Use of Artificial Neural Network for criticality calculation in severe accident

EMUG meeting – 27th of April 2018 Helman T. – Fontaine M.-P. – Makine I.

Context and objectives

Process overview

Approach definition

Modelling of the intact & degraded core

Surrogate model (artificial neural network)

Conclusion & perspectives

Criticality in severe accident Context and objectives

- Context: Calculation of core criticality in severe accident configuration
 - Capability to calculate reactivity accidents leading to core damage
 - Topic under discussion as severe accident research priority in NUGENIA
 - Calculation of Fukushima type sequences (non borated water injected, also foreseen in the SAMG)
 - Interest for Gen III reactors foreseen to operate with 100% MOX cores

Criticality in severe accident Context and objectives

- Development in Tractebel:
 - MELCOR reference code in Tractebel for severe accident calculation includes a point kinetic model (not valid for degraded geometries)
 - → Development of a surrogate model (Artificial Neural Network) to be included in MELCOR as external reactivity
 - Low computational cost compared to coupling with neutron code
 - Online keff calculation and feedback on core power

 $\rho = \rho_{ext} + \rho_{X} + \rho_{X} + \rho_{X}$

Criticality in severe accident Data for intact core modelling in MCNP

- Data for intact core MCNP input:
 - 1. Core loading pattern:
 - Assemblies types positions a)
 - Control rods positions b)
 - Number of cycles in core per assembly c)
 - 2. 12 families of assemblies are defined (assembly type, number of cycles in core)
 - 3. Family burnup as a function of core exposure
 - Different rod types per assembly (depending on 4. neighbourhood)
 - 5. Composition of fuel rods depending on assembly exposure

Criticality in severe accident Data for intact core modelling in MCNP

k_{eff} obtained:

- BOL, ARO, Bcrit_ARO: 1.00776
- BOL, DBCA, Bcrit_DBCA: 1.00503
- ➔ Good starting point

Criticality in severe accident MELCOR inputs for degrade geometry modelling in MCNP

Data extracted from MELCOR calculation database used for PSA level 2

27/04/218

Criticality in severe accident MELCOR inputs for degrade geometry modelling in MCNP

Data extracted from MELCOR calculation database used for PSA level 2

EMUG 2018 meeting - Use of Artificial Neural Network for criticality calculation in severe accident

Criticality in severe accident

Training of ANN – Parameter space

Parameter	Range
Degradation	0 - 100%
RN Classi released fraction	F(Degradation)
Fraction of oxidised Zr	F(Degradation)
Time since SCRAM (depletion)	0 – 10d
Density of corium	7 – 10 g/cm ³
Core exposure	0 – 18GWd/tU
Water temperature	100°C – 330°C
Boron concentration	0 – 2800ppm
Core water level	0 – 100%

27/04/218

Criticality in severe accident Identification of critical zone

• For each parameter, identification of range where k_{eff} can be higher than 1

27/04/218

Criticality in severe accident

Training of Artificial Neural Network and first testing

• Which parameters are important for keff?

27/04/218

- Number of data in sample = sufficient ?
- Accuracy = 0.9577 ± 0.02319
- Explained variance score = 0.96146685
- R2 score = 0.96144549
- Mean absolute error = 0.01709
- Mean squared error = 0.0006662
- Median absolute error = 0.0115854

27/04/218

Criticality in severe accident Training of Artificial Neural Network and first testing

• Compare $T_{mod_{\infty}}(\rho_0)$ and $T_{fuel_{\infty}}(\rho_0)$

Criticality in severe accident Conclusion

- Need for a high detail modelling of the core to obtain a good starting point
- ANN shows promising results for k_{eff} evaluation in severe accident configuration:
 - Capable of explaining up to 96% of the variance of the k_{eff} based on input parameters
 - Possibility to make ANN more precise in certain zones of the parameters space by increasing number of samples in those zones
 - Possibility for feature importance analysis
- Stabilisation temperatures obtained for several reactivity insertion show good agreement with point kinetic model with measured temperature coefficients for real loading pattern

Criticality in severe accident Perspectives

- Perspectives:
 - Easy to implement in MELCOR using CFs and existing point kinetic model & low computational cost
 - → Implementation in MELCOR and test against existing & validated Tractebel models for reactivity insertion accidents without core melting
 - Calculation of reactivity accidents with core melting using MELCOR
 - Possible extension of approach to other physics e.g. debris bed cooling, MCCI, etc.