

Energy efficiency of particle accelerators – a network in the European program EUCARD-2 M.Seidel, PSI

3nd EuCARD-2 Annual Meeting, Univ. of Malta, April 27, 2016

Outline

Energy Efficiency of Particle Accelerators

- Workshops and Examples
 - Workshop sustainable science at DESY
 - Dedicated session on energy storage systems
 - Workshop on efficiency of Proton Driver Accelerators
- Outlook ARIES Program
- Status Milestones and Deliverables

tasks within EnEfficient

task 1: energy recovery from cooling circuits, Th.Parker \rightarrow A.Lundmark (ESS) [workshop April 14, survey of European Labs, applications of heat, T-levels etc.] **task 2**: higher electronic efficiency RF power generation, E.Jensen (CERN) [workshop Daresbury in June 14, Klystrons, Multi Beam IOT's] **task 3**: short term energy storage systems, R.Gehring (KIT) [non-interruptable power, short term storage, session in Hamburg workshop] **task 4**: virtual power plant, J.Stadlmann (GSI) [adaptation of operation to grid situation – context renewables...] **task 5**: beam transfer channels with low power consumption, P.Spiller (GSI) [pulsed magnets, low power conventional magnets, permanent magnets, parameter comparison etc.]

EUCARD² Energy for Sustainable Science at Research Infrastructures, Oct 29-30 2015, DESY Hamburg

- ERF, ESS, DESY, Eucard-2 were organisers (program committee)
- boad spectrum of topics, see website: <u>http://erf.desy.de/energyworkshop/programme/</u>

citation from summary Wolfgang Sandner*:

We have collected best-practice examples on

- Energy management
- Energy efficiency, recovery, quality
- Green technology development at RIs and "Dreams coming true"

A total of 32 (2011), 44 (2013) and 37 (2015) presentations and talks from international RIs, organisations and politics

*Chair, Association of European-Level Research Infrastructure Facilities ERF-AISBL, † 5.12.2015

