

Simulation of transients of DONES lithium loop with MELCOR fusion 1.8.6

10th Meeting of the "EMUG" - Zagreb, 25-27 April 2018

<u>G. D'Ovidio</u>, F. Martín-Fuertes gianluca.dovidio@ciemat.es

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union's Horizon 2020 research and innovation program me used in carret agreement number if $30\,\%$ 3. The view is as $40\,\mu$ into the gives the gives of $40\,\%$ 3 mecessarily reflect those of the European Commission.

Introduction

- According to the 2014 European Fusion Roadmap, an early construction of DEMO is expected by 2030
- A DEMO-Oriented Neutron Source (DONES) has been proposed to create a fusion material database required in a fusion reactor (based on "IFMIF" concept)
- The objective of the Early Neutron Source (ENS) project (EUROfusion/ WPENS) is to carry out activities for the engineering design development of DONES
- □ A safety analysis is required for DONES licensing and construction

- DONES deterministic safety analysis performed on selected reference scenarios (identified by FMEAs)
- Preliminary assessment of consequences to public and workers in support of DONES licensing
- □ <u>In this presentation</u>:
- Operational transient sequence and LOFA scenario (with/without beam shutdown) of DONES lithium loop

DONES main Li Loop

D. Bernardi. IFMIF-DONES Target System Design Description Document. EFDA_D_2N74W4 (2017).

Key phenomenology: Li flows at high velocity in a small thickness layer (25 mm) to remove the high local power (5MW)

A specific CVH/FL model is considered ("Momentum flux" option has been first explored without success)

Mass flow rates of FL100 & FL200 are coupled by CF420 (same flow path area):

D. Bernardi. IFMIF-DONES Target System Design Description Document. EFDA_D_2N74W4 (2017)

But...

• When CV100 runs out of Li (FL-VELLIQ.100 = FL-VELLIQ.200 = 0 m/s), there is still a little amount of Li mass in CV200

CV200 must be empty!

How to solve this issue?

- We created another flow path FL250 (identical to FL200), which opens when velocity in FL100 becomes zero, and
- We imposed a constant velocity for FL250 equal to the last non-zero value of FL-VELLIQ.200 until CV200 empties (conservative assumption)

D. Bernardi. IFMIF-DONES Target System Design Description Document. EFDA_D_2N74W4 (2017)

MELCOR "FANA" model (constant-speed coolant pump)

A steady state is achieved by means of an operational start-up transient

Steady state results (t = 1000 s) with power injection at t=500 s

Parameter	Calculation	Reference	Comments
Pressure target	300 Pa	1E-3 Pa	Not allowed below 200 -100 Pa range due to problems with Li EOS <u>extrapolation</u>
Total circuit pressure loss	2.6E5 Pa	2.4E5 Pa	Curve pump is unknown; here is fitted for desired point
Total Li mass flow rate	49.7 kg/s	49.7 kg/s	Same comment
Velocity at nozzle exit	15 m/s	15 m/s	Li target flow velocity between 10-15 m/s (in operation)
Li temperature in HX	250 °C	250 °C	
Li temperature in QT	274 °C	274 °C	
Total Li volume in the loop	8.45 m3	8.44 m3	Li volume of the impurity reduction system is not considered

Potential consequences of a LOFA scenario:

- **Backplate** thermal overload and **rupture** (if beam is not promptly stopped)
- Release of Li and its radioactive impurities into Target Test Cell (TTC) or Li Loop Area (LLA) with direct increase of ORE
- Possible Li-air and/or Li-vapor reactions (if inert atmosphere is not guaranteed inside TTC or LLA)

Main events of MELCOR transient sequence:

Event	Time (s)	Quantity
Start of calculation (pump on)	0	
Power injection into target (→Li mass)	500	5 MW
Pump trip (pump head linear ramp to zero)	1500-1510	assumed
Li mass flow rate reaches 70% of its nominal value in the target (<i>assumed</i>)	1510.7	~ 35 kg/s
Beam shutdown (5 → 0 MW in 1s)	1510.7 – 1511.7	assumed
Target completely empties	1513.9	-
End of calculation	3000	-

MELCOR results (Li mass flow rates and Li mass inventories)

