

FER MELCOR Activities

Presenter: Davor Grgić

Vesna Benčik, Davor Grgić, Siniša Šadek, Štefica Vlahović Faculty of Electrical Engineering and Computing (FER) University of Zagreb, Croatia

The 10th Meeting of the "European MELCOR User Group", Zagreb, Croatia, 25–27 April, 2018

FER MELCOR Activities

- Development of NPP Krško input deck for MELCOR 1.8.6 and MELCOR 2.2 code
- Validation of NEK MELCOR 1.8.6 and MELCOR 2.2 input deck
- Modelling of Engineering Safety Features available for non-severe accident conditions and planned mitigation actions
- Verification of MELCOR input deck by comparison of non-severe accident sequences with RELAP5/MOD 3.3 code.
- Equipment survivability use

Content:

- NPP Krško nodalization for MELCOR 1.8.6 and MELCOR 2.2
- Verification of MELCOR input deck by comparison of 3 inch cold leg LOCA with RELAP5/MOD 3.3 code
- MELCOR 1.8.6 and MELCOR 2.2 analysis of SBO.
- Verification of containment model with Gothic
- Source term preparation
- Different ES applications

MELCOR nodalization scheme for NPP Krško

The core and lower plenum in COR package

NEK containment nodalization

NPP Krško 3 inch Cold Break LOCA Calculation using RELAP5/MOD 3.3 and MELCOR 1.8.6 Codes

The 10th Meeting of the "European MELCOR User Group", Zagreb, Croatia, 25–27 April, 2018

Transient Description and Boundary Conditions

- Postulated accident is a 3 inch Loss of Coolant Accident (LOCA) in cold leg 1 (loop with pressurizer).
- Reactor trip from 100% power is actuated on low pressurizer pressure or high containment pressure signal.
- Trip of both RC pumps is actuated on reactor trip.
- Closure of main steam isolation valves and isolation of main feedwater are initiated on reactor trip.
- Emergency core cooling system is available (5 seconds delay for safety injection).
- Auxiliary feedwater system is available (60 seconds delay)
- Containment fan coolers and containment spray are available in MELCOR.

Parameters of RELAP5/mod 3.3 nodalization

PARAMETER	VALUE
1. NUMBER OF NODES	
- primary side	300
- secondary side	206
- total	506
2. NUMBER OF JUNCTIONS	
- primary side	313
- secondary side	230
- total	543
3. NUMBER OF HEAT STRUCTURES	
- primary side	245
- secondary side	138
- total	383
4. OVERALL NUMBER OF MESH POINTS	2127
5. NUMBER OF CORE ACTIVE	12
STRUCTURES	
6. HEAT TRANSFER AREA (m2)	
- core region	3103.9
- steam generator U-tubes	7343.0
7. NUMBER OF MESH POINTS	
- core slabs	16
- steam generator slabs	10
8. NUMBER OF CONTROL VARIABLES	732
9. NUMBER OF TRIPS	
- variable	197
- logical	221
- total	418
10. OVERALL PRIMARY SIDE VOLUME	195.3
(m3)	

The 10th Meeting of the "European MELCOR User Group", Zagreb, Croatia, 25–27 April, 2018

Parameters of MELCOR 1.8.6 nodalization

PARAMETER	VALUE
1. NUMBER OF VOLUMES	
- primary side	69
- secondary side	30
- containment	24
- total	123
2. NUMBER OF FLOW PATHS	
- primary side	93
- secondary side	38
- containment	43
- total	174
3. NUMBER OF HEAT STRUCTURES	
- reactor vessel	34
- primary side and SG U-tubes	46
- containment	20
- total	100
4. OVERALL NUMBER OF MESH POINTS	731
5. NUMBER OF CORE ACTIVE	27
STRUCTURES	
6. NUMBER OF MESH POINTS IN SG	12
HEAT SLABS	
7. NUMBER OF CONTROL FUNCTIONS	
- real valued	189
- logical	91
- total	280
7. NUMBER OF TABULAR FUNCTIONS	47

