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Aerosol Physics

•Agglomeration of aerosols

–Several mechanisms cause collisions and sticking 

to produce larger particles

• Brownian diffusion (random relative motions)

• Differential gravitational settling (“sweep up”)

• Turbulent agglomerating by shear and inertial forces

•Hygroscopic models discussed in another 

presentation
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MAEROS (1)
Multicomponent AEROSol model

• Calculates time history of aerosol particle size 
distribution and CHEMICAL COMPOSITION

– Calculates changes in  masses of each component  (material) in 
each section as a function of time.  Prior to this development, 
material composition of aerosol was unavailable and all particles 
were assumed to be of the same chemical composition regardless 
of particle size.

– Currently limited to requiring that all aerosol components 
(materials), have the same material density. 

– Solves multi-sectional, multi-component formulation of dynamic 
equations for deposition and agglomeration.
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Basic Conceptual MAEROS Model (2)

Aerosol 

Concentration 

(kg/m3)

Particle Diameter

Mass of each aerosol component as a function of particle diameter is 
used to determine health effects, but that is not a unique 
representation.  

Basic Approximations
- The total mass of a particle determines how the particle deposits, 

agglomerates, and grows.
- (Currently) All component material densities are the same.
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•Sections are particle size bins based on particle mass.

•Default is 10 sections between 0.1 mm and 50.0 mm in 

geometric diameter

– Diameter boundaries: 0.100, 0.186, 0.347, 0.645, 1.20, 2.24, 4.16, 

7.75, 14.4, 26.9, 50.0 mm

– Can change number of sections, limits set through user input

• To simplify analysis, agglomeration of two particles can’t 

produce mass beyond next-larger section (particle size bin)

• Requires diameter ratio > 21/3 = 1.26

• For 0.1 to 50 mm diameter, maximum of 26 sections (2n/3 < 

50/0.1), n = 26.

MAEROS (3)
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MAEROS (4)

•Components are materials

–Each component has an independent size 

distribution

–Conventional to take all densities as nominal 

1000 kg/m3

• Particles are rarely single spheres, so aerodynamic 

diameter is often used instead

– Aerodynamic diameter (da) is the diameter of a sphere with a 

material density of 1000 kg/m3 with the same settling velocity 

as the particle

– Dynamic shape factor ( ) and agglomeration shape factor () 

are included to compensate for nonspherical effects

– da = de (/1000)0.5, de = volume equivalent diameter
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Aerosol Factors: What to Use

Shapes 

Sphere 1.00

Cube 1.08

4 sphere cluster 1.17

Sand 1.57

Talc 2.04

W. C. Hinds, Aerosol 

Technology, 1982.

Recommendation: use default unless data available.

• Chi - Aerosol dynamic shape factor (1.0)

• Gamma - agglomeration shape factor (1.0)

• FSLIP – particle slip coefficient (1.257)

• Stick – particle sticking coefficient (1.0)

RN1_MS00    chi   gamma FSLIP   STICK

Stick

Stick

Stick

Stick
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Agglomeration

• Agglomeration becomes more significant for more 
concentrated aerosols

– Particles collide, stick, and become larger particles; 
Rate ~ b N(Di) N(Dj) where N is the number density (m-3)

– Brownian mechanism dominates for small particles, 
differential gravitational for large ones
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Composition of Individual Particles

• MAEROS tells you only the mass of each material in particles in 
each size bin

– It does not tell you the composition (or distribution of compositions) 
of any particle

• Deposition and agglomeration depend only on mass, diameter, 
and shape factors

– Assume that the densities of the materials are the same and the shape 
factors depend at most on particle size

– Then, independent of composition
• All particles in each section deposit at same rate

– If fraction x in section l is component n, than fraction x of deposition from this 
section will be component n

• On average, particle collisions will involve the same masses of each 
component

– Section-to-section transfers will carry same mass of each component from 
section to section
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Note on MAEROS Coefficients

• Coefficients used by MAEROS are not typically 
calculated during transient

–Require integrals over sections for deposition, double 
integrals for agglomeration

• Calculations are relatively time-consuming

–Values pre-calculated at corners of a finite (P,T) domain

• Values interpolated for each volume at appropriate (P,T) 

– Recent versions of MELCOR use bilinear interpolation in Pa and 
Tb, 

• Properties of air used in pre-calculation

– Should be accurate in normal containment calculations

– May be inaccurate in other cases

• Can be re-calculated every time step (RN1_Turb)
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Simple Agglomeration Calculations