Transition to Renewable Energies - a challenge for Research Infrastructures

TECHNISCHE UNIVERSITÄT DARMSTADT

Jutta Hanson

Generation

Conventional power plants


Solar power plants

Transmission and distribution

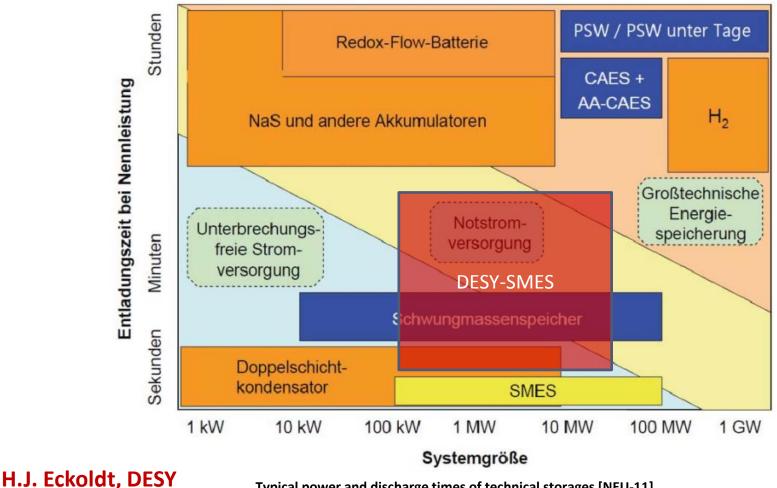
Consumption

Intelligent Measurement

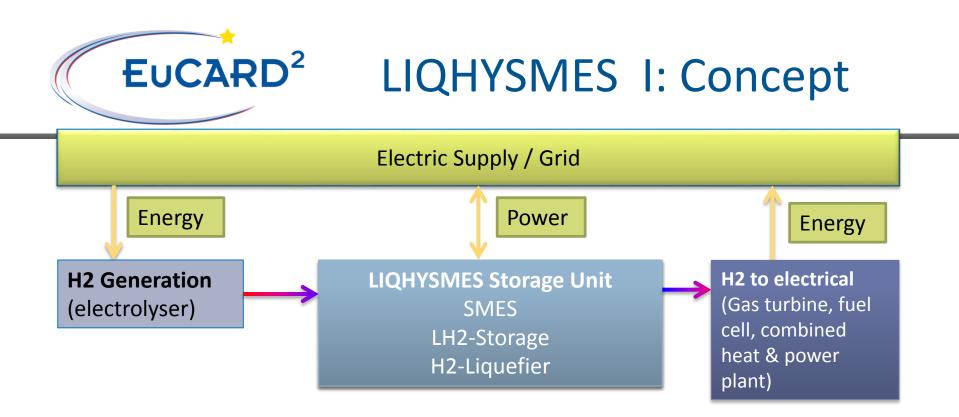
Home automation

Elektrische Energieversorgung unter Einsatz Erneuerbarer Energien

Energy Storage Systems EuCARD-2 Session within DESY workshop


- average the power load of pulsed systems
- bridging grid interruptions avoiding many inefficient start-ups
- future: strong cost variations due to fluctuations on grid → could save cost and help society through large storage systems

critical: cost, efficiency, reliability, size ...

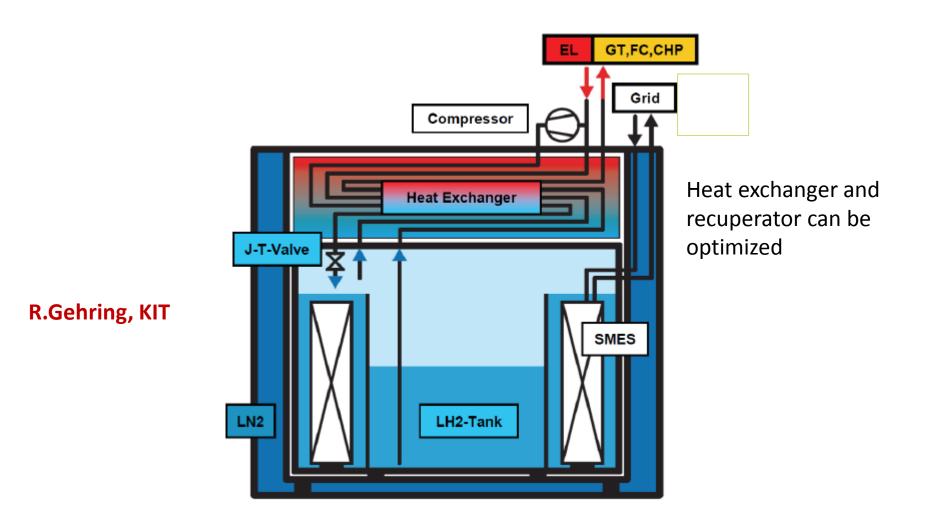

Presentations:

- 1. Energy storage systems in research institutes, Hans-Jörg Eckoldt, *DESY*
- 2. LIQHYSMES: a Novel Hybrid Energy Storage System, Rainer Gehring, KIT
- 3. Capacitive Energy Storage for the PS Booster Synchrotron, Fulvio Boattini, CERN
- 4. Development of new high slew-put and high energy efficient power supplies for J-PARC upgrade, Yoshi Kurimoto, *KEK/J-PARC*

