umweltforschung der Forschungszentrum Jülich GmbH
Wissenschaftlicher Beirat, Vorsitzender
Wissenschaftlich-Technisches Ausschuss Mitglied

U. Baltensperger
sc nat Commission, Atmospheric Chemistry and Physics
President

U. Baltensperger
Scientific Advisory Group for Aerosol within Global Atmosphere Watch
Chairman

U. Baltensperger
ESF Programme, Interdisciplinary Tropospheric Research: from the Laboratory to Global Change (INTROP)
Scientific Steering Committee

U. Baltensperger
Atmospheric Chemistry and Physics
Editorial Board

U. Baltensperger
COST633, Particulate matter: Properties related to health effects
Management committee member

U. Baltensperger
Canadian Network for the Detection of Atmospheric Change (CANDAC)
Board of Directors

U. Baltensperger
Atmospheric Measurement Techniques
Editorial Board

U. Baltensperger
Programme Advisory Board of APPRAISE (Aerosol Properties, Processes And InfluenceS on the Earth ’s climate)
Chairman

J. Barmpadimos
COST 728-European Cooperation in the field of Scientific and Technical Research
Delegate of Switzerland

W. Durisch
Prüfungskommission für die Lehrlinge des Laborantenberufes des Kantons Zürich
Prüfungsexperte

W. Durisch
International Energy Foundation, IEF
Advisory Committee Member and Under Secretary Science and Technology

M. Furger
Schweizerische Gesellschaft für Meteorologie
President

M. Furger
SNC-IUSS - Swiss National Committee of the International Union of Geodesy and Geophysics
National Correspondent of the International Association of Meteorology and Atmospheric Sciences (IAMAS), 2008.
Member
F. Gassmann
Naturama, Aarau
Vice President of Geschäftsführung

F. Gassmann
Naturforschende Gesellschaft in Zürich
Member of editing committee of Vierteljährsschrift, Neujahrsblatt and treasurer of the Society

L. Gubler
Prüfungskommission Physiklaboranten, Kanton Zürich
Experte

P. Jansohn
European Turbine Network (ETN): Conference Advisory Committee
Member

P. Jansohn
International Energy Agency (IEA), Implementing Agreement on Energy Conservation and Emission Reduction in Combustion
Collaborative Task Leader “Gas Turbine Combustion”

P. Jansohn
ProcessNet Fachgemeinschaft „Sustainable Production, Energy and Resources“, Fachausschuss „Hochtemperaturtechnik“
berufenes Mitglied

P. Jansohn
European Technology Platform – Zero Emission Fossil Fuel Power Plants (ETP-ZEP), Taskforce Technology and Government Group
Member

R. Kötz
Electrochimica Acta
Advisory Board

R. Kötz
International Society of Electrochemistry
Publications Committee

T. Lippert
E-MRS
Board of Delegates

T. Lippert
E-MRS
Member of the Executive Committee

T. Lippert
Journal of Laser Micro/Nanoengineering (JLMN)
Co-Editor

T. Lippert
Laser Chemistry
Associate Editor

T. Lippert
Materials
Editorial Board
Ch. Ludwig
BFE-Projekt: Bewertungsmethode für Technologien zur Nutzung von biogenen Abfällen
Experte und Mitglied der Begleitgruppe

A. Meier
International Energy Agency SolarPACES
Operating Agent

A. Meier
SOLLAB – Alliance of European Laboratories on Solar Thermal Concentrating Systems
Steering Committee

P. Novák
International Society of Electrochemistry
Vice President

P. Novák
The Electrochemical Society, Inc.
Member of the Technology Award Committee of the Battery Division

A.S.H. Prévôt
sc nat Commission, Atmospheric Chemistry and Physics
Member

A.S.H. Prévôt
Atmospheric Chemistry and Physics
Editorial Board

A.S.H. Prévôt
Atmospheric Measurement Techniques
Editorial Board

P.P. Radi
Journal of Raman Spectroscopy
Guest-Editor

M. Sauer
Association for Tree-Ring Research
Advisory Council

M. Sauer
Dendrochronologia
Associate Editor

G.G. Scherer
Fuel Cell Handbook
Advisory Board

G.G. Scherer
European Fuel Cell Forum
Advisory Board

R.T.W. Siegwolf
Tree Physiology
Editorial Review Board

R.T.W. Siegwolf
German Association for Stable Isotope Research (GASIR)
Stellvertretender Vorsitzender der Arbeitsgemeinschaft

