# MELCOR RN and Decay Heat



#### Prepared by MELCOR Development Team



(DCH/RN| Page 1 SAND2018-4259 PE

### MELCOR RN and Decay Heat Overview of Presentation

- Describe relationship between RadioNuclide (RN) and Decay Heat (DCH) Packages
  - -Emphasize significance of "reference" core
  - -Discuss options to normalize "whole core" power
- Show example input
- Provide information necessary to add appropriate input to complete the input deck



### MELCOR RN and Decay Heat Introduction

#### MELCOR intended to capture feedback effects

- -Coupling of temperatures, release rates, decay heating
- -Relocation of heat sources, including deposition

#### Impossible unless radionuclides are tracked

-Simple models tie decay heat to UO<sub>2</sub> in fuel and debris

### If RN package is active

- -Decay heat package associates heat with RN classes
- -Heat delivered according to location of radioactive masses



## MELCOR RN and Decay Heat Basic Approach

### Define initial inventory of radioactive material

- -Usually unreleased, within intact core
- -Can define elsewhere, including the debris in the cavity
- Define specific decay power for RN classes
  - -Power, in W/kg, applied to class masses in each location
- Define distribution of heat from radionuclides in various locations
  - -For unreleased, goes to core structures and/or debris
  - -For airborne, part goes to surfaces
  - -For deposited, part goes to fluids



### MELCOR RN and Decay Heat "Reference" Core

- Huge volumes of data associated with initial inventories and specific decay powers
  - Depend on core design, operating power, point in refueling cycle, and (in principle) on operating history
  - -Specific decay power depends on time since shutdown
- MELCOR contains built-in data from ORIGEN calculations for two actual reactor cores
  - -3412 MWt Westinghouse PWR
  - -3578 MWt General Electric BWR
  - -Each at four points in equilibrium fuel cycle
  - -Full details about assumptions in the code manuals
- Initial inventory and decay power calculated from a constructed "reference" core



## MELCOR RN and Decay Heat "Reference" Core (2)

- Reference core normally defined by scaling built-in data, interpolating for point in cycle
  - -Built-in data for the 29 "most important" elements
  - -Built-in inventories normalized as kg<sub>element</sub>/W<sub>operating</sub>
    - \* Masses at time of shutdown
      - Appropriate to MELCOR treatment of classes
  - -Total inventory calculated from operating power
    - \* Should be applicable to other cores of similar design
  - -Built-in decay power for each element normalized as W. /W. as function of (time-t...)
    - W<sub>decay</sub>/W<sub>operating</sub> as function of (time- t<sub>shutdown</sub>)
      - **\*** Each includes contribution of decay daughters
  - -Scaled values should be applicable to similar cores
- User can also provide complete definition



### MELCOR RN and Decay Heat Class Decay Powers, Normalization

- Class power defined from element powers
  - -Recall default assignment of elements to classes
- "Whole-core" decay power in MELCOR is total power in the reference core
- Default for whole-core decay power is sum of the *default* class powers (from ORIGEN)
  - -User input can modify default data for the reference core
    - Initial masses and/or decay curves for elements (change one of the 29 or add data for one or the others)
    - **\*** Assignment of elements to classes
  - —If done, default is to normalize sum of *new* class powers to the *original* ORIGEN power
  - -Otherwise, has no effect



### MELCOR RN and Decay Heat Normalization of Whole-Core Power

#### User can specify an alternate normalization

- -ANS standard
  - Necessary parameters accessible through input or as sensitivity coefficients
- -Tabular function of time
- -Control function
- This defines the total power in the reference core, *not* the total power delivered to the radionuclides in a MELCOR calculation

—If the inventories don't match, normalization won't help



### MELCOR RN and Decay Heat Whole-Core Power for Uranium

- Initial inventory of every class except Uranium defined by RN package input
  - -With normal care, inventory corresponds to reference core
- Initial inventory of Uranium (class 10) inferred from UO<sub>2</sub> masses on COR and CAV
  - -Uranium mass, decremented by other fission products
  - Will not correspond to reference core
    - \* Concentration of unstable isotopes in total uranium depends on power density
- Total decay powers won't match
  - -Normalization won't help
  - -Only complete solution is to modify the reference core