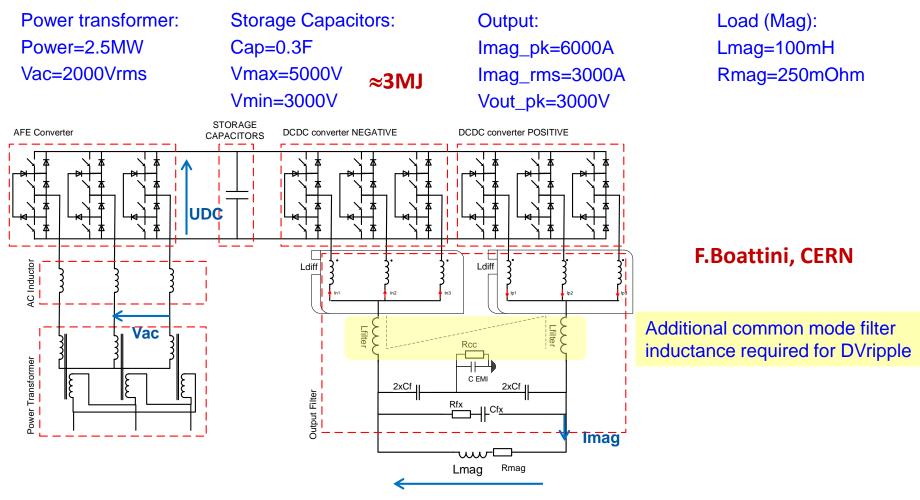
EUCARD² **Electrical energy storages**

Typical power and discharge times of technical storages [NEU-11]

R.Gehring, KIT

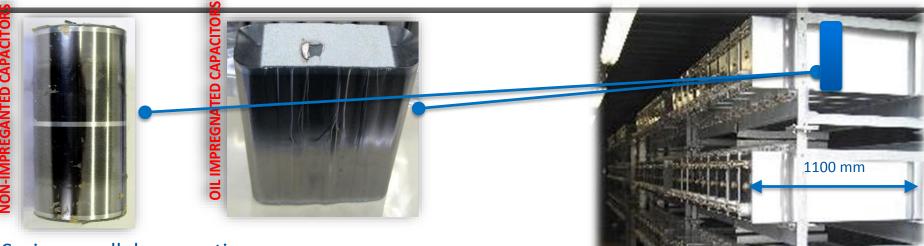

Rough cost estimate: 300 MW / 69 GWh with gas turbines: ~1900 €/kW ~8.25 €/kWh

Patents: DE 10 2007 042 711 B4 2011.02.17 and DE 10 2011 013 577 B4 2013.02.28

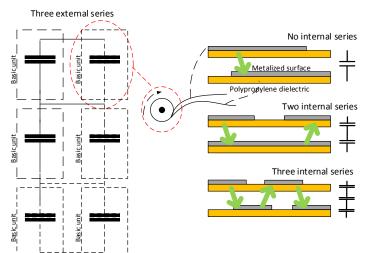


LIQHYSMES II

LIQHYSMES Storage Unit



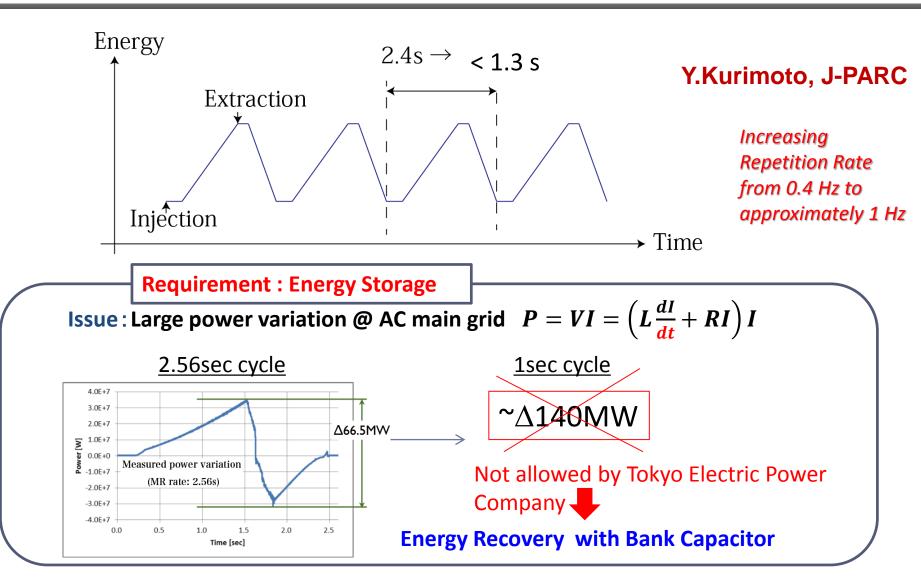
EUCARD² capacitive storage for PS booster



Vout

EUCARD² Storage capacitors: technology

Series-parallel connection



POPS capacitor bank at CERN. 6 Containers 65 tons

F.Boattini, CERN

J-PARC Main Ring

Why a Workshop on Proton Driver Efficiency?