A. Steinfeld
Director of Research and PhD Studies
Department of Mechanical and Process Engineering, ETH Zürich
A. Steinfeld
SOLLAB – Alliance of European Laboratories on Solar Thermal Concentrating Systems
Steering Committee

A. Steinfeld
IMDEA-Energia, Spain
Scientific Council

A. Steinfeld
TMS (Minerals, Metals & Materials Society)
Member – Energy Committee

R.P.W.J. Struis
DGM Fachausschuss Strahllinien
Member

S. Stucki
BMBF Programm BioEnergie 2020
Gutachter

S. Stucki
EU Technology Platform Biofuels, WG4, Sustainability
Member

S. Ulli-Beer
System Dynamics Review
Associated editor

E. Weingartner
Fachgruppe zum Thema: Partikelzählung / Partikelgrössenanalyse
Ziel: Erarbeiten von Empfehlung zum Einsatz von Partikelzählern und Partikelgrössenanalysatoren bei Aerosolen
Member

Ch. Wieckert
Hydropole-Swiss Hydrogen Association
Board Member

A. Wokaun
Schweiz. Akademie der Technischen Wissenschaften (SATW)
Einzelmitglied

A. Wokaun
Helmholtz-Gemeinschaft deutscher Forschungszentren
Mitglied der Senatskommission

A. Wokaun
European Climate Forum
Member of Council

A. Wokaun
novatlantis – Nachhaltigkeit im ETH-Bereich
Mitglied des Leitungsausschusses

A. Wokaun
Studiengruppe Energieperspektiven
Präsident
A. Wokaun
CORE
Mitglied

A. Wokaun
Advisory Group on Energy (AGE), European Union
Mitglied

A. Wokaun
Competence Center Energy and Mobility (CCEM)
Chairman of Steering Committee
AWARDS

D. Cericola
Master Thesis
Materiali carboniosi e liquidi ionici per supercapacitori a doppio strato
Premio di Laurea "PhotoAnalytical srl " of the Divisione di Elettrochimica della Societa’ Chimica Italiana

I. Czekaj, F. Loviat, J. Wambach, A. Wokaun
Nickel deposition on γ-Al₂O₃: modelling of metal particles behaviour at the support
SCS Swiss Chemical Society Fall Meeting, University of Zürich, September 11, 2008.
Best Poster Award

P. Jansohn
Member of the Year
European Turbine Network (ETN), Brussels, Belgium, September 2008

M. Kalberer
Marian Smoluchowski Award 2008

H. Kuhn
PhD-Thesis
In situ Charakterisierung von Polymer-Elektrolyt Brennstoffzellen mittels elektrochemischer Impedanzspektroskopie
ABB Forschungspreis 2008

P. Ruch
In situ X-ray diffraction of the intercalation of (C₂H₅)₄N⁺ and BF₄⁻ into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes
The Oronzio and Niccolò De Nora Foundation Young Author Prize 2008 of the International Society of Electrochemistry

M. Schubert, J.W. Regler, M. Brandenberger, Ch. Ludwig, F. Vogel
Salt Separation as a crucial step in continuous catalytic hydrothermal gasification of wet biomass to SNG
Poster Award in the topic Biofuels, 16th European Biomass Conference and Exhibition, Valencia, Spain, June 2-6, 2008.

B.C. Seyfang, P. Boillat, G.G. Scherer, T. Lippert, A. Wokaun
Micro-structuring of glassy carbon for micro polymer electrolyte fuel cells: Ns-shadowgraphy during laser ablation
Best Poster Award
LIST OF PUBLICATIONS 2008

Large Research Facilities and PSI-XFEL Project

UNIVERSITY LEVEL AND OTHER TEACHING

A. Adelmann
Statistics and Probability theory
University of Technology Economics and Business Administration Zürich, Switzerland
Spring Semester 2008

M. Böge
Closed Orbit Correction
CERN Accelerator School on Beam Diagnostics, Dourdan, France
28 May - 6 June 2008

M. Böge
Closed Orbit Feedback
CERN Accelerator School on Beam Diagnostics, Dourdan, France
28 May - 6 June 2008

D. Kiselev
Aktuelle Experimente am Beschleuniger zur Kern- und Nukleonensruktur
University of Basel, Switzerland
Spring Semester 2008

