Exercise 12: Methanation
Julia Witte, (julia.witte@psi.ch)
A detailed solution is provided at the $\mathbf{1 3}^{\mathbf{t h}}$ of December.
Please see: http://www.psi.ch/ene/ret1

Problem: Direct Methanation of Carbon Dioxide from Biogas

Figure 1: Flowsheet of a direct methanation

Biogas is produced via fermentation of biomass, deactivation of the catalyst due to carbon deposition. The mixture (4) enters the methanation reactor, where carbon dioxide and hydrogen convert to methane and water:

$$
\begin{equation*}
\mathrm{CO}_{2}+4 \mathrm{H}_{2} \leftrightarrow \mathrm{CH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta H_{R}^{0}=-164.7 \mathrm{~kJ} / \mathrm{mol} \tag{I}
\end{equation*}
$$

The reactor is cooled by an internal heat exchanger. The outlet stream of the reactor (5) contains mainly methane and water.

Tasks:

i. Methanation without steam: Calculate the molar flows of all components in stream $5 \dot{n}_{5, i}[\mathrm{~mol} / \mathrm{s}]$ and the heat stream $\dot{Q}_{\text {out }, M}[\mathrm{~kW}]$, which must be dissipated in order to maintain a temperature of $\mathrm{T}_{\text {meth }}=320^{\circ} \mathrm{C}$. A steady state process is
assumed. Stream 4 has a temperature of $\mathrm{T}_{4}=270^{\circ} \mathrm{C}$. The conversion of CO_{2} in the methanation unit reaches $\mathrm{C}_{\mathrm{CO}}=95 \%$.

Further values:

- Biogas stream: $\dot{n}_{1}=4 \frac{\mathrm{~mol}}{\mathrm{~s}}, x_{1, C H_{4}}=0.55, x_{1, C O_{2}}=0.45$
- In this case: No steam is added, $\dot{n}_{3}=0 \frac{\mathrm{~mol}}{\mathrm{~s}}$,
- The ratio of H_{2} to CO_{2} in stream 4 is stoichiometric
- $p=5$ bar
- Specific heat capacities: $c_{p, 4 m i x}=31.7 \frac{\mathrm{~J}}{\operatorname{mol~K}}, c_{p, 5 \operatorname{mix}}=34.4 \frac{\mathrm{~J}}{\mathrm{~mol} \mathrm{~K}}$

1. Determine the mole flows of \dot{n}_{4} :
$\dot{n}_{1}=4.0 \mathrm{~mol} / \mathrm{s} \rightarrow \dot{n}_{1, C H_{4}}=x_{1, C H_{4}} \cdot \dot{n}_{1}=2.2 \mathrm{~mol} / \mathrm{s} ; \dot{n}_{1, C O_{2}}=x_{1, C O_{2}} \cdot \dot{n}_{1}=1.8 \mathrm{~mol} / \mathrm{s}$ $\dot{n}_{2}=4 \cdot \dot{n}_{1, C O_{2}}=7.2 \mathrm{~mol} / \mathrm{s}$
$\rightarrow \dot{n}_{4, H_{2}}=7.2 \mathrm{~mol} / \mathrm{s} ; \dot{n}_{4, C H_{4}}=2.2 \mathrm{~mol} / \mathrm{s} ; \dot{n}_{4, C O_{2}}=1.8 \mathrm{~mol} / \mathrm{s} ; \dot{n}_{4, \mathrm{H}_{2} \mathrm{O}}=0 \mathrm{~mol} / \mathrm{s}$
2. Determine the mole flows of \dot{n}_{5} :
$\dot{n}_{5, C O_{2}}=\dot{n}_{4, C O_{2}} *\left(1-C_{C O_{2}}\right)=0.09 \mathrm{~mol} / \mathrm{s}$
$\dot{n}_{5, \mathrm{CH}_{4}}=\dot{n}_{4, \mathrm{CH}_{4}}+\dot{n}_{4, \mathrm{CO}_{2}} * C_{\mathrm{CO}_{2}}=3.91 \mathrm{~mol} / \mathrm{s}$
$\dot{n}_{5, H_{2}}=4 * \dot{n}_{4, C O_{2}} *\left(1-C_{C O_{2}}\right)=0.36 \mathrm{~mol} / \mathrm{s}$
$\dot{n}_{5, \mathrm{H}_{2} \mathrm{O}}=2 * \dot{n}_{4, \mathrm{CO}_{2}} * C_{\mathrm{CO}_{2}}=3.42 \mathrm{~mol} / \mathrm{s}$
3. Determine the heat stream, which must be dissipated to reach $\mathrm{T}_{5}=320^{\circ} \mathrm{C}$ in the reactor:

