Experience with MELCOR user defined
extensions in C and Lua

Paul Boneham - Jacobsen Analytics Ltd

www.jacobsen-analytics.com

Presentation at EMUG
Zagreb Croatia - 25 to 27 April 2018

Qcobsenmy
J onoly’rics

ENGINEERING RISK SOLUTIONS

Overview

MELCOR capabilities — external shared libraries
Shared libraries in FORTRAN

Shared libraries in C

Embedding the Lua interpreter

Examples

Jacobseny
analyfics &2

ENGINEERING RISK SOLUTIONS

MELCOR capabilities — external shared
libraries

« According to the reference manual for
MELCOR 2.2.9541 control functions may
be defined by the user in an external
shared library* (Linux) or DLL (Windows)

— * This presentation describes work performed on the
Linux OS, so will refer to shared libraries

« Sample FORTRAN code and a make file is

supplied with the MELCOR code

Jacobsen iy
analyfics &2

ENGINEERING RISK SOLUTIONS

Shared libraries in FORTRAN

« MELCOR is compiled with the Intel
FORTRAN compiler (version 11.1 -
released in 2009)

* Not successful compiling with gfortran
using the sample UDF files

— So need a work around, or purchase Intel FORTRAN
compiler and try with that

Jacobseny
analyfics &2

ENGINEERING RISK SOLUTIONS

Hello World in FORTRAN - do I really want
to do this anyway?

IMPLICIT NONE
WRITE (6,100)
100 FORMAT(12HHello world!)

STOP
END

Jacolbsen
analytics &2

ENGINEERING RISK SOLUTIONS

Inspection of UDF source code sample
reveals ...

function FUNn (ptr _cftype,ARG,IERROR) bind(C, name="funn")

« FORTRAN is telling the compiler to build a
C interface for the shared library

S0, why not create the shared library from
C source?

Jacobsen iy
analyfics &2

ENGINEERING RISK SOLUTIONS

Working C shared library
source

#include <stdlib.h>

#include <stdio.h>
#include <string.h>

funn(* ptr _cftype, * ierror) {

result;

result = 10.0;
result:

get pedigree(* str) {
"Description of shared library for MELCOR");

strepy(str,
printf("Hello world!\n");

Jacolbsen
analytics &2

ENGINEERING RISK SOLUTIONS

Compile the single C source
file

I Compile and link shared library from C source
gcc -fPIC -fno-omit-frame-pointer -m32 -c melcor user extension.c -o melcor user extension.o

gcc -fPIC -fno-omit-frame-pointer -m32 -shared melcor user extension.o -o melcor user extension.so

-m32 - make a 32 bit shared library. MELCOR is a 32 bit executable. Build on i386 Linux
distribution, problems experienced on x86 64 even with 32 bit support.

Use gcc version 4.7 — shared library built with later versions segfaults on loading by
MELCOR

- suspect this is related to 2009 version of Intel compiler being incompatible with
changes to gcc code generation on Linux more recently |
Jacobseny

Works on Debian 7 — does not work on Debian 8 and later. OanthS (4
. ENGINEERING RISK SOLUTIONS
Incompatible ABI on more modern Linux distributions.

Hello World from User Defined Extension

Run MELGEN ...

Do you want to overwrite (0) or abort (A)
0

COMMAND - LINE: ../bin/melgen test.inp
COMMAND - LINE ARGUMENTS:

Hello world!

Opening user input file test.inp

Hello world!

Restart written TIME = -1.800000E+03 CYCLE=

Says hello — twice ...

... MELGEN and MELCOR actually load and unload the
shared library several times initially, carrying out various JQCObSen
checks on linkability of expected functions ODOWTICS </

ENGINEERING RISK SOLUTIONS

Do I really want to do this in C?

#include "stdio.h"

main(arg count, ** args) {

printf("Hello world!\n");

Whereas in Lua a fully functional program to
do the same is

print "Hello world!"

Jacolbsen
analytics &2

ENGINEERING RISK SOLUTIONS

So what is Lua anyway?
And does anyone use it?

