Renewable Energy Technologies I 529-0193-00L, A. Wokaun et al.

Lecture 13: Life Cycle Analysis and multicriteria assessment of energy systems in view of sustainability indicators

A detailed solution will be available from the 20th of December on the website: <u>http://www.psi.ch/ene/ret1</u>

Questions: Xiaojin Zhang, xiaojin.zhang@psi.ch

Life Cycle Analysis (LCA) of photovoltaic (PV) energy systems and Application of Multi-criteria Decision Analysis (MCDA) to rank electricity generation systems

The exercise consists of part A and B with four questions in total.

The first part (A) addresses a simplified PV energy chain. The cumulative direct electricity demand based on various steps of the energy chain should be calculated. As the electricity generation is associated with emissions (to air), selected cumulative emissions per kWh of electricity produced from the PV plant should be calculated.

The second part (B) consists of the application of an MCDA for the sustainability assessment of four different electricity generation systems.

Part A

A1. LCA-based direct electricity requirements of a solar PV system

The system to analyse is a 5 kW_p^{-1} PV plant with single-crystalline silicon cells (sc-Si), mounted on the slanted roof of a house in the Swiss Middle-Lands and connected to the electricity grid. The yearly electricity production yield) is about 900 kWh/(year*kW_p).

Figure 1 shows a simplified exemplary PV energy chain. The names within boxes correspond to the products of individual production steps. The direct electricity requirements (or uses) of the steps are also shown (adapted from Jungbluth et al. 2010; *ecoinvent* 2015).

Calculate the **cumulative direct electricity requirements per 5** kW_p **PV plant** throughout the energy chain. The LCA calculation is simplified in the sense that only the main route of silicon production is taken into account and no feedbacks from the material uses are considered. (1.5 Points)

¹ The power rate of PV plants is always given as peak power obtained with optimal exposure to sunrays.

Figure 1: The horizontal arrows give the direct electricity requirements for the main steps of the PV energy chain for a 5 kW_p PV plant with single-crystalline silicon cells (sc-Si) mounted on slanted roof (simplified and adjusted, after Jungbluth et al., 2010). The vertical arrows represent the exchanges between two consecutive steps of the chain. MG=Metallurgical Grade; SG=Solar Grade; CZ=Czochralski Process.

A2. LCA-based cumulative emissions from the electricity requirements of the PV chain

The ENTSO- E^2 electricity mix of 2012 is given in Table 1. Selected cumulative air emissions associated with the most important power generation systems in the ENTSO-E are given in Table 2 as calculated from the LCA database *ecoinvent*. Assume that all electricity requirements for the fabrication of the PV plant (i.e. all electricity inputs shown in Figure 1) are from the ENTSO-E Mix 2012.³

Calculate the selected cumulative air emissions associated with the unit of electricity produced at the PV plant in **kg emission / kWh produced from the PV plant** for each pollutant separately. Assume 25 years lifetime of the PV modules. (1.5 Points)

² European Network of Transmission System Operators for Electricity. Since 2009, the Union for the Coordination of Transmission of Electricity (UCTE) has transferred its tasks to ENTSO-E.

³ In *ecoinvent*, every step in the production chain includes specific electricity supply, e.g. electricity from hydro and natural gas power plants for the production of SG-silicon. This exercise is therefore simplified.

Table 1Share [%] of the different types of electricity generation in the average electricity mix in the
ENTSO-E in 2012 (simplified and adjusted, after *ecoinvent* 2015). The category "Wind and
others" includes electricity from solar, geothermal, biogas, wood and waste. Wind alone is 6%.

Electricity mix ENTSO-E 2012	Lignite	Hard coal	Oil	Natural gas	Nuclear	Hydro	Wind and others
[%]	12	16	2	16	25	16	13

Table 2Selected LCA-based cumulative air emissions from the electricity generation of different full
energy chains (adjusted, *ecoinvent* 2015). *Reservoir and run-of-river hydropower.

