

Class Chemistry and Chemisorption in the RN Package

Presented by Jesse Phillips

jphill@sandia.gov

RN Class Chemistry and Chemisorption

- The following topics are discussed
 - -Class Chemistry Model
 - May be used to simulate adsorption, chemisorption, and reactions for **Vapors**
 - Limits classes for consideration (available vapor mass is dominantly Class 2, 4, 16)
 - General class reaction and transfer modeling
 - User may specify reaction rate constant or deposition velocity
 - -Chemisorption Model
 - Rate equations for vapor species

Class Chemistry Modeling

- Class reactions
 - -First-order reversible reaction
 - -Gas-phase in State C to C_1 on a surface (mass transport)

$$\frac{dM_c}{dt} = -\left(\frac{k_m A / V}{k_m A / V + k_f}\right) \left(k_f M_C - k_r M_{C1}\right)$$

where

k_m = mass transfer rate constant for the process, based on the mass transfer coefficient calculated by the HS Package, (m/s)

 k_f = forward reaction rate constant from user input, (s⁻¹) = reverse reaction rate constant from user input, (s⁻¹)

A / V = surface-to-volume ratio, where the surface area is that for the reaction and the volume is that of the control volume (m⁻¹).

Deposition velocity

$$\frac{dM_C}{dt} = -V_d(A/V)C = -\frac{dM_{C1}}{dt}$$

Class Chemistry Modeling

- Only function in user-specified control volumes
- Surfaces that may contribute: Heat structures, pools, and aerosols
 - -Heat structure may be disabled in case of film through a flag
- Reaction energies may also be specified
 - -Energy is deposited to the HS, pool, or atmosphere, i.e., the RN class host

Class Chem. – Class Transfers

- No checks
 - -Transfers are arbitrarily imposed by the user
 - -Class and locations may be changed for aerosols and/or vapors assuming fast reaction

$$M_{from, t + \Delta t} = M_{from, t} - \frac{dM}{dt} \Delta t$$

$$M_{to, t+\Delta t} = M_{to, t} + \frac{dM}{dt} \Delta t$$

- -Example of arbitrary nature:
 - Class A in pool becomes Class B on given HS at a set rate

Input Example

$Csl(g) \rightarrow Csl(ad)$	rate constant for adsorption is supplied tr		
$CsI(ad) \rightarrow CsOH(ad) + HI(s)$	instantaneous and complete transfer between classes when water is present. Note that the water mass is not included in the model; water mass is not explicitly conserved.		
$CsOH(g) \rightarrow CsOH(ad)$	rate constant for adsorption supplied or condensation limited		
$CsOH(ad) \rightarrow CsOH(g)$	reaction with zero rate constant below T ₁		
	positive value or instantaneous above T_1		
$HI(s) \leftrightarrow HI(g)$	controlled by condensation/evaporation		

Chemisorption Model

- Only function with Vapors
- 6 chemisorption classes

$$\frac{dM_{ij}}{dt} = A_i k_{ij} C_j \tag{2.134}$$

```
M_{ij} = mass of species j chemisorbed on surface i (kg)
```

 A_i = area of surface i (m²)

 k_{ij} = chemisorption coefficient of species j on surface i (m/s)

 C_i = concentration of species j in atmosphere (kg/m³)

The mass chemisorption coefficient k_{ij} is temperature dependent and is given as

$$k_{ij} = a_{ij} e^{-E_{ij}/RT_i}$$
 (2.135)

where

 a_{ij} = chemisorption coefficient for species j on surface type i (m/s)

 E_{ij} = activation energy for species j on surface type i (J/kg)

 T_i = temperature of surface i(K)

R = universal gas constant (8314 J/kg-K)

Chemisorption Model - Defaults

Species j	Surface i	A _{ij} (m/s)	E _{ij} (J/kg)	Reference	
CsOH	Stainless Steel	0.139	5.96e7	Vine[40]	
CsOH	Inconel	0.035	5.95e7	*	
Csl	Stainless Steel	2.0e-7	0.0	Sallach[41]	
Csl	Inconel	2.0e-6**	0.0	Sallach[41]	
HI	Stainless Steel	5.5e-7	2.49e7	Williams[42]	
I ₂	Stainless Steel	9.0e-10	3.39e7	Williams[42]	
Те	Stainless Steel	0.0	-	Sallach[43]	
Te	Inconel	0.0	-	Sallach[43]	
*Estimated from Sabathier[44] and Elrick[45] data.					

^{**} Cesium retained, lodine released

CA Class	Chemisorption Reaction	Radionuclide Class
1	CsOH on SS	CsOH (2)
2	CsOH on Inconel	
3	Csl on SS	Csl (16)
4	Csl on Inconel	
5	HI on SS	I ₂ (4)
6	I ₂ on SS	I ₂ (4)

Chemisorption Model

- While Inconel is present, a default material must be defined in the material package before it can be used
 - -So Inconel is ready, but not available
 - -User specified material doesn't function with the chemisorption
 - If user defines a unique stainless steel, they may wish to consider redefining the default stainless steel to maintain chemisorption

CsI Chemisorption

- CsI upon chemisorption is results in CsOH being augmented and iodine mass being released as I₂ (Class 4).
 - -CsI mass will report zero chemisorption mass due to this transfer of mass to CsOH (Class 2).
 - -CsOH must be active to receive mass.

Questions