Renewable Energy Technologies I Prof. A. Wokaun AS 2016 6st of December

Exercise 12: Methanation

Julia Witte, (julia.witte@psi.ch)

A detailed solution is provided at the **13th of December**. Please see: <u>http://www.psi.ch/ene/ret1</u>

Problem: Direct Methanation of Carbon Dioxide from Biogas

Biogas is produced via fermentation of biomass, e.g. green waste, sewage sludge or manure. After the fermentation a gas was built, which contains methane and carbon dioxide. Further upgrade is needed to reach gas grid quality with a minimum of 96% of methane. Conventionally carbon dioxide is separated via scrubbing and then released into atmosphere. In a new approach carbon dioxide is not seen as waste, but as raw material for further methane production. Here the raw biogas is entering a methanation unit, in which carbon dioxide and added hydrogen is converted to further methane. The already existing methane in the biogas is passing the methanation as quasiinert. This procedure allows an increase of the bio-methane production up to 80% with the same amount of biomass at the input.

The direct methanation is illustrated in Figure 1. Here biogas (1) is mixed with hydrogen (2) and

Figure 1: Flowsheet of a direct methanation possibly with steam (3). The steam inhibits the deactivation of the catalyst due to carbon deposition. The mixture (4) enters the methanation reactor, where carbon dioxide and hydrogen convert to methane and water:

$$CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O \qquad \Delta H_R^0 = -164.7 \ kJ/mol \tag{I}$$

The reactor is cooled by an internal heat exchanger. The outlet stream of the reactor (5) contains mainly methane and water.

Tasks:

i. **Methanation without steam:** Calculate the molar flows of all components in stream 5 $\dot{n}_{5,i}$ [mol/s] and the heat stream $\dot{Q}_{out,M}$ [kW], which must be dissipated in order to maintain a temperature of $T_{meth} = 320^{\circ}$ C. A steady state process is assumed. Stream 4 has a temperature of $T_4 = 270^{\circ}$ C. The conversion of CO₂ in the methanation unit reaches C_{CO2} = 95%.

Further values:

- Biogas stream: $\dot{n}_1 = 4 \frac{mol}{s}$, $x_{1,CH_4} = 0.55$, $x_{1,CO_2} = 0.45$
- In this case: No steam is added, $\dot{n}_3 = 0 \frac{mol}{c}$,
- The ratio of H₂ to CO₂ in stream 4 is stoichiometric
- p = 5 bar for all streams and the reactor
- Specific heat capacities: $c_{p,4mix} = 31.7 \frac{J}{mol K}$, $c_{p,5mix} = 34.4 \frac{J}{mol K}$

ii. Equilibrium constant K_{eq}

Calculate the equilibrium constant K_{eq} with thermodynamic data and check if the reaction reaches its equilibrium state. Use the NIST database in the appendix for standard enthalpy and entropy calculations at T_{meth} .

iii. Equilibrium constant and methanation with steam

The catalyst starts to deactivate due to carbon deposition. A countermeasure is the injection of steam into the reactor. How does the steam affect the maximum conversion rate of carbon dioxide? Show it in a qualitative way with the equation $K = \prod_i p_i^{v_i}$ for component i.

iv. Equilibrium constant and operational conditions in the reactor

How can the effect of steam addition be compensated by changing operational conditions in the reactor? Show it in a qualitative way with the equation $K = \prod_i p_i^{v_i}$ for components i at constant temperature T_{meth} .

Appendix:

NIST – Database

Correlations:

$$\begin{split} H^{\circ} - H^{\circ}_{298.15} &= A^{*}t + B^{*}t^{2}/2 + C^{*}t^{3}/3 + D^{*}t^{4}/4 - E/t + F - H \\ S^{\circ} &= A^{*}ln(t) + B^{*}t + C^{*}t^{2}/2 + D^{*}t^{3}/3 - E/(2^{*}t^{2}) + G \end{split}$$

$$\label{eq:holescale} \begin{split} H^\circ &= \text{standard enthalpy (kJ/mol)} \\ S^\circ &= \text{standard entropy (J/mol*K)} \\ t &= \text{temperature (K) / 1000.} \end{split}$$

T0 = 298.15K

<u>Hydrogen</u>

 $\Delta_{\rm f} {\rm H^{o}}_{\rm gas}$ (T0) = 0.0 kJ/mol

Temperature	298 1000.	1000 2500.	2500 6000.
(K)			
А	33.066178	18.563083	43.413560
В	-11.363417	12.257357	-4.293079
С	11.432816	-2.859786	1.272428
D	-2.772874	0.268238	-0.096876
Е	-0.158558	1.977990	-20.533862
F	-9.980797	-1.147438	-38.515158
G	172.707974	156.288133	162.081354
Н	0.0	0.0	0.0
Reference	<u>Chase, 1998</u>	<u>Chase, 1998</u>	<u>Chase, 1998</u>
Comment	Data last reviewed in	Data last reviewed in	Data last reviewed in
	March, 1977; New	March, 1977; New	March, 1977; New
	parameter fit October	parameter fit October	parameter fit October
	2001	2001	2001

