


# Engineer Safety Features of the RN Package

Presented by Jesse Phillips jphill@sandia.gov



SAND2018-4261 PE

EMUG 2018 Workshop

# **RN Engineered Safety Features**

- Three primary features discussed for this talk
  - -Pool Scrubbing -SPARC-90 Model
  - -Spray HECTR Model
  - -Filters Simple user-specified models



# **RN ESFs**

- The reference manual provides sufficient information and detail to understand these models.
- This presentation reviews the models and provides additional discussion
- Guidance given is the based on the presenter's experience of these models.



## RN ESFs – SPARC-90 in MELCOR

- MELCOR implements Thermal-Hydraulics (T-H) and Fission Product (FP) scrubbing for bubbles independently between the control volume hydrodynamics (CVH) and radionuclide package (RN):
  - -Mass and energy exchange between bubble NCGs/Water and the Pool is treated within CVH and is activated on FL\_JSW for a given flow direction.
  - -SPARC-90's FP scrubbing models are enabled through RN2\_PLS input.



### RN ESFs – CVH Bubble Transport T-H

- MELCOR applies simple efficiency correlations to determine the mass/energy dispositioning associated with bubble transport.
  - -Efficiency submergence depth
  - -Efficiency adequate subcooling
  - -Efficiency condensation

$$\varepsilon_z = \frac{z_P - z_J - 0.01m}{1.0 h}, 0 \le \varepsilon_z \le 1$$

$$\varepsilon_{T} = \frac{T_{sat}(P) - T_{P} - 0.1K}{5.0 \text{ K}}, 0 \le \varepsilon_{T} \le 1$$

$$\varepsilon = \varepsilon_z \varepsilon_\tau$$

- Zp , Zj=Pool and Flowpath elevations
- h = Flowpath junction height
- Tsat(P), Tp = Pool Sat. Temperature and Pool Temperature

#### Ref: SAND2017-0876 O pg. CVH/FL-RM-60

# RN ESFs – SPARC-90 Model

- General SPARC-90 Model
  - -Thermal/mechanical equilibration between vapor / pool
    - Assumed instantaneous, i.e., thermophoretic deposition is ignored
  - -Mass and energy transfer
    - Between Pool and Bubbles
      - Supersaturation of bubble results from mechanical work due to expansion during bubble rise.
    - Condensation to aerosols
      - Hygroscopic, soluble particle-growth, supersaturation,
    - Vapor released to overlying atmosphere
  - -Fission product removal mechanisms



## RN ESFs – SPARC-90 FP Capture

- Aerosol Capture
  - Globule, i.e., Pre-Swarm (Vent Exit)
    - Two-Models: pre-detachment and post-detachment of globule
      - Diffusion deposition Brownian and gravitational
      - Centrifugal
    - Steam Condensation
      - During equilibration of vapor (fraction of gas volume condensed)
    - Impaction
  - Bubble Swarm (Piece Wise Marching Calculation)
    - Calculates bubble T-H and particle growth
    - Deposition velocities are computed: Centrifugal, Brownian, and Gravitational. Hindering velocity also computed: Pool Vaporization
    - Volatile Iodine capture Limited by slower aqueous reactions and bubble surface renewal, modeled independent of pH in SPARC-90.

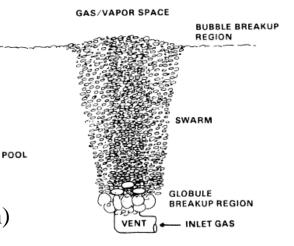



FIGURE 2.1. Schematic of Suppression Pool During Scrubbing of Inlet Gases

2.1



EMUG 2018 Workshop

### SPARC-90 Parameter Sensitivity Results

Taken from Ref.:

P.C. Owczarski, K.W. Burk, "SPARC-90: A Code for Calculating Fission Product Capture in Suppression Pools," NUREG/CR—5765, Oct. 1991.

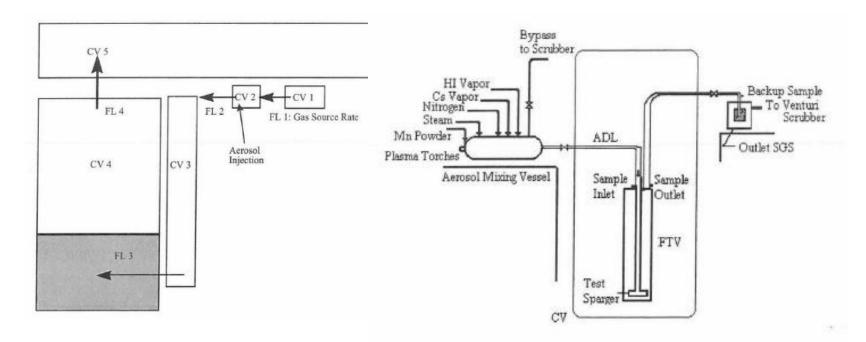
- Most Important
  - Particle size distribution
- Very Important
  - Particle concentration
  - Bubble size/shape
  - Volume fraction of steam in inlet gas
  - Particle density
- Intermediate Importance
  - Pool temperature
  - Pool depth
  - Percent of soluble material in particles
- Least Important
  - Noncondensible gas composition
  - Pressure above pool



