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1. Wind energy  
1.1 If the wind speed is 11.5m/s and the speed after the turbine is 8m/s, what is the power 

extraction coefficient of this wind turbine? (air density 1.225 kg/m3)  

The kinetic energy per time available in wind 

𝑃 = 0.5𝜌𝑎𝑖𝑟𝐴𝑈
3 

Extracted power  

𝑃′ = 0.5𝜌𝑎𝑖𝑟𝐴𝑈
′(𝑈2 − 𝑈"2) 

The power extraction coefficient is 

𝐶𝑝 =
𝑃′

𝑃
=
𝑈′(𝑈2 − 𝑈"2)

𝑈3
= 0.44 

 

 

1.2 The rated output power for a turbine model at 15 m/s is 3 MW. The rotor diameter is 90m. 

The rotor rotates at a constant frequency of 0.198 Hz. Please calculate the tip to speed ratio 

and power conversion coefficient of this model. 

 

The linear velocity of the tip:  

𝑣𝑡 = 𝜔 ∗ 𝑅 = 2𝜋𝑓 ∗
𝐷

2
= 2𝜋 ∗ 0.198𝐻𝑧 ∗

90𝑚

2
= 56𝑚/𝑠 

The tip to speed ratio: 

𝑟 =
𝑣𝑡
𝑈
=
56𝑚/𝑠

15𝑚/𝑠
= 3.7 

 

The wind power at 15m/s: 

𝑃 =
1

2
𝜌𝐴𝑈3 =

1

2
∗
1.225𝑘𝑔

𝑚3
∗ 𝜋 ∗ (45𝑚)2 ∗ (

15𝑚

𝑠
)
3

= 13𝑀𝑊 

The power conversion coefficient: 

𝜀 =
3𝑀𝑊

13𝑀𝑊
= 23% 

 

 



1.3 Based on the figure below, what do you expect about the power extraction coefficient of the 

model in question 1.2 when the wind speed is at 8 m/s? In addition, what do you expect 

about the output power at this wind speed? Is it more than the output power at 15m/s? The 

rotor rotates at the constant frequency. Give your arguments.  

 
The power extraction coefficient goes up when the wind speed is 8m/s. 

 

Tip to speed ratio at 8m/s: 

𝑟 =
56𝑚/𝑠

8𝑚/𝑠
= 7 

According to the figure, the Cp is at maximum with this tip to speed ratio. 

 

The wind power at 8m/s: 

𝑃 =
1

2
𝜌𝐴𝑈3 =

1

2
∗
1.225𝑘𝑔

𝑚3
∗ 𝜋 ∗ (45𝑚)2 ∗ (

8𝑚

𝑠
)
3

= 2𝑀𝑊 

The estimated output power is  

2MW*0.48=0.96MW,       smaller than at 15m/s.  

 

 

 

2. Tidal energy  
The Bay of Funday is known for having the highest tidal range in the world. The tidal range 

could approach 17m in extremity.  About 110 billion tons of water flow into and out of the 

bay in one cycle. Calculate the total potential tidal energy of the Bay of Funday in this 

extreme case in one year by using bidirectional turbines. (Gravity acceleration 9.8 m/s2)         

Number of tidal cycles per year 



𝑛𝑐𝑦𝑐 =
24ℎ ∗ 365

12.4ℎ
= 706.5 

Number of times for the tide to drive turbines 

𝑛 = 2𝑛𝑐𝑦𝑐 = 1413 

Total tidal energy per year 

𝐸 =
𝑛𝑚𝑔ℎ

2
=
1413 ∗ 1.1 ∗ 1014𝑘𝑔 ∗ 9.8𝑚 𝑠2⁄ ∗ 17𝑚

2
= 1.3 ∗ 1019𝐽 

= 3.6 ∗ 1012𝑘𝑊ℎ 

                                                            

3. Wave energy  
Based on the figure below, deduce the the wave power per unit length. 

Suppose crest-to-trough height of wave is h, wavelength is λ, wave period is T, and the wave shape 

follows the sine function.  

Given: surface wavelength 𝜆 =
𝑔𝑇2

2𝜋
 

 

There are two mistakes in the tutorial at the lecture. The corrections are made below. 

 

Mass of a crest or trough per unit length: 

𝑚 = 𝜌 ∙ ∫
ℎ

2
𝑠𝑖𝑛

2𝜋

𝜆

𝜆
2

0

𝑥 ⅆ𝑥 = 𝜌
𝜆ℎ

2𝜋
 

(this calculation was wrong in the tutorial) 



Next, we want to know the energy stored in a wavelength. The total energy of a crest is not the 

potential energy from crest to sea level, but it’s the potential energy from a crest to a trough. (Think 

the other way round, we need the energy to raise the water from the trough below sea level to the 

crest, above sea level). 

 

Energy stored in a crest per unit length: (energy stored in a half wavelength) 

∆𝐸 = mg∆ℎ = 𝜌
𝜆ℎ

2𝜋
𝑔 ∙

𝜋ℎ

8
= 𝜌𝜆𝑔ℎ2/16 

Energy stored in a full wavelength is then 2∆𝐸 = 𝜌𝜆𝑔ℎ2/8 

This is the energy gain per unit length for a whole wavelength.  

As a wavelength corresponds to a wave period, 

the wave power per unit length is then: 

𝑃 =
2∆𝐸

𝑇
=
𝜌𝜆𝑔ℎ2/8

𝑇
=
𝜌𝑔2𝑇ℎ2

16𝜋
 

In the tutorial, I mentioned the process for a quarter wave period or a half wave period. That is 

actually also wrong. In this calculation, we only calculate the energy stored in the wave. So the wave 

is not doing work to other media. The total amount of energy in the wave remains the same. Once 

we calculate the total energy in a wavelength, we don’t have to relate the process to a half wave 

period or a quarter wavelength.   

 

With ρ=1g/cm3, g=9.8m/s, and π=3.14, 

𝑃 =

1𝑔
𝑐𝑚3 ∗ (

9.8𝑚
𝑠2

)
2

∗ 𝑇 ∗ ℎ2

16 ∗ 3.14
≈ 1.91

𝑘𝑊

𝑠𝑚3
𝑇(𝑠) ∗ ℎ(𝑚)2 

 

 