9 The 10th Meeting of the "European MELCOR User Group", Zagreb, Croatia, 25–27 April, 2018

RELAP5/mod 3.3 nodalization scheme for NPP Krško

MELCOR 1.8.6 nodalization scheme for NPP Krško

Parameter	Unit	NEK cycle 28 reference	RELAP5 (1000 s)	MELCOR (1000 s)
1. Pressure	MPa			
Pressurizer		15.513	15.513	15.517
Steam generator		6.281	6.275/6.286	6.19/6.16
Accumulator		4.93	4.93	4.93
2. Fluid Temperature	K			
Cold leg		558.75	559.49/559.25	559.36/559.16
Hot leg		597.55	596.82/596.82	596.94/596.94
Accumulator		322.0	322.0	322.0
Feedwater		492.6	492.7	492.6
3. Mass Flow	kg/s			
Core		8899.7	8925.3	8876.5
cold leg		4697.4	4711.7/4710.7	4683.8 /4686.2
main feedwater		544.5	540.9/544.7	538.9/541.8
main steam line		544.5		538.9/541.8
DC-UP bypass (0%)		0.0	0.0	0.0
DC-UH bypass (0.346%)		32.5 (0.346%)	35.0 (0.371%)	32.38 (0.346%)
Buffle-barrel flow (1.0939%)		102.8 (1.094%)	103.1 (1.094%)	102.49 (1.094%)
RCCA guide tubes (3.32%)		311.9 (3.32%)	359.2 (3.812%)	358.5 (3.826%)
Core cavity (0.5067%)		47.6	-	-
4. Liquid level	%			
Pressurizer		55.7	55.8	55.8
Steam generator narrow range		69.3	69.3/69.3	69.3/69.4
5. Fluid Mass	t			
Primary system		-	131.3	131.8
Steam generator (secondary)		47.0	49.1/48.9	48.08/48.07
6. Power	MW			
Core		1994.0	1994.0	1994.0
		1000.0	005 0/1002 0	007 1/1002 6

Transient results

Accident starts with the opening of the valve simulating 3 inch break in cold leg 1 (volume 110 in MELCOR, volume 275 in RELAP5)

Following the break opening RCS rapidly depressurizes. Reactor trip is initiated on low pressurizer pressure signal. Following actions are actuated on reactor trip: turbine trip, main steam isolation valve closure, main feedwater isolation, RC pump trip.

-Safety injection signal is actuated on low-2 pressurizer pressure signal; SI pumps are enabled with 5 seconds delay. Accumulator injection starts when RCS pressure drops below 4.93 MPa.

-Auxiliary feedwater is actuated on main feedwater isolation (60 seconds delay)

-At transient begin SG PORV open for a short time following turbine trip.

-The heat produced in the core is primarily removed through the break, although in the first phase of the transient heat is also removed by steam generators thus coupling the primary and secondary pressure. Along with RCS inventory depletion the heat transfer in steam generators stops and the primary pressure continues to decrease and decouples from secondary side.

- Core dry-out occurs for a short period (260-500 s) in MELCOR but fuel cladding oxidation did not occur.

The 10th Meeting of the "European MELCOR User Group", Zagreb, Croatia, 25–27 April, 2018

3 inch cold leg 1 LOCA – Time table of events

Event	RELAP5/mod 3.3	MELCOR 1.8.6	
Transient begin	0.0	0.0	
Reactor trip, RC pumps trip	12.8 s (on low PRZ pressure)	14.5 s (on low PRZ pressure)	
Turbine trip, MSIV isolation, Main feedwater isolation	12.8 s (on reactor trip signal)	14.5 s (on reactor trip signal)	
Safety injection signal	17.4 s (on low-2 PRZ pressure)	18.8 s (on low-2 PRZ pressure)	
Safety injection enabled	22.4 s (5 seconds delay)	23.8 s (5 seconds delay)	
RWST empty	-	5852	
Safety injection-recirculation from sump	-	6152 (5 minutes delay)	
Auxiliary feedwater injection enabled	72.8 (60 seconds delay)	74.5 (60 seconds delay)	
Accumulator injection	650.0	690.0	
Containment fan coolers enabled	-	88.1 (35 seconds delay)	
Containment spray	-	-	
PCT temperature	610 K (steady state value)	711 K	