### RN ESFs – SPARC-90 Modeling Practices

- Using Pool Scrubbing
  - Users must enable the scrubbing model to use SPARC-90 FP decontamination factor (DF) calculations
  - -By default SPARC-90 is off:
    - Enable to compute scrubbing of aerosols and/or iodine vapor
    - Additional inclusion made for scrubbing of all vapors
      - SOARCA best practice is to enabled vapor scrubbing (?).
  - Of the important parameter's, most are determined directly by MELCOR.
  - Model has assumed bubble regions: entrance globule and bubble swarm. Therefore, single contiguous pools are recommended when using the model.
    - Otherwise, globule / bubble swarm decontamination will switch and restart with each flowpath in-series.

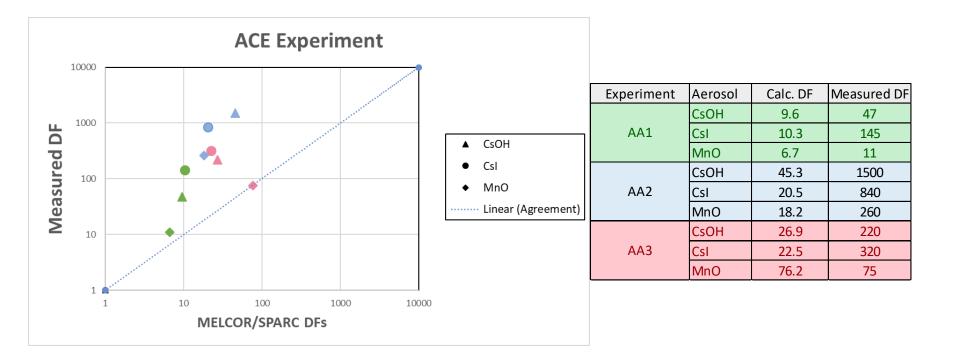



### RN ESFs – SPARC-90 Modeling Practice

- Using Pool Scrubbing (Cont.)
  - All MELCOR assessments presented for pool scrubbing experiments use single control volume for receiving pool. Avoid stacked control volumes for scrubbing pool representation.
  - Missing from the importance list is the vapor temperature of the exit fluid. Decontamination is stronger for aerosols than vapors; therefore, the exit temperature which determines the Cs/I physical state can drive large DFs for aerosols or small DFs for vapors.
    - If your releases to environment significantly varying from one analyses to the next, determine the physical form of Cs/I being passed to the pool.
  - Scrubbing can also be enabled for the Cavity package for coreconcrete releases when submerged.



# **MELCOR** Assessments

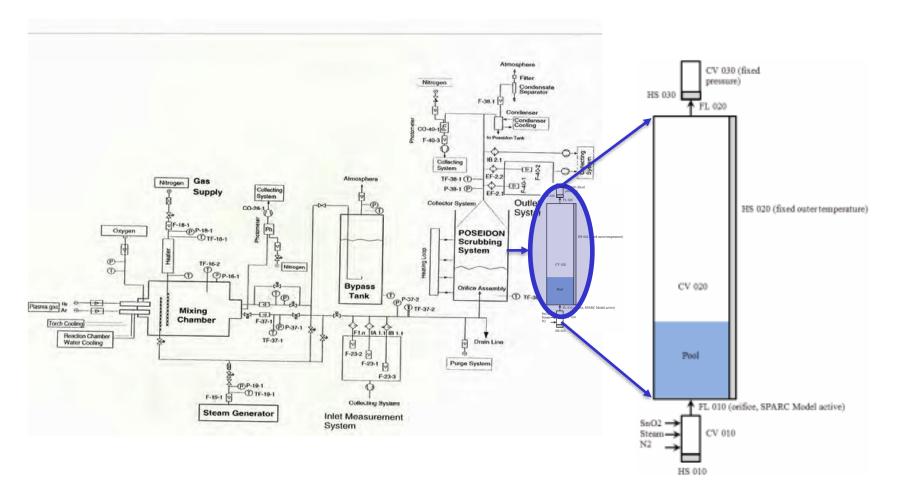

- ACE AA1-3 Experiments
  - Comparison with MELCOR calculated values.
  - Sourced in HI, Cs, N, and H2O vapor as well as Mn powder.