D. Kiselev, B. Krusche
Einführung in die Kern- und Teilchenphysik
University of Basel, Switzerland
Autumn Semester 2008

J.A. Patorski
Thermographische Temperaturmessung
Paul Scherrer Institut, PSI Lehrlingsausbildung, Villigen, Switzerland
November 2008

L. Rivkin
Introduction to Particle Accelerators
EPFL Lausanne, Switzerland
Autumn Semester 2008

L. Rivkin
Synchrotron Light, Electron Dynamics with Radiation and Synchrotron Light Sources
CERN Accelerator School, Frascati, Italy
2-14 November 2008

L. Rivkin
Accelerator Physics (emphasis on LHC and ILC/CLIC)
CHIPP PhD Winter School, Näfels, Switzerland
13-20 January 2008
J.M. Schippers
Accelerators for proton therapy
PSI Winterschool on proton therapy, Bad Zurzach, Switzerland
January 2008

J.M. Schippers
The SC-cyclotron at PSI and other accelerators for proton therapy
Joint university Accelerator school (JUAS), PSI, Villigen, Switzerland
6 March 2008

V. Schlott
Femto-Second Diagnostics
CERN Accelerator School on Beam Diagnostics, Dourdan, France
28 May - 6 June 2008

M. Schneider
Grundlagen der Elektronik
Technikerschule HF, Zürich, Switzerland
Autumn Semester 2007/08, Spring Semester 2008

Experimental Methods of Particle Physics
Joint lecture University and ETH Zürich, Switzerland
Autumn Semester 2008/09

PEER REVIEWED PAPERS

A. Andersson, M. Böge, A. Lüdeke, V. Schlott, A. Streun
Determination of a small vertical electron beam profile and emittance at the Swiss Light Source

M. Calviani, P. Cennini, D. Karadimos, V. Ketlerov, V. Konovalov, W. Furman, A. Goverdowski, V. Vlachoudis, L. Zanini, the n_TOF Collaboration
A fast ionization chamber for fission cross section measurements at n_TOF

J. Chrin, T. Schmidt, A. Streun, D. Zimoch
Local correction schemes to counteract insertion device effects

S. Dementjev, F. Groeschel, N. Jekabsons
Experience of Electromagnetic pumps Operation in Swiss Spallation Neutron Source
Magnetohydrodynamics, 44, No. 3, 279 (2008)

The MEGAPIE-TEST project: Supporting research and lessons learned in first-of-a-kind spallation target technology
Nuclear Engineering and Design, 238, Issue 6, 1471, Copyright © Elsevier B.V. (2008)
Laser-Photofield Emission from Needle Cathodes for Low-Emittance Electron Beams

Validation of Monte-Carlo simulations with measurements at the ICON beam line at SINQ

B. Kalantari, T. Korhonen, A. Schiper
Tightly Synchronized Distributed Measurement and Event Triggers

B. Oswald, P. Leidenberger, C. Hafner
3-Dimensional Finite Element Time Domain Analysis of an Asymmetric Near Field Optical Probe.

J.A. Patorski, F. Groeschel
Measurement of Heat Transfer Coefficient for a Proton Beam Entry Window of a Liquid Metal Target

M.T.F. Pivi, F.K. King, R.E. Kirby, T.O. Raubenheimer, G. Stupakov, F. Le Pimpec
Sharp Reduction of the Secondary Electron Emission Yield from Grooved Surfaces

J.-Y. Raguin, K. Li, R. Bakker, A. Oppelt, M. Pedrozzi
A two-frequency RF cavity for the PSI-XFEL: Design and beam dynamics simulations
Nucl. Instr. and Meth., A 593, 125 (2008)

M. Seidel, K. Zapfe
Particle Accelerators

E. Seravalli, M. de Boer, F. Geurink, J.Huizenga, R. Kreuger, J.M Schippers, C.W.E. van Eijk, B. Vos
A scintillating gas detector for 2-D dosimetry in clinical carbon beams

E. Seravalli, M. de Boer, F. Geurink, J.Huizenga, R. Kreuger, J.M Schippers, C.W.E. van Eijk
Characterization of a scintillating GEM detector with low energy X-rays

Dispersion Characteristics of Arbitrary Periodic Structures with Rectangular Grooves

S. Tsujino, P. Beaud, E. Kirk, T. Vogel, H. Sehr, J. Gobrecht, A. Wrulich
Ultrafast electron emission from metallic nanotip arrays induced by near infrared femtosecond laser pulses

High-order harmonic wave fronts generated with controlled astigmatic infrared laser

JOSA B 25, 161 (2008)

P. van Luijk, J.M. Schippers

We need to bridge the gap between current practice in mathematical modeling and new insights obtained from radiobiology: comment on Zhou et al.