<u>Carbon dioxide</u>

 $\overline{\Delta_{\rm f} {\rm H}^{\circ}_{\rm gas}}$ (T0) = -393.52 kJ/mol

Temperature (K)	298 1200.	1200 6000.
A	24.99735	58.16639
В	55.18696	2.720074
С	-33.69137	-0.492289
D	7.948387	0.038844
Е	-0.136638	-6.447293
F	-403.6075	-425.9186
G	228.2431	263.6125
Н	-393.5224	-393.5224
Reference	<u>Chase, 1998</u>	<u>Chase, 1998</u>
Comment	Data last reviewed in September, 1965	Data last reviewed in September, 1965

<u>Methane</u>

 $\overline{\Delta_{\rm f} {\rm H}^{\circ}_{\rm gas} \, ({\rm T}0)} = -74.87 \ \rm kJ/mol$

Temperature (K)	298 1300.	1300 6000.
А	-0.703029	85.81217
В	108.4773	11.26467
С	-42.52157	-2.114146
D	5.862788	0.138190
Е	0.678565	-26.42221
F	-76.84376	-153.5327
G	158.7163	224.4143
Н	-74.87310	-74.87310
Reference	<u>Chase, 1998</u>	<u>Chase, 1998</u>
Comment	Data last reviewed in March, 1961	Data last reviewed in March, 1961

<u>Water (gaseous)</u>

 $\Delta_{f}H^{\circ}{}_{gas} (T0) = -241.83 \text{ kJ/mol}$

Temperature (K)	500 1700.	1700 6000.
А	30.09200	41.96426
В	6.832514	8.622053
С	6.793435	-1.499780
D	-2.534480	0.098119
Е	0.082139	-11.15764
F	-250.8810	-272.1797
G	223.3967	219.7809
Н	-241.8264	-241.8264
Reference	<u>Chase, 1998</u>	<u>Chase, 1998</u>
Comment	Data last reviewed in March, 1979	Data last reviewed in March, 1979

Slides:

Equilibrium Constant via Thermodynamic Data

How do we determine $\Delta H_{f,i}^0(T)$ and $\Delta S_i^0(T)$?

Either via Integration:

$$\begin{split} \Delta H^0_{f,i}(T) &= \Delta H^0_{f,i}(T^0) + \int_{T^0}^T c_{p,i}(T) dT \\ \Delta S^0_i(T) &= \Delta S^0_i(T^0) + \int_{T^0}^T \frac{c_{p,i}(T)}{T} dT \end{split}$$

Or via given correlations of databases, like 'NIST' database (http://webbook.nist.gov/chemistry/)

 $\begin{array}{l} H^{\circ}-H^{\circ}_{298.15}\text{=}\ A^{*}t+B^{*}t^{2}/2+C^{*}t^{3}/3+D^{*}t^{4}/4-E/t+F-H\\ S^{\circ}=A^{*}\underline{ln}(t)+B^{*}t+C^{*}t^{2}/2+D^{*}t^{3}/3-E/(2^{*}t^{2})+G \end{array}$

 $H^{\circ} = standard enthalpy (kJ/mol)$ $S^{\circ} = standard entropy (J/mol^*K)$ t = temperature (K) / 1000

And given constants A ... H in tables for each component

Page 7

Equilibrium Constant via Thermodynamic Data

For example:

Hydrogen

Δ

	(TO) 0 0 1 1 (
fH.gas	(10) = 0.0 kJ/mol	

Temperature	298 1000.	1000 2500.	2500 6000.
(к)			
Α	33.066178	18.563083	43.413560
В	-11.363417	12.257357	-4.293079
с	11.432816	-2.859786	1.272428
D	-2.772874	0.268238	-0.096876
E	-0.158558	1.977990	-20.533862
F	-9.980797	-1.147438	-38.515158
G	172.707974	156.288133	162.081354
н	0.0	0.0	0.0
Reference	Chase, 1998	<u>Chase, 1998</u>	Chase, 1998
Comment	Data last reviewed in March, 1977; New parameter fit October 2001	Data last reviewed in March, 1977; New parameter fit October 2001	Data last reviewed in March, 1977; New parameter fit October 2001

http://webbook.nist.gov/cgi/cbook.cgi?ID=C1333740&Units=SI&Mask=1#Thermo-Gas