1) Proton Drivers need high power and have many applications, are in the focus of interest.

particle/nucl. physics

- neutrino sources
- muons
- RIB production

structure of matter

- neutron sources
- muon spectroscopy

nuclear energy / ADS

- transmutation
- subcritical reactor
- Thorium reactor

2) energy efficiency is one of the critical aspects for high intensity accelerators

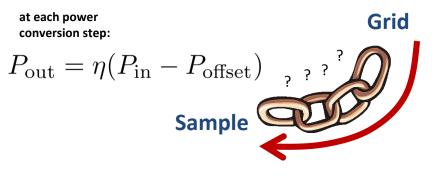
critical for high intensity accelerators:

- cost/feasibility
- low losses
- reliability
- energy efficiency

Proton Driver Efficiency Workshop, PSI, Feb 2016

new concept of combining all factors in the power conversion chain of a p-driver: RF generation, acceleration, targets, auxiliary systems

 \rightarrow positive experience and feedback of participants



Workshop on Proton Driver Efficiency

idea: comprehensive approach to cover the entire power chain from Grid to secondary radiation at the user.

goal: Assess state of the art and development potential for each stage.
(comparison of potential of each link in the chain)
R&D recommendations in each field.
Workshop, not Conference.

Sessions and Chairs:

Mon, morning	Applications of proton drivers, physics requests	J. Grillenberger, PSI
Mon, afternoon	Targets, conversion to secondary radiation	Ch. Densham, STFC
Tue, morning	RF generation, methods and efficiency	F. Gerigk, CERN
Tue, afternoon	Accelerator Concepts	V. Yakovlev, FNAL
Wed, Morning	Conventional systems and cryogenics	A. Lundmark, ESS

PDriver'16

Proton Drivers – Concepts & Applications

	Neutrino	Muons	Neutrons	ADS	RIB's
Cyclotron	Dae∂alus ¹	PSI-HIPA TRIUMF	PSI-HIPA	AIMA ² TAMU-800 ³	TRIUMF RIKEN
RCS		J-PARC	J-PARC ISIS CSNS		
FFAG				KURRI +ongoing studies ⁴	
s.c. Linac	PIP II ⁵	PIP II ⁵	SNS ESS ISNS ⁶	ADSS ⁷ CIADS ⁸	FRIB

1 Decay-at-Rest Experiment for δcp studies At the Laboratory for Underground Science, MIT/INFN-Cat. et al

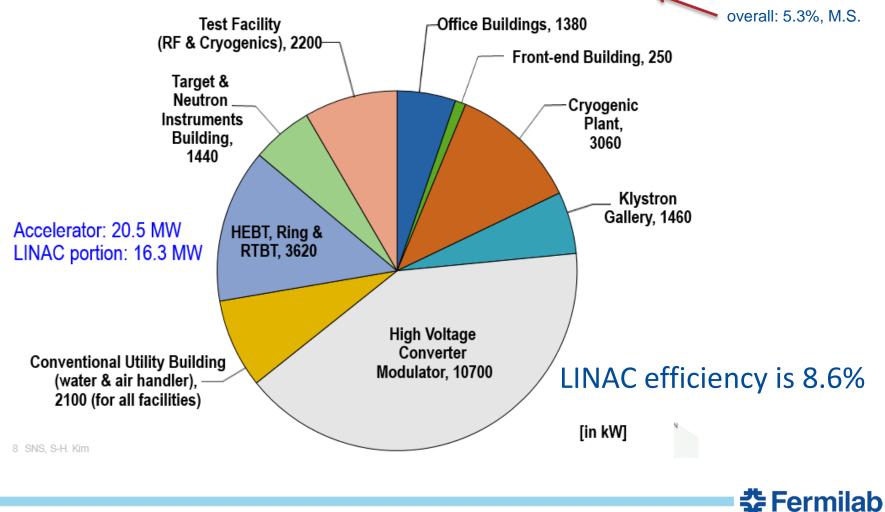
2 Accelerators for Industrial & med. Applications, reverse bend cyclotron, AIMA company