The 10th Meeting of the "European MELCOR User Group", Zagreb, Croatia, 25–27 April, 2018

NEK 3 inch cold leg 1 LOCA

3 inch cold leg break LOCA, Conclusion

- In MELCOR calculation larger break flow than in RELAP5 was obtained. This difference is mainly due to different choked flow models. Containment back pressure is lower in MELCOR than in RELAP5 due to fan coolers operation but this has a small influence on break flow.
- In MELCOR, lower RCS pressure and larger safety injection flow (LPIS) than in RELAP5 was obtained. This has influenced RCS temperatures.
- After reactor trip different heat transfer conditions in steam generator for RELAP5 and MELCOR were obtained. In MELCOR heat transfer from secondary to primary side was larger than in RELAP5 thus resulting in lower secondary pressure. Pressure drop on secondary side was stopped first after terminating the auxiliary feedwater flow.
- In MELCOR, fuel cladding temperature has increased (max. temperature=711 K) in the first phase of the transient, but fuel cladding oxidation did not occur.

The 10th Meeting of the "European MELCOR User Group", Zagreb, Croatia, 25–27 April, 2018

NPP Krško Station Blackout (SBO) Calculation using MELCOR 1.8.6 and MELCOR 2.2 Codes

The 10th Meeting of the "European MELCOR User Group", Zagreb, Croatia, 25–27 April, 2018

Parameter	Unit	NEK cycle 28 reference	MELCOR 1.8.6 (1000 s)	MELCOR 2.2 (1000 s)
1. Pressure	MPa			
Pressurizer		15.513	15.517	15.517
Steam generator		6.281	6.19/6.16	6.19/6.16
2. Fluid Temperature	K			
Cold leg		558.75	559.36/559.16	559.36/559.16
Hot leg		597.55	596.94/596.94	596.94/596.94
Feedwater		492.6	492.6	492.6
3. Mass Flow	kg/s			
Core		8899.7	8876.5	8876.5
cold leg		4697.4	4683.8 /4686.2	4683.8 /4686.2
main feedwater		544.5	538.9/541.8	538.9/541.8
main steam line		544.5	538.9/541.8	538.9/541.8
DC-UP bypass (0%)		0.0	0.0	0.0
DC-UH bypass (0.346%)		32.5 (0.346%)	32.38 (0.346%)	32.39 (0.346%)
Buffle-barrel flow (1.0939%)		102.8 (1.094%)	102.49 (1.094%)	102.49 (1.094%)
RCCA guide tubes (3.32%)		311.9 (3.32%)	358.5 (3.826%)	358.6 (3.827%)
Core cavity (0.5067%)		47.6	-	-
4. Liquid level	%			
Pressurizer		55.7	55.8	55.8
Steam generator narrow range		69.3	69.3/69.4	69.3/69.4
5. Fluid Mass	t			
Primary system		-	131.8	131.8
Steam generator (secondary)		47.0	48.08/48.07	48.08/48.07
6. Power	MW			
Core		1994.0	1994.0	1994.0
Steam generator		1000.0	997.1/1002.6	997.1/1002.6

Results of steady state calculation

Transient Description

- Time=0: Reactor trip from 100% power, turbine trip, Main steam line isolation, Loss of main feedwater, RC pump trip, RC pump seal leakage
- Engineering Safety features (Auxiliary feedwater, Safety Injection, Containment fan coolers, Containment Spray) are not available.
- Only passive components are available: Accumulators, Passive Autocatalytic Recombiners and Passive Containment Filtered Vent System.
- SG safety valves and pressurizer safety valves are available.
- Accumulators will inject its content into RCS after RCS pressure drop (either RPV failure or creep failure – hot leg, PRZ surge line or SG tube)

The 10th Meeting of the "European MELCOR User Group", Zagreb, Croatia, 25–27 April, 2018