Emission species ⁴	Lignite	Hard coal	Oil	Natural gas	Nuclear	Hydro*	Wind
GHG [kg CO ₂ -equivalent/kWh]	1.15E+0	1.07E+0	8.85E-1	6.40E-1	7.79E-3	4.46E-3	1.13E-2
SO ₂ [kg/kWh]	1.42E-3	1.54E-3	2.75E-3	6.94E-4	3.07E-5	1.43E-5	2.42E-5
NO _x [kg/kWh]	6.95E-3	3.24E-3	4.38E-3	2.18E-4	3.21E-5	5.32E-6	3.23E-5
PM _{2.5} [kg/kWh]	5.1E-4	1.93E-4	1.26E-4	1.14E-5	1.93E-5	3.92E-6	9.38E-6
NMVOC [kg/kWh]	3.20E-5	9.78E-5	3.87E-4	3.62E-4	6.91E-6	2.65E-6	6.51E-6

Note: You can use the data for wind for all the 13% of wind and others in table 1.

Part B

B1. Application of Multi-criteria Decision Analysis (MCDA) to rank four electricity generation systems: Trade-off assessment

Table 3 presents an overview of indicators assembled to characterize four different power generation systems (hydro power, wind, nuclear and natural gas; current technologies, German case) concerning the three pillars (or dimensions) of sustainability: Economy, Environment and Society (Hirschberg et al. 2004).

In the spirit of sustainability equal weight are assigned to each pillar. Therefore, a weight of 33.3 should initially be assumed for each dimension as it is shown in Tables 3 and 4. The sum of these first level weights must be 100. Weights provided for lower levels in the criteria hierarchy represent a consensus within a stakeholder group. The sum of the weighting must be 100 in each set.⁵

Table 4 shows the linearly normalised values assigning to each indicator 100 for the best performer and 0 for the worst performer among the four electricity generation systems. That way, all indicators are expressed in the same unit (Hirschberg et al. 2004).

Use Table 4 for the calculation of total sustainability score for the four power generation systems, using the weighted sum approach explained in the lecture slides. Apply the algorithm in sequence to each level were weights are given, starting from the lowest level. In some cases, level 2 and level 3 have the same indicator or, seen the other way around, criteria at level 2 do not need sub-criteria at level 3 in order to provide a more refined description. (1.5 points)

⁴ The greenhouse gas (GHG) emissions are calculated using the greenhouse warming potentials from (IPCC 2007) for the 100 year time horizon. SO₂: Sulfur Dioxide, NO_x: Nitrogen Oxides, PM_{2.5}: Particulate Matter <2.5 μ m diameter, NMVOC: Non-Methane Volatile Organic Compounds.

⁵ In the slides of the lesson, the weights are given as fractions and the sum of the weights is set to 1.

B2. Establish your own weighting profile

Of course weighting can be different depending on stakeholder-specific preferences. Establish your own weighting profile including the highest level if your priorities for the three dimensions of sustainability are not equal. Carry out the MCDA calculation again, establish a new ranking of technologies and discuss the differences. (0.5 points)

Full set of indicators and weights (Base Case MCDA); after (Hirschberg et al. 2004). Table 3

Economic 1	Indicators
------------	------------

Level 1	Level 2		Level	Level 3		Electricity systems				
Weight	Impact Area	Weight	Indicator	Weight	Unit	Hydro	Wind	Nuclear	Natural	
									Gas	
	Financial		Production cost	70	c€/kWh	7	9	2.1	3.6	
	Requirements	60	Fuel price increase sensitivity	30	Factor	1	1.03	1.3	1.8	
22.2	Resources 40		Availability (load factor)	30	%	40	20	80	80	
			Geopolitical factors	20	Relative scale	100	90	80	40	
5515		40	Long-term sustainability: Energetic	10	Years	x	8	5E+02	1E+02	
			Long-term sustainability: Non-energetic (Cu)	20	kg/GWh	1	38	5	4	
			Peak load response	20	Relative scale	30	0	10	100	

Environmental Indicators

Level 1	Level 2	Level	Level 3			Electricity systems			
Weight	Impact Area	Indicator	Weight	Units	Hydro	Wind	Nuclear	Natural	
								Gas	
	Global Warming	CO ₂ -equivalents	40	tons/GWh	4	10	10	423^{6}	
	Regional	Change in unprotected	20	km ² /CW/h	0.0000	0.0020	0.0017	0.0163	
	Environmental Impact	ecosystem area	50	km /Gwn	0.0009	0.0029	0.0017	0.0105	
22.2	Non-Pollutant	Land use	10	m^2/GWh	02	28	7	17	
55.5	Effects		10	m/Gwn	92	20	/	47	
	Savara accidents	Fatalities	15	Fatalities/	0.003	0.0001	0.02	0.001	
	Severe accidents		15	GWh	0.003	0.0001	0.02	0.091	
	Total Waste	Mass	5	tons/GWh	24	23	15	2	

