

Presented by Larry L. Humphries <u>llhumph@sandia.gov</u> SAND2018-4218 C

EMUG 2018 Workshop

Aerosol Physics

- Agglomeration of aerosols
 - -Several mechanisms cause collisions and sticking to produce larger particles
 - Brownian diffusion (random relative motions)
 - Differential gravitational settling ("sweep up")
 - Turbulent agglomerating by shear and inertial forces
- Hygroscopic models discussed in another presentation

MAEROS (1)

Multicomponent AEROSol model

- Calculates time history of aerosol particle size distribution and <u>CHEMICAL COMPOSITION</u>
 - Calculates changes in masses of each component (material) in each section as a function of time. Prior to this development, material composition of aerosol was unavailable and all particles were assumed to be of the same chemical composition regardless of particle size.
 - Currently limited to requiring that all aerosol components (materials), have the same material density.
 - Solves multi-sectional, multi-component formulation of dynamic equations for deposition and agglomeration.

Basic Conceptual MAEROS Model (2)

used to determine health effects, but that is not a unique representation.

Basic Approximations

- The total mass of a particle determines how the particle deposits, agglomerates, and grows.
- (Currently) All component material densities are the same.

MAEROS (3)

- Sections are particle size bins based on particle mass.
- Default is 10 sections between 0.1 μ m and 50.0 μ m in geometric diameter
 - Diameter boundaries: 0.100, 0.186, 0.347, 0.645, 1.20, 2.24, 4.16,
 7.75, 14.4, 26.9, 50.0 μm
 - -Can change number of sections, limits set through user input
 - To simplify analysis, agglomeration of two particles can't produce mass beyond next-larger section (particle size bin)
 - Requires diameter ratio $> 2^{1/3} = 1.26$
 - For 0.1 to 50 μm diameter, maximum of 26 sections (2^{n/3} < 50/0.1), n = 26.

MAEROS (4)

- Components are materials
 - -Each component has an independent size distribution
 - -Conventional to take all densities as nominal 1000 kg/m³
 - Particles are rarely single spheres, so aerodynamic diameter is often used instead
 - Aerodynamic diameter (d_a) is the diameter of a sphere with a material density of 1000 kg/m³ with the same settling velocity as the particle
 - Dynamic shape factor (χ) and agglomeration shape factor (γ) are included to compensate for nonspherical effects
 - $d_a = d_e (\rho/1000)^{0.5}$, $d_e =$ volume equivalent diameter

Aerosol Factors: What to Use

- Chi Aerosol dynamic shape factor (1.0)
- Gamma agglomeration shape factor (1.0)
- FSLIP particle slip coefficient (1.257)
- Stick particle sticking coefficient (1.0)

<u>Shapes</u>	<u>_x</u>
Sphere	1.00
Cube	1.08
4 sphere cluster	1.17
Sand	1.57
Talc	2.04

W. C. Hinds, <u>Aerosol</u> <u>Technology</u>, 1982.

Brownian:	$\beta_B \propto \gamma \chi^{-1} f(\boldsymbol{d}_i, \boldsymbol{d}_j)$ Stick
Gravitational:	$eta_{grav} \propto \varepsilon_g \ \gamma^2 \ \chi^{-1} \left(\boldsymbol{d}_i + \boldsymbol{d}_j \right)^2 \left(\boldsymbol{d}_i^2 - \boldsymbol{d}_j^2 \right) \ \mathrm{Stick}$
Turbulent, Shear:	$\beta_{TI} \propto \gamma^3 \varepsilon^{1/2} (\boldsymbol{d}_i + \boldsymbol{d}_j)^3$ Stick
Turbulent, Inertial:	$\beta_{T2} \propto \gamma^2 \chi^{-1} \varepsilon^{3/4} \left(\boldsymbol{d}_i + \boldsymbol{d}_j \right)^2 \left(\boldsymbol{d}_i^2 - \boldsymbol{d}_j^2 \right) \text{ Stick}$

RN1_MS00 chi gamma FSLIP STICK

Recommendation: use default unless data available.