### MELCOR RN and Decay Heat Basic Whole-Core Power for Uranium (2)

- Default will be to reconcile only class 10 (URANIUM)
  - -This can be disabled, as we did in Exercise 5
    - **RN1\_DCHNORM** ! Disable reconciliation of UO2
  - -Other classes can be reconciled also (use with care)

RN1\_DCHNORM 2 5 10 ! Reconcile classes 2, 5, 10

—Note that class mass represents total mass of all isotopes of all elements in the class, so as to calculate proper total aerosol mass and/or vapor density



### MELCOR RN and Decay Heat Decay Heat Package Input

#### Define Reactor Operating Power (only required input) if DCH is active.

! Define reactor operating power (thermal) DCH\_OPW 3412.0E6



### MELCOR RN and Decay Heat Decay Heat Package Input

#### Define reference core (all records optional)

### Define whole-core power (all records optional)

```
DCH_DPW ORIGEN ! Options are ORIGEN (default), ANS,

! CF-nnn, and TF-nnn

! ANS option uses power split on DCH_FPW record

! Define operating time (s) for use in ANS option

DCH_OPT 5.05E7 ! 80% capacity for two years (default)
```



# MELCOR RN and Decay Heat Decay Heat Package Input (2)

- Specify whether to normalize total power in reference core to whole-core power
  - -Record is optional

!RN Class Normalization Flag - Whole-coreDCH\_NRMYES! Options are YES (default) or NO

### Define reactor shutdown time (two options)

! CF number, or negative to specify absolute time DCH\_SHT CF 'Scram' ! Shutdown by LOGICAL CF 'Scram' !

DCH\_SHT TIME 1000.0 ! Shutdown at 1000.0 s (default is 0.0)

- Other options to define/redefine elements, elemental decay heats, class membership
  - —New elements/classes to track trace materials in other models with standard definitions
  - Otherwise, only experts should attempt this method



### MELCOR RN and Decay Heat Initial Inventories

#### Initial RN inventories are defined by user input

- -In most cases, they are unreleased masses in intact core
- —Can also reside in initial cavity debris, or as initial aerosols or vapors in a variety of locations
- Unless all class inventories in a MELCOR calculation match those in the reference core, the total decay heat will not match the whole core decay power

#### Comparison Table, by class, in output file

RADIOACTIVE MASS COMPARISON WITH DCH - MASSES IN KG

| CLS |   | DCH   |       | RN1 INVENTORY |           |   |
|-----|---|-------|-------|---------------|-----------|---|
|     |   | REF   | CORE  | INITIAL       | CURRENT   |   |
|     | 1 | 3.61  | 1E+02 | 4.333E+02     | 4.333E+02 | / |
|     | 2 | 2.012 | 2E+02 | 2.415E+02     | 2.415E+02 |   |
|     | 3 | 1.584 | 4E+02 | 1.901E+02     | 1.901E+02 |   |
|     |   | -     |       |               |           |   |

This case contains 120% of reference core



## MELCOR RN and Decay Heat Initial Inventories (2)

#### Unreleased fission products in intact core

- -Total defined for each core cell, with three options
  - \* Gap inventory is *included* in this total
- -Easiest to define in terms of fractions of reference core
  - **\*** Fraction defined as product of radial and axial shapes
  - If shapes are normalized, initial inventory will contain 100% of reference core
- -Can also define by reference to another core cell
  - **\*** Multipliers allow different cell sizes
- -Third option is to specify absolute mass, class by class
  - **\*** Very tedious to reconcile with reference core



### MELCOR RN and Decay Heat Input for Initial COR Cell Inventory

```
Partial input for simple core
   Fueled levels 4-7, relative powers 20%, 30%, 30%, 20%
    Fueled rings 1-2, relative powers 60%, 20%
       (fractions of power, *not* relative power densities)
   will define 100% of reference core since shapes normalized
       Total Rows/Index
         Ring number (if>0) or Cavity input (if==0)
          | Axial Number/Cav Name
             Option flag: 0 or DH fraction of reference core
                          (same fraction of all classes)
                First multiplier, typically axial fraction
                      Second mult., typically radial fraction
RN1 FPN 1 V V V
                VVVV VVVV
                            * 0.2*0.6 of total in cell 104
        1 1 4 0 0.20 0.60
       2 1 5 0 0.30 0.60
        5 2 4 0 0.20 0.40
                           * 0.2*0.4 of total in cell 204
       6 2 5 0 0.30 0.40
```