PSI Status 2008 — Developments at the 590MeV Proton Accelerator Facility

OTHER PAPERS

Large-Scale Computation at PSI, Scientific Achievements and future Requirements

PSI-Bericht 08-02, ISSN 1019-0643 (2008)

M. Dehler

Real Time Control of Beam Parameters

M. Dehler

Requirements for Tune, Coupling and Chromaticity Feedbacks for Light Sources

MEGAPIE – Irradiation Experience of the First Megawatt Liquid Metal Spallation Target

M. Humbel, A. Mezger, M. Schneider

Beam Intensity Dependent Ramping of the Amplitudes in the RF Flattop System of the PSI 590 MeV Ringcyclotron

T. Schlicher

RF Applications in Digital Signal Processing

F. Stulle, A. Adelmann, M. Pedrozzi

Conceptual Design of Bunch Compressors and Turn Around Loops for a Multi-TeV Linear Collider

L. Zanini, J.C. David, A. Yu. Konobeyev, S. Panebianco, N. Thiollière
Neutronic and Nuclear Post-Test Analysis of MEGAPIE
PSI-Bericht Nr. 08-04, ISSN 1019-0643 (2008)

L. Zanini, Y. Dai
MCNPX calculations for the STIP-IV irradiation program at PSI

CONFERENCE PROCEEDINGS

A. Andersson, M. Böge, A. Lüdeke, A. Streun
Coupling control at the SLS

A. Anghel, B. Blau, M. Daum, K. Kirch, S. Grigoriev
Cryogenic System of the Swiss Ultra-Cold Neutron Source, Refrigeration Science and Technology
Proc. 10th Cryogenic Conference, Int. Institute of Refrigeration, Prague, Czech Republic, 107 (2008)

Simultaneous extraction of two stable beams for ISAC

M. Eriksson, A. Hansson, S. Leemann, L.-J. Lindgren, M. Sjöström, E. Wallén, L. Rivkin, A. Streun
Using multi-bend achromats in synchrotron radiation sources

S. Hakobyan, L. Hovhannisyan, D. Kalantaryan, V. Tsakanov, A. Streun
The acceptance and photon beam formation in SLS FEMTO

D. Kalantaryan, G. Amatuni, V. Tsakanov, P. Beaud, G. Ingold, A. Streun
Laser–beam interaction and calculation of the sliced bunch radiation spectra for the SLS FEMTO beam line

B. Keil, S. Lehner, S. Ritt
Application of a 5 GSPS Analogue Ring Sampling Chip For Low-cost Single-shot BPM Systems

B. Keil, R. Kramert, G. Marinkovic, P. Pollet, M. Roggli
The PSI DSP Carrier (PDC) Board – a Digital Back-end For Bunch-to-bunch and Global Feedbacks In Linear Accelerators and Storage Rings

The Multi MegaWatt target station, integration of the MAFF/PIAFE fission target design
Proc. of the 3rd High-Power Targetry Workshop 2007, Bad Zurzach, Switzerland, PSI Proceedings 07-01, ISSN 1019-0643, 85 (2008)
Linear Accelerator for the PSI-XFEL FEL3 Beamline

Y. Kim, A. Andersson, M. Dach, R. Ganter, T. Garvey, C. Gough, C. Hauri, R. Ischebeck
F. Le Pimpec, M. Paralieiev, M. Pedrozzi, T. Schietinger, V. Schlott, B. Steffen, A.F. Wruilich
Low thermal emittance measurements at the PSI-XFEL low emittance gun test facility

Start-to-End simulations of the PSI 250 MeV Injector Test Facility

D. Kiselev
Activation of Targets and Accelerator Components at PSI - a Comparison of Simulation and Measurement
42nd ICFA Advanced Beam Dynamics Workshop on High-Intensity, High-Brightness Hadron Beams, Nashville, USA (2008)

F. Le Pimpec, R. Ganter, C. Gough, C. Hauri, M. Paralieiev
Comparison of high gradient achievement for different metals in dc and pulsed dc mode

A. Lüdeke
The Operation Event Logging System of the SLS

M. Paralieiev, C. Gough, S. Ivkovic
Status of 500kV Low Emittance Electron Gun Test Facility for a Compact X-ray Free Electron Laser at Paul Scherrer Institute
IEEE Power Modulator Conference, Las Vegas, NV, USA, 532 (2008)

J.A. Patorski
Planning of the COOLWETT Experiment

First measurement results of the PSI 500 kV low emittance electron source

Measurements and modeling at the PSI-XFEL 500-kV Low Emittance Electron Source

First year of operation of PSI’s new SC cyclotron and beam lines for proton therapy

Beam intensity stability of a 250 MeV SC cyclotron equipped with an internal cold cathode ion source.

