
Experience with MELCOR user defined
extensions in C and Lua

Paul Boneham - Jacobsen Analytics Ltd
www.jacobsen-analytics.com

Presentation at EMUG
Zagreb Croatia - 25 to 27 April 2018

Overview

• MELCOR capabilities – external shared libraries

• Shared libraries in FORTRAN

• Shared libraries in C

• Embedding the Lua interpreter

• Examples

MELCOR capabilities – external shared
libraries

• According to the reference manual for
MELCOR 2.2.9541 control functions may
be defined by the user in an external
shared library* (Linux) or DLL (Windows)
– * This presentation describes work performed on the

Linux OS, so will refer to shared libraries

• Sample FORTRAN code and a make file is
supplied with the MELCOR code

Shared libraries in FORTRAN

• MELCOR is compiled with the Intel
FORTRAN compiler (version 11.1 –
released in 2009)

• Not successful compiling with gfortran
using the sample UDF files
– So need a work around, or purchase Intel FORTRAN

compiler and try with that

Hello World in FORTRAN - do I really want
to do this anyway?

Inspection of UDF source code sample
reveals …

• FORTRAN is telling the compiler to build a
C interface for the shared library

• So, why not create the shared library from
C source?

Working C shared library
source

Compile the single C source
file

-m32 - make a 32 bit shared library. MELCOR is a 32 bit executable. Build on i386 Linux
distribution, problems experienced on x86_64 even with 32 bit support.

Use gcc version 4.7 – shared library built with later versions segfaults on loading by
MELCOR

- suspect this is related to 2009 version of Intel compiler being incompatible with
changes to gcc code generation on Linux more recently

Works on Debian 7 – does not work on Debian 8 and later.
Incompatible ABI on more modern Linux distributions.

Hello World from User Defined Extension

Run MELGEN …

Says hello – twice …

… MELGEN and MELCOR actually load and unload the
shared library several times initially, carrying out various
checks on linkability of expected functions

Do I really want to do this in C?

Whereas in Lua a fully functional program to
do the same is

So what is Lua anyway?
And does anyone use it?

• Scripted language, no compile – run cycle

• Easy to embed (more later)

• Very popular extension language for games

• Used as extension language in NGINX web server
(runs around 30% of sites on internet)

• Luajit “just in time” compiler runs Lua scripts
~20 times faster than Python (another popular
scripting language)

How to embed Lua into our C extension (1)

• Include luajit headers (assuming we want to use
luajit):

• Add code to the shared library source:

– Create a “Lua state” object for communication
with Lua

– Load Lua script

– Call functions in loaded script

How to embed Lua into our C extension (2)

• Can be done in around 60 lines of code
– including error checks and validity checks on loaded Lua script

• Requires some interaction with a “stack” to pass
function arguments and extract return values

• Once done and shared library compiled, can
forget about all this and just write extensions in
Lua

Examples (1)

Calculates heat input and keeps track of state of
simulation

environment.steady is a global variable which is
“persistent” (stored) from one call of fun2 to another

Comment on example (1)

• MELCOR does not call dlclose() when a simulation
is finished

• Call to dlclose() gives external library opportunity
to carry out book-keeping tasks such closing files

• So, in previous example, should add a call to
flush() each timestep, otherwise risk of truncated
output

Examples (2)

Store plot variables in a simple text file, suitable for import to Excel or plotting
with gnuplot

Only writes 1st column (time) on first call on each
iteration

Allows function to be re-called several times by different
CF in MELCOR – this way, an arbitrary number of plot
variables can be saved

Other possibilities

• Simple simulator – report variables to user, allow
input, keep simulation time aligned to real time

– MELCOR has to wait for any pause in UDF
execution

• Use lua sockets or lua SQL to send data to other
PCs on network (centralised store of output data
or run status etc)

• Monte Carlo simulation – use Lua functions to
randomly assign different values to sampled
variables

Summary, conclusions

• Use of user defined extensions lead to creation of
working C shared library, then embedding of Lua
interpreter

• Easy, effective way to write custom functions

• Allows to reduce number of CF needed for some
tasks
– – e.g., implementing initial conditions such as LOCA/non-LOCA, SLB,

LOFW much simplified with Lua functions that can store state variables
(approx. 50% reduction in number of CF for these tasks)

• Various interesting/useful possibilities to explore

Some issues (which should be solvable)

• Restriction to gcc 4.7, i386 and older
Linux distributions (Debian 7)
– Might be solved if MELCOR is recompiled with a newer

version of Intel FORTRAN or even gfortran

• dlcose() issue: MELCOR does not call
dlclose() when a simulation is finished
– This should probably be fixed …