$\dot{Q}_{\text {out }, M}=\dot{H}_{5}-\dot{H}_{4}+\dot{Q}_{\text {reac }}$
$\dot{H}_{5}=\dot{n}_{5} \cdot c_{p, 5 m i x} \cdot T_{5}=158.7 \mathrm{~kW}$
$\dot{H}_{4}=\dot{n}_{4} \cdot c_{p, 4 m i x} \cdot T_{4}=192.8 \mathrm{~kW}$
(Annotation: $\dot{H}_{5}<\dot{H}_{4}$, although $T_{5}>T_{4}$ because of the mole decreasing reaction: $\dot{n}_{5}<\dot{n}_{4}$)

$$
\begin{gathered}
\dot{Q}_{\text {reac }}=C_{C O_{2}} \cdot \dot{n}_{4, C O_{2}} \cdot \Delta H_{R}^{0}=-281.6 \mathrm{~kW} \\
\rightarrow \quad \dot{Q}_{\text {out }, M}=158.7 \mathrm{~kW}-192.8 \mathrm{~kW}-281.6 \mathrm{~kW}=
\end{gathered}
$$

$$
=-315.7 \mathrm{~kW}
$$

Thus a heat stream of 326.8 kW must be dissipated in order to reach a reactor temperature of $320^{\circ} \mathrm{C}$.

ii. Equilibrium Constant

Calculate the equilibrium constant $\mathrm{K}_{\text {eq }}$ with thermodynamic data and check if the reaction reaches its equilibrium state. Use the NIST database in the appendix for standard enthalpy and entropy calculations at $\mathrm{T}_{\text {meth }}$.

1. Calculate Standard Enthalpy of formation and Entropy for each component.

Correlation used by NIST database:
$\Delta H_{f}^{0}(T)=\mathrm{A} * \mathrm{t}+\mathrm{B}^{*} \mathrm{t}^{2} / 2+\mathrm{C}^{*} \mathrm{t}^{3} / 3+\mathrm{D}^{*} \mathrm{t}^{4} / 4-\mathrm{E} / \mathrm{t}+\mathrm{F}-\mathrm{H}+\Delta H_{f}^{0}\left(T^{0}\right)$ $\Delta S_{-}^{0}(T)=\mathrm{A} * \ln (\mathrm{t})+\mathrm{B} * \mathrm{t}+\mathrm{C}^{*} \mathrm{t}^{2} / 2+\mathrm{D}^{*} \mathrm{t}^{3} / 3-\mathrm{E} /\left(2 * \mathrm{t}^{2}\right)+\mathrm{G}$

Coefficients A to H can be found in the appendix for each component.
The Standard Enthalpy of formation $\Delta H_{f, i}^{0}(T)$ and Entropy $\Delta S_{i}^{0}(T)$ for each component at T= 593.15 K are:

Enthalpy, kJ/mol			
H2	CO2	CH4	H20
8.61	-380.94	-62.13	-231.75

Entropy, J/(mol*K)			
H2	C02	CH4	H20
150.74	242.74	215.39	212.63

The total Standard Enthalpy of formation and Entropy is: $v_{i}>0$ as product and $v_{i}<0$ as educt for component i
$\Delta H_{R}^{0}(T)=\sum_{i} v_{i} \cdot \Delta H_{f, i}^{0}(T)=-179.13 \mathrm{~kJ} / \mathrm{mol}$
$\Delta S_{R}^{0}(T)=\sum_{i}^{i} v_{i} \cdot \Delta S_{i}^{0}(T)=-205.05 \mathrm{~J} /(\mathrm{mol} \mathrm{K})$
2. Calculate Gibb's Enthalpy $\Delta G_{R}^{0}(T)$:
$\Delta G_{R}^{0}(T)=\Delta H_{R}^{0}(T)-T \cdot \Delta S_{R}^{0}(T)=-57.5 \mathrm{~kJ} / \mathrm{mol}$
3. Calculate the equilibrium constant:
$K_{\text {eq }}=e^{-\Delta G_{R}^{0}(T) / R T}\left\{p_{0}^{\sum v_{i}}\right\}=1.16 \cdot 10^{5} 1 /$ bar 2
The term in the braces is ' 1 ' with $p_{0} \approx 1$ bar, but is retained to keep the equation dimensionally correct.
$K_{e q} \gg 1$, equilibrium of reaction is on the product side
4. Reached the reaction its equilibrium state? In equilibrium $K_{p}=K_{e q}$.
$K_{p}=\prod_{i} p_{i}^{v_{i}}=\frac{p_{C H_{4}} \cdot p_{H_{2} \mathrm{O}}^{2}}{p_{\mathrm{CO}_{2}} \cdot p_{\mathrm{H}_{2}}^{4}}=\frac{2.513 \mathrm{bar} \cdot 2.198^{2} \mathrm{bar}^{2}}{0.058 \mathrm{bar}^{2} \cdot 0.231^{4} \mathrm{bar}^{4}}=7.35 \cdot 10^{4} 1 / \mathrm{bar}^{2}$
$K<K_{e q} \rightarrow$ reaction reached not equilibrium (due to the low temperature of $320^{\circ} \mathrm{C}$, where the catalyst do not show a high activity).
iii. Equilibrium constant and methanation with steam: The catalyst starts to deactivate due to carbon deposition. A countermeasure is the injection of steam into the reactor. How does the steam affect the maximum conversion rate of carbon dioxide? Show it in a qualitative way with the equation $K_{p}=\Pi_{i} p_{i}^{v_{i}}$ for component i.
K_{eq} is the maximum achievable value of K at given temperature T and for the given methanation reaction. If steam is added, the partial pressure of water $p_{H_{2} O}^{2}$ in the K_{p} - equation is increasing and with that the K -value for the same conversion rate of carbon dioxide. Thus the maximum Kvalue $K_{\text {eq }}$ is reached with lower conversion rate.
$K_{p}=\prod_{i} p_{i}^{v_{i}}=\frac{p_{\mathrm{CH}_{4}} \cdot p_{\mathrm{H}_{2} \mathrm{O}}^{2}}{p_{\mathrm{CO}_{2}} \cdot p_{\mathrm{H}_{2}}^{4}}$; for
$C_{\mathrm{CO}_{2}}=$ const. and $p_{\mathrm{H}_{2} \mathrm{O}}^{2} \uparrow \rightarrow K_{p} \uparrow$, while $K_{\text {eq }}=$ const. (at fixed temp.)

For increasing CO_{2} conversions the K -value reaches faster the value of $\mathrm{K}_{\text {eq }}$, where the conversion reaches its thermodynamic limit $C_{\mathrm{CO}_{2}}^{e q}$. Thus:
$C_{C O_{2}}^{e q, \text { steam }}<C_{\mathrm{CO}_{2}}^{e q}$
The maximum possible conversion rate of carbon dioxide is decreasing with the addition of steam. Hence the addition of steam in order to protect the catalyst against deactivation should be as low as possible.
iv. Equilibrium constant and operational conditions in the reactor: How can the effect of steam addition be compensated? Show it in a qualitative way with the equation $K=\Pi_{i} p_{i}^{v_{i}}$ for components i at constant temperature $\mathrm{T}_{\text {meth }}$.

The decreasing conversion rate of CO_{2}, due to steam addition can be compensated by the increase of pressure in the reactor ($\mathrm{p}^{\text {low }}<\mathrm{p}^{\text {high }}$):
$K=\prod_{i} p_{i}^{v_{i}}=\frac{p_{\mathrm{CH}_{4}} \cdot p_{\mathrm{H}_{2} \mathrm{O}}^{2}}{p_{\mathrm{CO}_{2}} \cdot p_{\mathrm{H}_{2}}^{4}}=\frac{p x_{\mathrm{CH}_{4}} \cdot p^{2} x_{\mathrm{H}_{2} \mathrm{O}}^{2}}{p x_{\mathrm{CO}_{2}} \cdot p^{4} x_{\mathrm{H}_{2}}^{4}}$
Due to the higher degree of the reactant hydrogen ($44^{\text {th }}$ degree) in comparison with the other components, the denominator of K is increasing stronger than the numerator for constant carbon dioxide conversion. Thus K is decreasing for the same CO_{2} Conversion.
$K_{p}^{\text {low }}>K_{p}^{\text {high }}$
This leads to a higher maximum CO_{2} Conversion $C_{\mathrm{CO}_{2}}^{e q}$ (explained in task iii).
$C_{\mathrm{CO}_{2}}^{\text {eq,pow }}<\mathrm{C}_{\mathrm{CO}_{2}}^{\text {eq,phigh }}$

Appendix:

NIST - Database

Correlations:

$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}{ }_{298.15}=\mathrm{A} * \mathrm{t}+\mathrm{B}^{*} \mathrm{t}^{2} / 2+\mathrm{C} * \mathrm{t}^{3} / 3+\mathrm{D}^{*} \mathrm{t}^{4} / 4-\mathrm{E} / \mathrm{t}+\mathrm{F}-\mathrm{H}$
$\mathrm{S}^{\circ}=\mathrm{A} * \ln (\mathrm{t})+\mathrm{B}^{*} \mathrm{t}+\mathrm{C}^{*} \mathrm{t}^{2} / 2+\mathrm{D}^{*} \mathrm{t}^{3} / 3-\mathrm{E} /\left(2^{*} \mathrm{t}^{2}\right)+\mathrm{G}$
$\mathrm{H}^{\circ}=$ standard enthalpy (kJ/mol)
$\mathrm{S}^{\circ}=$ standard entropy $(\mathrm{J} / \mathrm{mol} * \mathrm{~K})$
$\mathrm{t}=$ temperature $(\mathrm{K}) / 1000$.
$\mathrm{T} 0=298.15 \mathrm{~K}$

Hydrogen

$\Delta_{\mathrm{f}} \mathrm{H}^{\circ}{ }_{\text {gas }}(\mathrm{T} 0)=0.0 \mathrm{~kJ} / \mathrm{mol}$

Temperature (K)	298.- 1000.	$\mathbf{1 0 0 0 . - 2 5 0 0 .}$	$\mathbf{2 5 0 0} \mathbf{- 6 0 0 0 .}$
A	33.066178	18.563083	43.413560
B	-11.363417	12.257357	-4.293079
C	11.432816	-2.859786	1.272428
D	-2.772874	0.268238	-0.096876
E	-0.158558	1.977990	-20.533862
F	-9.980797	-1.147438	-38.515158
G	172.707974	156.288133	162.081354
H	0.0	0.0	0.0
Reference	Chase, 1998	Chase, 1998	Chase, 1998
Comment	Data last reviewed in March, 1977; New parameter fit October 2001	Data last reviewed in March, 1977; New parameter fit October 2001	Data last reviewed in March, 1977; New parameter fit October 2001

Carbon dioxide
$\Delta_{\mathrm{f}} \mathrm{H}^{\circ}{ }_{\text {gas }}(\mathrm{T} 0)=-393.52 \mathrm{~kJ} / \mathrm{mol}$

Temperature (K)	298. - 1200.	$\mathbf{1 2 0 0 .} \mathbf{- 6 0 0 0 .}$
A	24.99735	58.16639
B	55.18696	2.720074
C	-33.69137	-0.492289
D	7.948387	0.038844
E	-0.136638	-6.447293
F	-403.6075	-425.9186
G	228.2431	263.6125
H	-393.5224	-393.5224
Reference	$\underline{\text { Chase, 1998 }}$	Chase, 1998
Comment	Data last reviewed in September, 1965	Data last reviewed in September, 1965

Methane

$\Delta_{\mathrm{f}} \mathrm{H}^{\circ}{ }_{\text {gas }}(\mathrm{T} 0)=-74.87 \mathrm{~kJ} / \mathrm{mol}$

Temperature (K)	298. - 1300.	$\mathbf{1 3 0 0 .} \mathbf{- 6 0 0 0 .}$
A	-0.703029	85.81217
B	108.4773	11.26467
C	-42.52157	-2.114146
D	5.862788	0.138190
E	0.678565	-26.42221
F	-76.84376	-153.5327
G	158.7163	224.4143
H	-74.87310	-74.87310
Reference	Chase, 1998	Chase, 1998
Comment	Data last reviewed in March, 1961	Data last reviewed in March, 1961

Water (gaseous)

$\Delta_{\mathrm{f}} \mathrm{H}^{\circ}{ }_{\text {gas }}(\mathrm{T} 0)=-241.83 \mathrm{~kJ} / \mathrm{mol}$

Temperature (K)	$\mathbf{5 0 0 .} \mathbf{- 1 7 0 0 .}$	$\mathbf{1 7 0 0 .} \mathbf{- 6 0 0 0 .}$
A	30.09200	41.96426
B	6.832514	8.622053
C	6.793435	-1.499780
D	-2.534480	0.098119
E	0.082139	-11.15764
F	-250.8810	-272.1797
G	223.3967	219.7809
H	-241.8264	-241.8264
Reference	Chase, 1998	Chase, 1998
Comment	Data last reviewed in March, 1979	Data last reviewed in March, 1979