•Single material, nominal density = 1000 kg/m3, tiny 

surface to effectively eliminate deposition

•Three cases with single dp ~1mm or ~10mm

–Case 1: dp=0.880mm,  =1000kg/m3, 10-10 m2 surface 

–Case 2: dp=10.57mm,  =1000kg/m3, 10-10 m2 surface

–Case 3: dp=10.57mm,  =1000kg/m3, 10-10 m2

surface, settle back to same volume through 15 m2

“settling surface”
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Visualization of Results, Case 1
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Visualization of Results, Cases 2 and 3

• Case 2

– Initial ~10 mm (section 8)

– Tiny (10-10 m2) deposition area

– Rapid growth to section 10 and larger

• Mass settles to heat structure 

surface despite tiny area

• Case 3

– Like Case 2 but 15 m2 settling area 

from volume to itself

– All mass stays suspended

• Huge population in section 10 

sweeps up all smaller aerosols

• Not physicalStart
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Multi-Material Aerosols

• RN Package and MAEROS each treat more than one material, but 
treatments differ

– Main RN database includes distinct size distribution for each RN 
class (Cs, Ba, UO2, …)

– MAEROS considers only a limited number of components

• Each contains one or more RN classes
– Component masses in each section calculated at start of MAEROS 

advancement as sums of class masses; sub-compositions saved

– Post-advancement component masses are distributed to RN class distributions 
using sub-compositions

• User can define number of components and the classes assigned to 
each

– Default is 2, with one component reserved for water and all other classes in 
the other

– Recommend at least 3 which (absent further input) will further assign the 
volatiles (Cs, I2, CsI, CsM) to a separate component

– Can modify these, or add other components to track classes of interest or 
classes with very different release histories (like CON from ex-vessel 
core/concrete interactions)
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Two-Material Agglomeration Calculations

•Ran two versions of a 2 material case

–Initial 0.1 kg of Ba aerosol, dp=0.880mm

–Initial 0.1 kg of UO2 aerosol, dp=10.57mm

 =1000kg/m3, 10-10 m2 surface

•Case 4: default component assignments

–Both Ba and UO2 assigned to component 1

•Case 5: custom component assignments

–Ba assigned to component 1, UO2 to component 4
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Visualization of Results, Cases 4 and 5

• Case 4 (same component)

– MAEROS does not maintain 

distinction

• Aerosol distribution 

“homogenized” on first 

advancement
– Puts half UO2 mass into smaller 

section, half Ba mass into larger one

• Case 5 (distinct component)

– MAEROS maintains distinction

• Agglomeration of small and large 

aerosols slowly moves some Ba 

mass into larger sections

Start
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TRAP MELT

• Models condensation and evaporation of RN vapors 

involving aerosols and surfaces (replaces treatment in 

stand-alone MAEROS)

• Volatile radionuclides (e.g., CsOH, I2, CsI, Cs2MoO4), 

have finite vapor pressures that increase with temperature

–Concentration in atmosphere limited by vapor pressure at Tatm

–Mass can be transported to/from condensed phase on aerosol 

surfaces and/or structural surfaces

• Aerosols are at atmosphere temperature

• Structure surfaces may be hotter or colder

• Rate limits apply
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TRAP MELT Equations

• Conservation of mass, and rate equations are

– M is mass, C=M/V is concentration, subscript a refers to 
atmosphere, subscript i refers to surface, superscript s is 
saturation at surface temperature

• Surfaces include aerosols, section by section

• Model evaluates closed-form solution for full MELCOR timestep, 
Dt

– Iteration may be needed if any surface mass falls to zero
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Condensation Aerosols

•Ran test cases with the 45 m3 room and Cs 
(actually, CsOH) vapor source

–Temperature raised to 780 K, where mass 
corresponding to saturation is 0.00685 kg

–Cs-class vapor mass added at 10-5 kg/sec

• Takes 685 s to reach saturation

–Chemisorption model turned off

–Two cases

• Case 1: no initial vapor or aerosol

• Case 2: no initial vapor, initial 0.01 kg non-volatile 
(Ba) aerosol ~0.88 mm
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Condensation Aerosol Results

• Case 1 No vapor, no aerosol

– Cs concentration rises to 

saturation

– First aerosols form in smallest 

section, then agglomerate rapidly

– Further condensation on existing 

aerosols

• Case 2 No vapor, little aerosol

– Same rise to saturation

– Most early condensation on 

existing Ba aerosols

Start
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Comments on Condensation Calculations

• See almost no direct condensation on walls

–Wall and aerosol areas comparable (within factor of 10)

–Mass transfer coefficient for wall is much smaller

• Characteristic length in Sherwood number (analog of 
Nusselt number) is much larger, m vs. mm

• Could construct other cases

–Smaller aerosol concentrations

–Multiple walls

• Different temperatures

• Initial deposited vapors
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Questions