M. Seidel

Operation of the High Intensity Proton Beam Facility at PSI

Influence of beam foot print on neutron production in SINQ
Proc. 3rd High-Power Targetry Workshop, Bad Zurzach, Switzerland (2007), PSI Proceedings 07-01, ISSN 1019-0643, 101 (2008)

T. Wehrli, M. Böge, E. van Garderen, J. Krempasky

Properties of X-ray beam position monitors at the Swiss Light Source

J.J. Yang, A. Adelmann, M. Humbel, M. Seidel, T.J. Zhang

Numerical study of beam dynamics in high intensity cyclotrons including neighboring bunch effects

L. Zanini, Y. Dai

MCNPX calculations for the STIP-IV irradiation program at PSI
Proc. ANS annual meeting, Nuclear Science and Technology, Anaheim, USA (2008)

L. Zanini

Synthesis, Applications to ADS and Feedback to other Tasks

L. Zanini

Activation & Radiation Damage Calculations for PIE

L. Zanini

Neutronics of a tungsten target as a future option for SINQ
Proc. 3rd High-Power Targetry Workshop, Bad Zurzach, Switzerland (2007), PSI Proc. 07-01, ISSN 1019-0643, 33 (2008)

INVITED TALKS

A. Adelmann

State of the art of high intensity simulation codes: new algorithms and methods for rings
Accelerator Modeling and Advanced Simulation (AMAS)
HB2008, Nashville, USA, 24-29 August 2008

A. Adelmann

Accelerator Modeling and Advanced Simulation (AMAS) Mission - Projects and Challenges
University of Strasbourg, France, 18 April 2008
A. Adelmann
The PSI-XFEL Project and related Program Development
ISR-6, Los Alamos National Laboratory, Los Alamos, USA, 6 August 2008

A. Adelmann
Challenges and Achievements in Computational Electromagnetics in the Context of Particle Accelerator Modeling
SIAM PP08 Atlanta, USA, 12 March 2008

M. Dehler
Low energy beam dynamics simulation for the PSI Free Electron Laser
Project ACD seminar, Stanford Linear Accelerator Center, Stanford, USA, 9 May 2008

M. Dehler
Synergies between X-band for Linear Colliders and Light Sources X-Band
RF Structure and Beam Dynamics Workshop - 44th ICFA Advanced Beam Dynamics Workshop, Daresbury, UK, 1-4 December 2008

J. Duppich
Swiss Light Source at PSI – Technical Infrastructure, Interfaces to the Building and Installation of Accelerators
ALBA – Seminar, Barcelona, Spain, 9 April 2008

J. Duppich
The first year of patient treatments at Paul Scherrer Institute using the new superconducting cyclotron Comet
Loma Linda University Medical Center, Loma Linda, Los Angeles, California, USA, 17 July 2008

J. Duppich
The first year of patient treatments at Paul Scherrer Institute using the new superconducting cyclotron Comet and beam lines of the new proton therapy facility PROSCAN
VARIANT Medical Systems, Palo Alto, California, USA, 24 July 2008

J. Duppich
The first 1.5 years of clinical operation of the SC cyclotron and the beam lines at PSI – From a parasitic user to a stand-alone facility
University of Washington, Medical Center, Seattle, Washington, USA, 6 August 2008

J. Duppich
The first 1.5 years of clinical operation of the SC cyclotron and the beam lines at PSI – From a parasitic user to a stand-alone facility
TRIUMF, Vancouver, B.C., Canada, 8 August 2008

R. Ganter
Quantum efficiency from different cathode types
Mini-Workshop on High Brightness Beam Characterisation, Zeuthen, Germany, 26-30 May 2008

R. Ganter
Photo-Field emission source for free electron laser applications
IVESC (International Vacuum Electron Source Conference), London, UK, 3-6 August 2008