MELCOR results (Li mass elevations in CVs)

MELCOR results (Li flow velocities and mass inventories)

 Li flow velocities and mass inventory evolutions inside CV100 & CV200 show a very similar tendency with their respective quantities of the previous scenario

- CV200 empties at t = 1513.9 s
- Time range available to shut down the beam and to prevent damages to the backplate and surrounding structures is ~14 s from the beginning of the pump trip

LOFA simulation without beam shutdown

MELCOR results (Li temperature in CV100, CV200 & CV300)

 Temperature in CV200 (Li target) raises from 547 to 2000 K in less than 4 seconds from t = 1510 s (when pump head becomes zero)!

<u>CFD simulation of Li jet temperature distribution</u> (DONES: 5 MW, 15 m/s)

Tmax = 358°C (631 K) Tboil ~ 1030°C (1303K) ΔT ~ 672°C (in the Li bulk)

S. Gordeev. Preliminary Numerical Analysis of Li jet, BP Discharge Line and QT, with power deposition. EFDA_D_2N4NNF v1.1 (2017).

Tsurf = $278^{\circ}C(551 \text{ K})$ (at Li-free surface) Tboil ~ $342^{\circ}C(615 \text{ K})$ $\Delta T \sim 65^{\circ}C$

S. Gordeev. Evaluation of Li Vaporization in the TA. EFDA_D_2MNNTD v1.1 (2017).

MELCOR results (Li temperature and pressure evolution in CV100, CV200 & CV300)

 Temperature in CV200 (Li target) raises from 547 to 2000 K in less than 4 seconds from t = 1510 s (when pump head becomes zero)!

• Atmospheric pressure is reached inside CV100 & CV200 at the end of the calculation

Final remarks

□ A preliminary model for DONES Li loop is available

- Good agreement between MELCOR predictions (steady state) and reference design requirements has been achieved
- First simulations of LOFA scenario have been performed

□ Not straightforward modeling

- High sensitivity to adopted nodalization
- Numerical problems experienced:
 - Dependence on timestep
 - o EOS impact when extrapolation at low pressures

G Future developments and exploratory calculations

- Modeling upgrade based on future design documents
- Sensitivity to
 - o HS implementation for all control volumes
 - o Pump coastdown curve for design improvement (coastdown tail)
 - o New model for Li target

o ...

• Simulation of LOCA scenarios in TTC and LLA (candidates for DONES "RAS") with release of Li radioactive impurities (tritium, activation products)

Thank you for your attention

Questions? Comments? Suggestions?

DONES Plant Configuration

Cross-sectional schematic of DONES target assembly

Li Loop total pressure loss (estimated)

Element	No.	Specification	Pressure loss [kPa]
Pipe, in TC	1	6B, Sch40, 13.24 m	11.16
Pipe, EMP - LLA ceiling	1	8B, Sch20, 36.48 m	6.88
Pipe, QT - EMP	1	10B, Sch20, 17.89 m	1.15
Bend, in TC	2	6B, 90°, R228.6 mm	3.60
Bend, EMP - LLA ceiling	17	8B, 90°, R304.8 mm	9.35
Bend, QT - EMP	6	10B, 90°, R381.0 mm	1.32
Gate valve, under QT	1	10B (loss coefficient: ζ = 0.05)	0.05
Globe valve	1	CV408 (6B)	57.66
QT outlet	1	ID: 254.4 mm→10B (ζ = 0. 5)	0.55
Primary HX	1	Li side: L7.15 m, ID1.1 m	17.00
Reducer, LLA ceiling	1	8B→6B, L152.4 mm	0.10
Flow straightener	1	-	15.7
Double reducer nozzle	1	L370 mm, W260 mm,	75.1~40%
		T200→62.5→25 mm	
Total pressure loss			199.61
Head, inlet pipe - Li level in QT		8.13 m	40.16
Pressure loss + head			239.77

Li conditions for pressure loss estimation

Item	Value
Li flow rate	0.104 m3/s (16 m/s at nozzle exit)
Li temperature	250°C
Li density	510 kg/m3
Li kinematic viscosity	9.83E-7 m2/s

M. Ida. Design Description Document for the Lithium Target Facility (IIEDR) 2013