Scripted language, no compile — run cycle
Easy to embed (more later)
Very popular extension language for games

Used as extension language in NGINX web server
(runs around 30% of sites on internet)

Luajit “just in time” compiler runs Lua scripts
~20 times faster than Python (another popular
scripting language)

Jacobseny
analyfics &2

ENGINEERING RISK SOLUTIONS

How to embed Lua into our C extension (1)

* Include luajit headers (assuming we want to use
luajit):

#include "luajit-2.0/lua.h"
#include "luajit-2.0/lualib.h"”

#include "luajit-2.0/lauxlib.h”

« Add code to the shared library source:

— Create a "“Lua state” object for communication
with Lua

— Load Lua script

— Call functions in loaded script Jacobsenpy
analyfics &2

ENGINEERING RISK SOLUTIONS

How to embed Lua into our C extension (2)

« Can be done in around 60 lines of code
— including error checks and validity checks on loaded Lua script

« Requires some interaction with a “stack” to pass
function arguments and extract return values

 Once done and shared library compiled, can

forget about all this and just write extensions in
Lua

Jacobseny
analyfics &2

ENGINEERING RISK SOLUTIONS

Examples (1)

function fun2(argl, arg2, arg3, argd, arg5)
-- updates steady condition and calculates reactor power, depending on time
-- steady condition status available in enviroment, may be used by other funn
if environment.steady == nil then
environment.steady = 1
end
if argl == 0.0 then
environment.steady = 0
end

if environment.steady == 1 then
-- return full power
return 20000.0
else
-- return decay power
return 1000.0 - argl * 0.00667 -- simplified function

end

Calculates heat input and keeps track of state of
simulation

environment.steady is a global variable which is JQCObSGﬂ
analyfics!

“persistent” (stored) from one call of fun2 to another . Toc itk soLuTIONS

Comment on example (1)

« MELCOR does not call diclose() when a simulation
is finished

« Call to dlclose() gives external library opportunity
to carry out book-keeping tasks such closing files

* S0, in previous example, should add a call to
flush() each timestep, otherwise risk of truncated

output

Jacobseny
analyfics &2

ENGINEERING RISK SOLUTIONS

Examples (2)

Store plot variables in a simple text file, suitable for import to Excel or plotting
with gnuplot

function funl(argl, arg2, arg3, argd4, args)
1f environment.save exec time == nil then
environment.f:write(argl)
environment.save exec time = argl

end
if argl = environment.save exec time then

environment.f:write("\n", argl)
environment.save exec time = argl
end
environment.f:write("\t",arg2,"\t",arg3,"\t",argd,"\t",argh)

Only writes 15t column (time) on first call on each

iteration
Allows function to be re-called several times by different JOCOHDST.en
CF in MELCOR — this way, an arbitrary number of plot QNAIYTICS &4

) ENGINEERING RISK SOLUTIONS
variables can be saved

Other possibilities

« Simple simulator — report variables to user, allow
input, keep simulation time aligned to real time

— MELCOR has to wait for any pause in UDF
execution

« Use |lua sockets or lua SQL to send data to other
PCs on network (centralised store of output data
or run status etc)

« Monte Carlo simulation - use Lua functions to
randomly assign different values to sampled

variables |
Jacobseny

analyfics &2

ENGINEERING RISK SOLUTIONS

Summary, conclusions

Use of user defined extensions lead to creation of
working C shared library, then embedding of Lua
interpreter

Easy, effective way to write custom functions

Allows to reduce number of CF needed for some

tasks

— - e.g., implementing initial conditions such as LOCA/non-LOCA, SLB,
LOFW much simplified with Lua functions that can store state variables
(approx. 50% reduction in number of CF for these tasks)

Various interesting/useful possibilities to explore

Jacobsen iy
analyfics &2

ENGINEERING RISK SOLUTIONS

Some issues (which should be solvable)

» Restriction to gcc 4.7, i386 and older

Linux distributions (Debian 7)

— Might be solved if MELCOR is recompiled with a newer
version of Intel FORTRAN or even gfortran

« dlcose() issue: MELCOR does not call

diclose() when a simulation is finished
— This should probably be fixed ...

Jacobseny
analyfics &2

ENGINEERING RISK SOLUTIONS