M. Gaspar
Solid State RF PA. Practicality, Cost, Potentials, Feasibility, Trend and Outlook
5th CW and High Average Power RF Workshop, CERN, Geneva, Switzerland, March 2008
M. Gaspar
500 MHz Solid state Power Amplifier Design – Results of the 4 kW Prototype
12 ESLS-RF Meeting, Diamond Light Source, Didcot, UK, October 2008

C. Gough
Low Emittance Electron Source for the PSI-XFEL Project
Institute of High Current Electronics, Tomsk, Russia, 6 May 2008

R. Ischebeck
The PSI-XFEL
ESLS XVI, Cockcroft Institute, Daresbury, UK, 27 November 2008

Y. Kim
Realistic Thermal Emittance measurements at the Low Emittance Gun test facility for the PSI
XFEL Project
Mini-Workshop on High Brightness Beam Characterisation, Zeuthen, Germany,
26-30 May 2008

Y. Kim
Simple Solutions against COTR in LCLS and Design Concepts of XFEL Driving Linacs
2nd Microbunching Instability Workshop, LBNL, USA, 6-8 October 2008

Y. Kim
Microbunching Instability Experimental Plans at Coming PSI-XFEL Test Facilities
2nd Microbunching Instability Workshop, LBNL, USA, 6-8 October 2008

Y. Kim
Does Ultra-Bright Beam induce OTR Intensity Change During No Compression Periods in LCLS
Injector?
2nd Microbunching Instability Workshop, LBNL, USA, 6-8 October 2008

D. Kiselev
Activation of Targets and Accelerator Components at PSI - a Comparison of Simulation and
Measurement
42nd ICFA Advanced Beam Dynamics Workshop on High-Intensity, High-Brightness Hadron
Beams, Nashville, USA, 25-29 August 2008

B. Oswald
Time Domain Eigenmodal Analysis with the Finite Element Method Including a Surface
Impedance Boundary Condition
EUROEM 2008, European Electromagnetics. EPF Lausanne, Switzerland, 21-25 July 2008

B. Oswald
Electromagnetic fields scattered by subwavelength-sized tip - Finite element time domain (FETD)
model with a dispersive Drude dielectric
4th Workshop on Numerical Methods for Optical Nano Structures, ETH Zürich, Switzerland,
7-8 July 2008

B. Oswald
The portable, open and scalable data storage standard H5Fed - Transparent finite element data
storage for tetrahedral meshes and associated data
37th SPEEDUP Workshop on High-Performance Computing ETH Zürich & EPF Lausanne,
Switzerland, 9 September & 12 September 2008
T. Pal
Tasks and Challenges in the TAGS DB Project
CERN, Geneva, Switzerland, 17 July 2008

L. Rivkin
Engines of Discovery: the role of accelerators in scientific exploration
The Zürich Physics Colloquium, Zürich, Switzerland, 1 October 2008

L. Rivkin
Evolution of Light Sources
Jagiellonian University, Kraków, Poland, 29 May 2008

L. Rivkin
X-ray Sources
ICFA Seminar, SNAL, USA, 28 October 2008

W. Roser
Reduction of radioactive waste production of a proton therapy facility
Jahrestagung Schweizerische Gesellschaft für Strahlenbiologie und Medizinische Physik, Chur, Switzerland, 6 November 2008

J.M. Schippers
Technical aspects of proton therapy at UMCG
University Medical Center Groningen, Groningen, the Netherlands, 10 June 2008

J.M. Schippers
Developments for proton therapy at PSI
Mastro Clinic, Maastricht, the Netherlands, 19 June 2008

J.M. Schippers
New developments in technologies for particle therapy
ESTRO-Symposium “All you need to know about hadron therapy”, ESTRO-27, Göteborg, Sweden, 14-18 September 2008

J.M. Schippers
Radiotherapie met protonen: doel-gerichte High-Tech
Inaugural Lecture at University of Groningen, Groningen, the Netherlands, 16 December 2008

J.M. Schippers
A novel design of a cyclotron based accelerator system for multi-ion-therapy
Particle Therapy Co-operative Group PTCOG-47, Jacksonville (Fl), USA, 22-24 May 2008

J.M. Schippers
A novel design of a cyclotron based accelerator system for multi-ion-therapy
European Cyclotron Progress Meeting, Berlin, Germany, 16-18 October 2008

J.M. Schippers
The first 1.5 year clinical operation of the SC cyclotron and beam lines at PSI’s new Center for Proton Radiation therapy
European Cyclotron Progress Meeting, Berlin, Germany, 16-18 October 2008
V. Schlott
PSI Accelerator Activities and Diagnostics Highlights
SLAC Advanced Instrumentation Seminar, Menlo Park, CA, USA, 23 July 2008