Agglomeration

- Agglomeration becomes more significant for more concentrated aerosols
 - -Particles collide, stick, and become larger particles; Rate ~ $\beta N(D_i) N(D_j)$ where N is the number density (m⁻³)
 - -Brownian mechanism dominates for small particles, differential gravitational for large ones

Composition of Individual Particles

- MAEROS tells you only the mass of each material in particles in each size bin
 - -It *does not* tell you the composition (or distribution of compositions) of any particle
- Deposition and agglomeration depend only on mass, diameter, and shape factors
 - -Assume that the densities of the materials are the same and the shape factors depend at most on particle size
 - -Then, independent of composition
 - All particles in each section deposit at same rate
 - If fraction x in section l is component n, than fraction x of deposition from this section will be component n
 - *On average*, particle collisions will involve the same masses of each component
 - Section-to-section transfers will carry same mass of each component from section to section

Note on MAEROS Coefficients

- Coefficients used by MAEROS are not typically calculated during transient
 - -Require integrals over sections for deposition, double integrals for agglomeration
 - Calculations are relatively time-consuming
 - -Values pre-calculated at corners of a finite (P,T) domain
 - Values interpolated for each volume at appropriate (P,T)
 - Recent versions of MELCOR use bilinear interpolation in P^a and T^b ,
 - Properties of *air* used in pre-calculation
 - Should be accurate in normal containment calculations
 - May be inaccurate in other cases
- Can be re-calculated every time step (RN1_Turb)

- Single material, nominal density = 1000 kg/m³, tiny surface to effectively eliminate deposition
- Three cases with single $d_p \sim 1 \mu m$ or $\sim 10 \mu m$

-Case 1: d_p =0.880µm, ρ =1000kg/m³, 10⁻¹⁰ m² surface -Case 2: d_p =10.57µm, ρ =1000kg/m³, 10⁻¹⁰ m² surface -Case 3: d_p =10.57µm, ρ =1000kg/m³, 10⁻¹⁰ m² surface, settle back to same volume through 15 m² "settling surface"

Visualization of Results, Case 1

12

EMUG 2018 Workshop

Visualization of Results, Cases 2 and 3

- Case 2
 - Initial ~10 μ m (section 8)
 - Tiny (10⁻¹⁰ m²) deposition area
 - Rapid growth to section 10 and larger
 - Mass settles to heat structure surface despite tiny area

- Case 3
 - Like Case 2 but 15 m² settling area from volume to itself
 - All mass stays suspended
 - *Huge* population in section 10 sweeps up all smaller aerosols
 - Not physical

Start

Multi-Material Aerosols

- RN Package and MAEROS each treat more than one material, but treatments differ
 - Main RN database includes distinct size distribution for each RN class (Cs, Ba, UO2, ...)
 - MAEROS considers only a limited number of *components*
 - Each contains one or more RN classes
 - Component masses in each section calculated at start of MAEROS advancement as sums of class masses; sub-compositions saved
 - Post-advancement component masses are distributed to RN class distributions using sub-compositions
 - User can define number of components and the classes assigned to each
 - Default is 2, with one component reserved for water and all other classes in the other
 - Recommend at least 3 which (absent further input) will further assign the volatiles (Cs, I2, CsI, CsM) to a separate component
 - Can modify these, or add other components to track classes of interest or classes with very different release histories (like CON from ex-vessel core/concrete interactions)

- Ran two versions of a 2 material case
 - -Initial 0.1 kg of Ba aerosol, d_p =0.880µm -Initial 0.1 kg of UO2 aerosol, d_p =10.57µm $\Box \rho$ =1000kg/m³, 10⁻¹⁰ m² surface
- Case 4: default component assignments -Both Ba and UO2 assigned to component 1
- Case 5: custom component assignments

-Ba assigned to component 1, UO2 to component 4

Visualization of Results, Cases 4 and 5

- Case 4 (same component)
 - MAEROS does not maintain distinction
 - Aerosol distribution "homogenized" on first advancement
 - Puts half UO2 mass into smaller section, half Ba mass into larger one
 - E:\MELCOR 2.1\1 Run Area_A&VforWorkshop\A04(CV100).txt 0.16 XE CS BA 0.15 0.14 12 TE 0.13 RU 0.12 MO 0.11 CE LA Wass [kg] 0.08 0.07 U02 CD DAG B02 H20 0.0 CON CSI 0.05 0.04 0.03 0.02 0.01 Location Current 0