3 Cyclotron 800MeV, flux coupled stacked magnets, s.c. cavities, strong focusing channels, Texas A&M Univ.

4 FFAG studies, e.g. STFC, talk by S.Machida

5 SRF linac, Proton Improvement Plan-II (PIP-II), Fermilab, Batavia

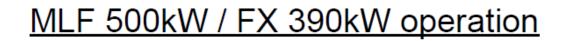
6 Indian Spallation Neutron Source, Raja Ramanna Centre of Advanced Technology, Indore, India

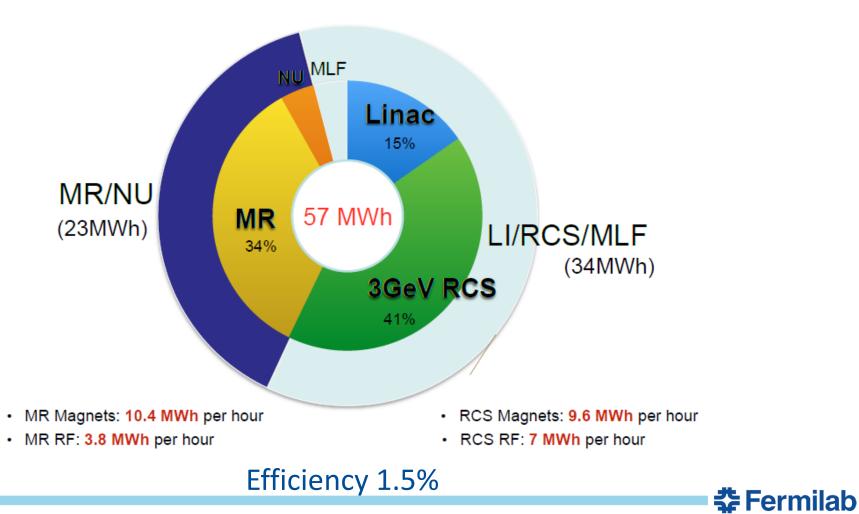

7 Accelerator Driven Sub-critical System at Bhaba Atomic Research Centre (BARC), Mumbai, India

8 China Initiative Accelerator Driven System, Huizhou, Guangdong Prov. & IMP, Lanzhou, China

operating in construction concept study

Operating Accelerators, SNS SRF linac, San-Ho Kim

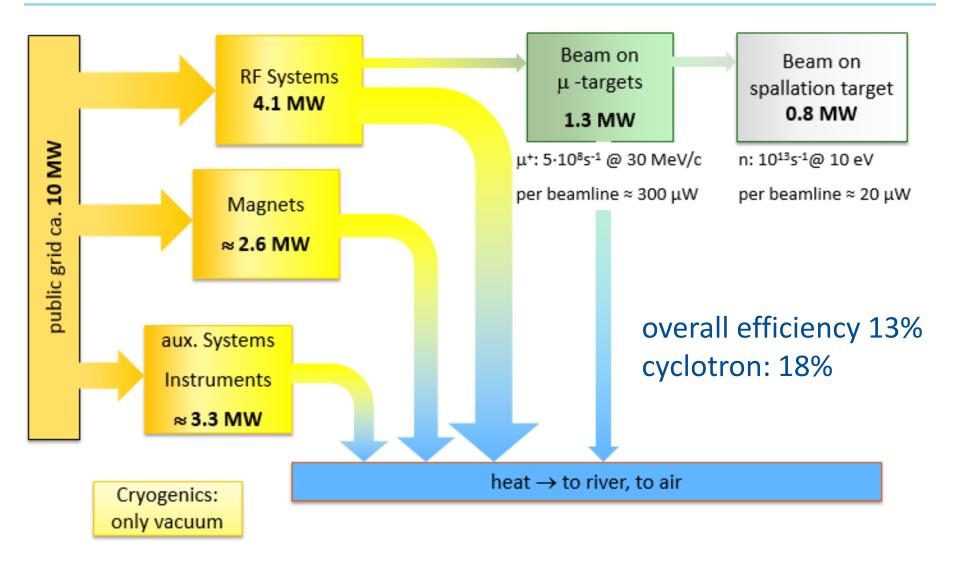

Breakdown of electric power consumption by systems during 1.4 MW operation; 26.3 MW



3/1/2016

18 Vyacheslav Yakovlev. Session classification : Accelerator Concepts. Summary

Operating Accelerators, 3 GeV RCS, Masahito Yoshii (JPARC)

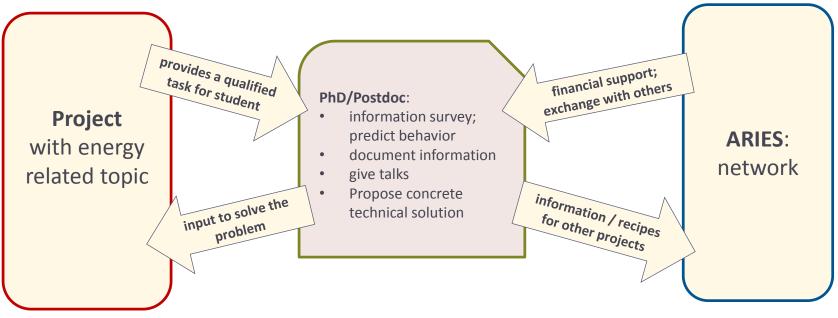


19 Vyacheslav Yakovlev. Session classification : Accelerator Concepts. Summary

3/1/2016

Operating Accelerators, PSI Cyclotron, J. Grillenberger

20 Vyacheslav Yakovlev. Session classification : Accelerator Concepts. Summary


3/1/2016

🛠 Fermilab

plan for ARIES: synergies with projects and students

our practical experience: PhD. students or Postdocs could be financed by network, have time to focus on a technical problem, provide excellent documentation