M. Schneider
Status of the RF-system for the proton accelerator facility at PSI
CW and High Average Power RF Workshop, CERN, Geneva, Switzerland, 25-28 March 2008

M. Seidel
Operation of the High Intensity Proton Beam Facility at PSI
ICFA Workshop on High Brightness Hadron Beams, Nashville, USA, 24-29 August 2008

M. Seidel
Operational Experience and Recent Achievements with the High Power Proton Accelerator at PSI
European Cyclotron Progress Meeting, Berlin, Germany, 16-18 October 2008

A. Streun
Latest Results from the Swiss Light Source
ESLS XVI, Cockcroft Institute, Daresbury, UK, 27 November 2008

A.F. Wruilich
Challenges of Cost Optimized X-Ray Free Electron Lasers
14th User Meeting and Workshop, NSRRC, Hsinchu, Taiwan, October 2008

A.F. Wruilich
Synchrotron Radiation Light Sources: From the origins to the most advanced sources today
National Cheng Kung University, Tainan, Taiwan, October 2008

L. Zanini
Les Acquis neutroniques de la cible MEGAPIE
Meeting GEDEPEON, Aix-en-Provence, France, 14-15 October 2008

WORKSHOPS

A. Adelmann
Co-Organizer
HPC Workshop
ETH Zürich, Switzerland, 8-9 September 2008
EPFL Lausanne, Switzerland, 1 September 2008

B. Keil, V. Schlott
Organizers
European X-Ray FEL BPM and Beam Stability Workshop
Schloss Böllstein, Böllstein, Switzerland, 18-19 February 2008

M. Pedrozzi
Organizer
Second Solid State Modulator Workshop
Paul Scherrer Institut, Villigen, Switzerland
19-20 November 2008
R. Ganter
Organizer
Mini-Workshop on Girder, Components Supports and Alignment Concept
Paul Scherrer Institut, Villigen, Switzerland
4 December 2008

Organizers
First International Workshop on Accelerator Radiation Induced Activation (ARIA’08)
Paul Scherrer Institut, Villigen, Switzerland
13-17 October 2008

BACHELOR-/ DIPLOMA-/ MASTER-THESIS

Y. Ineichen
A parallel multigrid solver for beam dynamics
Theses advisors: Prof. Dr. P. Arbenz (ETH Zürich), Dr. A. Adelmann (PSI Villigen), 2008

A. Ichsanov
Modell-Experiment für den zukünftigen X-ray Free Electron Laser mit Anwendung der Photonen
Korrelation
Theses advisors: Prof. Dr. B. Patterson (PSI Villigen), 2008

DISSERTATIONS

K. Li
An Ultra-Low Emittance Electron Gun for the PSI-XFEL Design and Construction
Theses No. 18168 / ETH Zürich, Switzerland, 2008
Theses advisors: Prof. Dr. R. Eichler (ETHZ)
Prof. Dr. M. Ferrario (INFN)
Dr. M. Pedrozzi (PSI)

MEMBERSHIPS IN EXTERNAL COMMITTEES

A. Adelmann
- Speedup Society (treasury)
- CSCS "Horizon Project" Steering Committee
- Program Committee ICFA High Brightness Beam Dynamics Workshop
- Program Committee ICAP International Computational Accelerator Physics Conference
- International Super Computing Conference (ISC), Program Committee
- Member of the Project Group "Swiss National Strategic Plan for High Performance Computing
 and Networking”.
- Expert for Mathematics "Maturitaets Exams"

M. Böge
- TPS Machine Advisory Committee, NSRRC, Taiwan
T. Garvey
- International Linear Accelerator Conference Organising Committee
- UK (STFC) Accelerator Science and Technology Advisory Board
- French (CEA/CNRS) Committee of Experts on Accelerators (ComEA)
- CTF/CLIC Collaboration Board

D. Kiselev
- Auswahlkomitee der Deutschen Studienstiftung

L. Rivkin
- CERN Accelerator School, Advisory Committee
- CERN, CLIC CTF3 Collaboration Board
- DESY, Machine Advisory Committee (Chairman)
- European Physical Society Accelerators Group, Prizes Selection Committee Chairman
- Lund University Research Evaluation, RQ08
- Joint Universities Accelerator School, Program Committee
- PAC2009 Program Committee
- Stanford Synchrotron Radiation Laboratory, Scientific Advisory Committee