Ref.: L.L.Humphries, et. al., MELCOR Manual Vol. 3, Sept. 2015.



# ACE AA1-3 Experiments



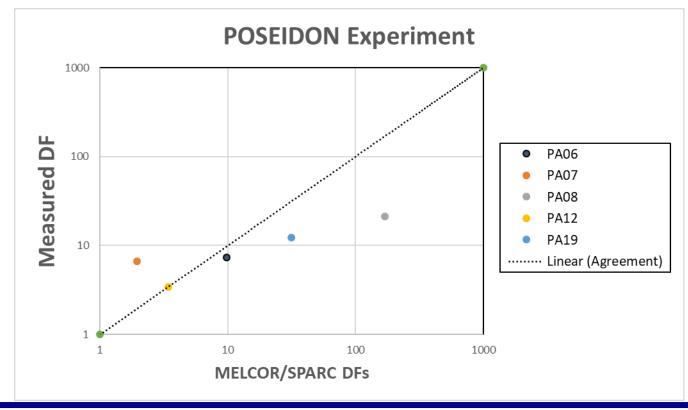

Ref.: L.L.Humphries, et. al., MELCOR Manual Vol. 3, Sept. 2015.



## **MELCOR** Assessments

#### • POSEIDON Experiments






13

EMUG 2018 Workshop

# **POSEIDON** Experiments

- PA07 (Shallower Pool)
- PA08 (Deeper Pool)
- PA12 (No Steam)
- PA17 (High steam fraction and larger particles)



# **RN ESF - Sprays**

- MELCOR models T-H and gas scrubbing for sprays within the SPR package. All associated input is in the SPR package.
  - -Mass and energy transfer is modeled with a single droplet fall model for each discrete bin size.
    - Spray Junction (SPR\_JUN) define "fall-thru" if droplets reach a control volume base.
  - -Radionuclide scrubbing is computed with lamdas  $(\lambda s)$  for aerosols and vapors.
    - Single droplet sizes are recommended for sprays when gas scrubbing is being considered



# RN ESF – Sprays Input Variables

- User specifies the following information
- Volumetric flow rate and temperature
- Diameter (or size distribution)
  - -Effects flow rates around droplet
    - Drag / terminal velocity
    - Mass transfer coefficients
- Fall height
  - -Combined with diameter gives exposure time
- Pass through (SPR\_JUN)

-Interface exchange for falling droplets



# RN ESF – Sprays Scrubbing

• Vapor / Aerosol removal rate per class

$$\frac{dM_k}{dt} = -\lambda_{k,i}M_k$$

- Vapor removal model is mechanistic and is film/layer diffusion limited.
- User may account for additives (borated, etc.) by adjusting the partition coefficient, ratio of equilibrium densities.



# RN ESF – Sprays Scrubbing

- Aerosol removal is calculated primarily by impaction and interception
  - -Diffuisophoresis and diffusion also included
  - -Similar to aerosol/aerosol interaction
    - Droplets that are "large" (>10micron) sweep up aerosols
    - For "smaller" droplets, diffusiophoresis becomes more significant
  - –Aerosol lamda is a function of efficiency ( $\epsilon$ )
    - Impaction (velocities/radii disparity) potential/viscous
    - Interception (solely radii disparity) potential/viscous
    - Diffusion
    - Diffusiophoresis

$$\boldsymbol{E}_{i,j} = \boldsymbol{1} - \prod_{k} \left( \boldsymbol{1} - \boldsymbol{\varepsilon}_{ijk} \right)$$



# RN ESF – Sprays Scrubbing

$$\lambda_{k,i} = \frac{F_i E_{k,i} H}{V}$$

(2.115)

#### where

Fi

Н

 $E_{k,i}$ 

= volumetric flow rate for droplets of size *i* 

= adsorption efficiency for vapor class k

- partition coefficient for partition of the vapor between spray water and gas
- V = volume of control volume

#### • Aerosol

$$\lambda_{k,i} = \frac{3F_i h E_{i,j}}{4Vr_i}$$

H = fall height,

 $r_i = drop radius$ 

# RN ESF – Filters

- User specified decontamination factors (DFs)
  - -No mechanistic model is available in MELCOR
- User specifies
  - -Either vapor or aerosol filtration
  - -Class specific DFs
    - If aerosol, bin size DFs may be specified
  - Maximum filter deposition
    - Once met, no further decontamination
- Filter losses can be simulated
  - -Flow loss should be defined to be laminar within a filter
    - Specify proper laminar loss coefficient (SLAM) and hydraulic diameter
    - User may control loss parameter (SLAM) via control function to simulate aerosol loading
- Decay heat is placed in "downstream" control volume.







EMUG 2018 Workshop