win-win for student, project, ARIES!

tasks in ARIES Proposal

Title: Efficient Energy Management

concept:

- perform a study per task, one Postdoc or PhD is financed by 50% from ARIES
- organise one or several workshops per task

1	High Efficiency RF Power Sources	CEA Saclay Univ. Uppsala	<u>C. Merchand</u> R. Ruber
2	Increasing energy efficiency by increasing the efficiency of the spallation target station	PSI ESS	<u>M. Wohlmuther</u> E. Pitcher
3	High Efficiency SRF power conversion	CERN	F.Gerigk
4	Efficient operation of pulsed magnets	GSI	P.Spiller

Status EnEfficient WP3,

M.Seidel, PSI

Task	Workshops / Deliverables	
heat recovery	Workshop ESS 3/14 Lab Inventory, Master Thesis ESS 3/14	\checkmark
efficient RF generation	Workshop STFC 7/14 Session FCC week write up / summary 2/17	✓ ✓ 0
energy storage	Session in DESY workshop 10/15 write up document (?)	✓ 0
virtual power plant	Workshop (in prep) Lab survey on volatility, GSI, TUD (ongoing) write up document (12/16)	0 ✓ 0
efficient beam transfer systems	Workshop CERN 11/14 pulsed magnets work GSI (ongoing) concept comparison, Master Thesis GSI (10/15 ongoing)	✓ ✓ ✓
others that evolved	Workshop DESY : sustainable energy for large RI's 10/15 Workshop Proton Driver Efficiency ca 3/16 summary publication in journal, under discussion	✓ ✓ 0

40 beam klystron; 66% efficiency; 7MW peak; I.Syratchev, VDBT et al.