### MELCOR RN and Decay Heat Input for Initial COR Cell Inventory (2)





## MELCOR RN and Decay Heat Initial Gap Inventories and Input





### MELCOR RN and Decay Heat Release Models

#### Three basic release models, with options

-CORSOR, fractional release rate = A exp(B T)

- **\*** With or without correction for surface to volume ratio
- \* Sensitivity coefficient arrays 7101, 7104, 7105
- -CORSOR-M, fractional release rate =  $k_0 \exp(-Q/RT)$ 
  - \* Extended in MELCOR 1.8.5 from the original form to include release of classes 7(Mo), 9(La), and 11 (Cd)
  - **\*** With or without correction for surface-to-volume ratio
  - \* Sensitivity coefficient arrays 7102, 7104, 7105
- -CORSOR-Booth, based on Cesium diffusion  $D_0 \exp(-Q'/RT)$ 
  - \* High- or low-burn-up fuel
  - **\*** Sensitivity coefficient arrays 7103, 7106, 7107
- —Modified CORSOR-Booth



### MELCOR RN and Decay Heat Release Models (2)

#### Option to apply to structural materials

- -Not considered by default
- -Enabled by sensitivity coefficient array 7100

### Simple input specifies basic option for fuel

```
-Various sensitivity coefficient arrays
```

```
! Input record is RN_FP00, record is optional
! Option default =-5
! vv
RN_FP00 -2 * -1 for CORSOR with surface/volume correction
! +1 for CORSOR without S/V correction
! -2 for CORSOR-M with S/V correction (default)
! +2 for CORSOR-M without S/V correction
! -3 for CORSOR-Booth, high-burn-up fuel
! +3 for CORSOR-Booth, low-burn-up fuel
! -5 for Revised CORSOR-Booth, high-burn-up fuel
! +5 for Revised CORSOR-Booth, low-burn-up fuel
```



## MELCOR RN and Decay Heat Other Release Models

#### Gap release based on cladding temperature

- -Failure temperature can be defined cell-by-cell
- -Inventory in entire ring release on failure in any level

### Class combination on release

```
—Not default, but conventional for Cs + I \rightarrow CsI
```

-Described in earlier presentation

```
* [Recombination name] [acceptor class] [number of donors]
RN1_CLS 'Cs+I' 'CSI' 2
        1 'Cs' 1.0 * Cs Class - donor class
        2 'I2' 0.5 * I2 Class - donor class
! Molecular weights in sensitivity coefficient array 7120
```



## MELCOR RN and Decay Heat Distribution of Power

- Energy carried by fragments, neutrons, α, β, and γ; each has a finite range
- Heat from unreleased radionuclides in fuel
  - -Split among core components and materials in same cell
  - -Defaults based on detailed calculations for a specific core
  - -Splits are user-adjustable (SC arrays 1321, 1322)
- Heat from radionuclides in pool goes to pool

### Heat from radionuclides in atmosphere

- —By default, 50% (typical  $\gamma$ ) to pool and other surfaces in volume, 50% (balance) to atmosphere--but see next slide
- -Splits can be modified
- Atmospheres and structures in other volumes can be included



## MELCOR RN and Decay Heat Distribution of Power(2)

#### Heat from radionuclides on structure surfaces

- -By default, 50% to surface, 25% (typical  $\gamma$ ) to pool and other surfaces in volume, 25% (balance) to atmosphere
  - \* Splits can be modified
  - Atmospheres and structures in other volumes can be included

### Modification for small atmospheres

- Range of βs may exceed volume dimensions, particularly for small volumes with low density atmospheres
- -Actual absorption modified, considering
  - **\*** Typical range of a  $\beta$  (1.2 kg/m<sup>2</sup>, in SC array 7002)
  - \* Typical distance in atmosphere (volume<sup>1/3</sup>, modifiable)
- Won't discuss this further



## MELCOR RN and Decay Heat Other Input

#### Almost everything is adjustable through input or sensitivity coefficients

- -Definition and properties of elements
- Definitions and properties of classes (molecular weight, vapor pressure, etc.)

#### -Association of class numbers with chemical models

Coefficients in most models and correlations, including release rates (CORSOR)

### There are few, if any, checks on changes

- -It's easy to define things inappropriately
- -It's hard to determine the cause of the problem
- In general, best to accept the defaults
  - —May not be possible in some cases, so *use great care*