W. Roser
- Swiss Society for Radiation Biology and Medical Physics, Board Member
- Comité Electrotechnique Suisse (CES), Member of TC 62

T. Schietinger
- European Committee for Future Accelerators (ECFA)

J.M. Schippers
- Board member of the Groningen Particle Therapy Facility, University Medical Center Groningen, Groningen, the Netherlands
- TRIUMF Accelerator Advisory Committee, Vancouver BC, Canada

V. Schlott
- ALBA Spanish Light Source, Machine Advisory Committee, Bellaterra, Spain
- CARE Governing Board
- CERN Accelerator School on Beam Diagnostics, Program Committee
- DIPAC Scientific Program Committee (Chairman)
- In Kind Review Committee for the European XFEL (Chairman)
- Scientific and Technical Issues Working Group for the European XFEL (XFEL-STI)

L. Schulz
- SESAME, Jordan, Technical Advisory Committee

M. Seidel
- Int. Conferences on Cyclotrons and their Applications: Int. Organizing Committee + Program Committee
- Series ICFA Workshops on High Brightness, High Intensity Hadron Beams, Scientific Advisory Committee
- European Cyclotron Progress Meetings, Scientific Advisory Committee
- OECD/NEA Int. Workshop on Technology and Components of Accelerator Driven Systems (TCADS) Int. Scientific Advisor

A. Streun
- The 12th Hiroshima International Symposium on Synchrotron Radiation, Committee Member
A.F. Wrulich
- CNAO, I, Comitato Tecnico
- MAX-lab, S, Scientific Advisory Committee
- NSLS-II, US, Project Advisory Committee
- SESAME, Jordan, Technical Advisory Committee, Chair
- Co-Editor of ‘Journal of Synchrotron Radiation’

AWARDS

J.M. Schippers
Professorship in “physics of particle therapy” at the University of Groningen, Groningen, the Netherlands
Logistics

LIST OF PUBLICATIONS

Tailored instrumentation for long-pulse neutron spallation sources
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT,
Volume: 589, Issue: 1, Pages: 34-46

Monte-Carlo simulation of phase space transformation of ultra-cold neutrons
Conference Information: European Workshop on Neutron Optics (NOP 07)
March 05-07, 2007 Paul Scherrer Inst Villigen, Switzerland
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT,
Volume: 586, Issue: 1, Pages: 110-115

New Generation of AD-Mesurement Cards for High Accuracy Measurments
EPAC GENOA 2008

Towards Real-Time Tomography: Fast Reconstruction Algorithms and GPU Implementation

Experimental determination of Radium partitioning between Leucite and Phonolite melt and 226Ra-disequilibrium crystallization ages of Leucite
CHEMICAL GEOLOGY, 255, 377 - 387

Kehrwald N., Thompson L., Tandong Y., Mosley-Thompson E., Schotterer U., Beer J.,
Eikenberg J., Davis M. (2008)
Mass loss on Himalayan glacier endangers water resources
GEOPHYSICAL RESEARCH LETTERS, 35, No 22

Wersin P., Soler J.M., Van Loon L., Eikenberg J., Baeyens B., Grolimund D., Gimmi T.,
Dewonck (2008)
Diffusion of HTO, Br-, I-, Cs+, 85Sr2+ and 60Co2+ in a clay formation: results and modeling
from an in situ experiment in Opalinus Clay
APPLIED GEOCHEMISTRY, 23, 678-691

Field calibration and comparison of personal neutron dosemeter designs based on CR-39 for the use around high energy accelerators
RADIATION MEASUREMENTS, Volume 43, pp. 1081-1084

Response study of fission track detectors using two different moderator designs in a high-energy radiation field
RADIATION MEASUREMENTS, Volume 43, pp. 1085-1088
CONFERENCE, WORKSHOP AND SEMINAR CONTRIBUTIONS

JOURNAL OF CRYSTAL GROWTH, Volume: 310, Issue: 7-9, Pages: 1867-1874

Rossetti D., Japichino E., Ellenberger U., Pradervand C., Pauluhn A., Ulmer D., Schulze-Briese C. Novel design and first results for a high precision kappa goniometer to be used with X-ray diffraction analysis Proceedings of the SRI international Conference - Saskatoon (Can) – June 2008

Behind the scenes: the water-cooling facility for some of PSI's large-scale facilities.