Social Indicators

Level 1	Level 2	Level	3]	Electric	ity systen	ıs
Weight	Impact Area	Indicator	Weight	Units	Hydro	Wind	Nuclear	Natural
								Gas
	Employment	Technology-specific job opportunities	5	person- years / GWh	1.2	0.36	0.16	0.65
	Proliferation	Potential ⁷	10	Relative scale	0	0	100	0
22.2	Human Health Impacts (normal operation)	Mortality (reduced life- expectancy)	55	YOLL ⁸ /G Wh	0.011	0.007	0.005	0.023
33.3	Local Disturbances	Noise, visual amenity	5	Relative scale	5	7	4	2
	Critical Waste confinement	"Necessary" confinement time	10	Years	1E+01	1E+03	1E+06	1E+01
	Risk Aversion	Maximum credible number of fatalities per accident	15	max fatalities/ accident	2000	5	50000	100

⁶ Modern Natural Gas Combined Cycle (NGCC) power plant.
⁷ Issue specific to nuclear energy.
⁸ Years Of Life Lost.

Table 4Full set of normalized (*Norm.*) indicators and weights, using a scale of merit (100=Best, 0=Worst);
after (Hirschberg et al. 2004).

Level 1	Level 2		Level 3			Electricity systems (p _{ij})			
Weight	Impact Area	Weight	Indicator	Weight	Unit	Hydro	Wind	Nuclear	Natural
(w _i)		(w _i)		(w _j)					Gas
	Financial Requirements 60	Production cost	70	Norm.	29	0	100	78	
		Requirements 6	60	Fuel price increase sensitivity	30	Norm.	100	96	63
			Availability (load factor)	30	Norm.	33	0	100	100
33 3			Geopolitical factors	20	Norm.	100	83	67	0
	Resources 40	40	Long-term sustainability: Energetic	10	Norm.	100	100	0	0
			Long-term sustainability: Non-energetic (Cu)	20	Norm.	100	0	88	91
			Peak load response	20	Norm.	30	0	10	100

Economic Indicators

Environmental Indicators

Level 1	Level 2	Level 3			Electricity systems (p _{ij})			
Weight	Impact Area	Indicator	Weight	Units	Hydro	Wind	Nuclear	Natural
(w _j)			(w _j)					Gas
	Global Warming	CO ₂ -equivalents	40	Norm.	100	99	99	0
33.3	Regional Environmental Impact	Change in unprotected ecosystem area	30	Norm.	100	87	95	0
	Non-Pollutant Effects	Land use	10	Norm.	0	75	100	53
	Severe accidents	Fatalities	15	Norm.	97	100	78	0
	Total Waste	Mass	5	Norm.	0	5	41	100

Social Indicators

Level 1	Level 2	Level	Level 3			Electricity systems (p _{ij})			
Weight (w _i)	Impact Area	Indicator	Weight (w _i)	Units	Hydro	Wind	Nuclear	Natural Gas	
	Employment	Technology-specific job opportunities	5	Norm.	100	19	0	45	
	Proliferation	Potential ⁹	10	Norm.	100	100	0	100	
	Human Health Impacts (normal operation)	Mortality (reduced life- expectancy)	55	Norm.	67	89	100	0	
33.3	Local Disturbances	Noise, visual amenity	5	Norm.	40	0	60	100	
	Critical Waste confinement	"Necessary" confinement time	10	Norm.	100	100	0	100	
	Risk Aversion	Maximum credible number of fatalities per accident	15	Norm.	96	100	0	100	

⁹ Issue specific to nuclear energy.

References

ecoinvent 2015	ecoinvent (2015) ecoinvent data v3.2. Swiss Centre for Life Cycle Inventories, Dübendorf, <u>www.ecoinvent.org</u>
Hirschberg et al. 2004	Hirschberg S., Dones R., Heck T., Burgherr P., Schenler W., Bauer C., "Sustainability of Electricity Supply Technologies under German Conditions: A Comparative Evaluation." PSI report Nr. 04-15. December 2004.
IPCC 2007	IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Jungbluth et al. 2010	Jungbluth N., Stucki M, Frischknecht R., and S. Buesser (2010) Photovoltaics. In Dones, R. (Ed.) et al., Sachbilanzen von Energiesystemen: Grundlagen für den ökologischen Vergleich von
	für die Schweiz. ecoinvent report No. 6-XII, ESU-services Ltd, Uster,CH, 2010.