- Case 5 (distinct component)
 - MAEROS maintains distinction
 - Agglomeration of small and large aerosols slowly moves some Ba mass into larger sections

Start

TRAP MELT

- Models condensation and evaporation of RN vapors involving aerosols and surfaces (replaces treatment in stand-alone MAEROS)
- Volatile radionuclides (e.g., CsOH, I₂, CsI, Cs₂MoO₄), have finite vapor pressures that increase with temperature
 - -Concentration in atmosphere limited by vapor pressure at T_{atm}
 - -Mass can be transported to/from condensed phase on aerosol surfaces and/or structural surfaces
 - Aerosols are at atmosphere temperature
 - Structure surfaces may be hotter or colder
 - Rate limits apply

TRAP MELT Equations

• Conservation of mass, and rate equations are

$$\frac{dM_a}{dt} + \sum_i \frac{dM_i}{dt} = 0 \qquad \frac{dM_i}{dt} = A_i k_i \left(C_a - C_i^s \right)$$

- -M is mass, C=M/V is concentration, subscript a refers to atmosphere, subscript *i* refers to surface, superscript *s* is saturation at surface temperature
 - Surfaces include aerosols, section by section
- Model evaluates closed-form solution for full MELCOR timestep, $\Delta t \qquad C_a = M_a / V = \frac{\beta}{\alpha} - \left(\frac{\beta}{\alpha} - C_{a0}\right) e^{-\alpha \Delta t}$

$$M_{i} = M_{i0} + A_{i}k_{i}\left(\frac{\beta}{\alpha} - C_{i}^{s}\right)\Delta t - A_{i}k_{i}\left(\frac{\beta}{\alpha} - C_{a0}\right)\left(\frac{1 - e^{-\alpha\Delta t}}{\alpha}\right)$$
$$\alpha = \sum_{i}A_{i}k_{i}/V \qquad \qquad \frac{\beta}{\alpha} = \frac{\sum_{i}A_{i}k_{i}C_{i}^{s}}{\sum_{i}A_{i}k_{i}}$$

-Iteration may be needed if any surface mass falls to zero

Condensation Aerosols

- Ran test cases with the 45 m³ room and Cs (actually, CsOH) vapor source
 - -Temperature raised to 780 K, where mass corresponding to saturation is 0.00685 kg
 - -Cs-class vapor mass added at 10⁻⁵ kg/sec
 - Takes 685 s to reach saturation
 - -Chemisorption model turned off
 - -Two cases
 - Case 1: no initial vapor or aerosol
 - Case 2: no initial vapor, initial 0.01 kg non-volatile (Ba) aerosol ~0.88 μm

Condensation Aerosol Results

Start

- Case 1 No vapor, no aerosol
 - Cs concentration rises to saturation
 - First aerosols form in smallest section, then agglomerate rapidly
 - Further condensation on existing aerosols
 - E:\MELCOR 2.1\1 Run Area_A&VforWorkshop\V01(CV100).txt 0.12 CS BA 12 TE RU 0.11 0.1 0.09 MO CE LA 0.08 0.07 **Mass [kg]** U02 CD AG BO2 H2O CON CSI 0.04 0.03 0.02 0.01 after ocation Current 0

- Case 2 No vapor, <u>little</u> aerosol
 - Same rise to saturation
 - Most early condensation on existing Ba aerosols

Comments on Condensation Calculations

- See almost no direct condensation on walls
 - -Wall and aerosol areas comparable (within factor of 10)
 - -Mass transfer coefficient for wall is much smaller
 - Characteristic length in Sherwood number (analog of Nusselt number) is much larger, m vs. μm
- Could construct other cases
 - -Smaller aerosol concentrations
 - -Multiple walls
 - Different temperatures
 - Initial deposited vapors

Questions

EMUG 2018 Workshop