NEK SBO: Time table of events

Event	MELCOR 1.8.6	MELCOR 2.2
Transient begin	0.0	0.0
SG empty	3920 sec	3920 sec
Lower head failure	12438 sec	11768 sec
Begin of melt ejection	13950 sec	11800 sec
PCFV actuation	15020 sec	13350 sec
Begin of PCFV ON/OFF behavior	18170 sec	16440 sec

The 10th Meeting of the "European MELCOR User Group", Zagreb, Croatia, 25–27 April, 2018

MELCOR 1.8.6: Fuel temperature 3rd ring

MELCOR 2.2: Fuel temperature 3rd ring

Containment (upper compartment) temperature

MELCOR 1.8.6: Pressurizer pressure, ejected mass to cavity

MELCOR 2.2: Pressurizer pressure, ejected mass to cavity

Cavity mass

Removed hydrogen by PARs

SBO, Conclusion

- MELCOR 2.2: Lower head failure at time=11768 sec and an immediate melt ejection to cavity that blocks flow path: sump pit-cavity. Water from the accumulators stays trapped in the cavity.
- MELCOR 1.8.6: Lower head failure at time=12438 sec and delayed melt ejection to cavity. Flow path: sump pit cavity is free to expell a large amount of water from cavity to sump pit.
- As a consequence, in MELCOR 2.2 a larger amount of water evaporated in cavity and lead to larger first peak in containment pressure than in MELCOR 1.8.6. That has lead to delay in PCFV activation in MELCOR 1.8.6. Later, the ON/OFF PCFV operation had the same frequency for both codes.

Cavity Layout and the MCCI

Concrete decomposition (at temperatures 873 - 1173 K): CaCO₃ \rightarrow CaO + CO₂ (endothermic reaction)

Iron rebar oxidation (600 kg of iron in the 1 m³ of the concrete): Fe + H₂O + 3.0 kJ/kg_(Fe) \rightarrow FeO + H₂ Fe + CO₂ + 480 kJ/kg_(Fe) \rightarrow FeO + CO

SBO - RB COOLING AT 24 H - CI, ARHR, MHX - ES

SBO - RB COOLING AT 24 H - CI, ARHR, MHX - ES

Gothic Multivolume Model

- Nodalization:
 - 10 control volumes
 - 2 boundary conditions
 - 27 flow paths
 - 74 heat structures
 - 2 RCFC units
 (volumetric fan + HX)
 - 1 spray train

Results

RN - Core AST for 3 NEK Cycles

			C27	C28	C2 9	isotope po		THI20M walna is	2428630	2440888	2440790
isotope no		KR 85 value is	520171.5	520707.5	524745.9	isotope no	34 -	TRIBIN value is	7502142	7650792	7679834
isotope no		KR 85M value is	0.14983368+08	0.15219518+08	0.15207138+08	isotope no	35 -	TEL32 value is	0.75069178+08	0 76221217+08	0 76304128
isotope no		KR 87 value is	0.29011392+08	0.29453198+08	0.29432678+08	isotope no	36 .	mullalus is	0.000001/0100	0.03952028:00	0.03733028
isotope no	4 :	KR 88 value is	0.40870678+08	0.41491128+08	0.41462202+08	isotope no	30:	CD137 value 15	0.92201030100	0.93032028700 5409407	5503466
isotope no		XB131M value is	591929.8	593614.1	596014.4	isotope no	30 .	SB127 Value is	0 16536348108	0 16000308+09	0 16950641
isotope no		XB133 value is	0.10400278+09	0.10757748+09	0.10523192+09	isotope no	30 .	op oo	0.10330348400	0.10900398400	0.10039015
isotope no		XB133M value is	3074410.	3370923.	3163163.	isotope no		SK 09 VALUE 15	0.30003030100	0.00901208+00	0.50032356
isotope no	8 :	XB135 value is	0.27914228+08	0.2793501 8 +08	0.27992842+08	isotope no	-10 :	SK 90 Value 15	1093977.	109/03/.	1131070.
isotope no	9 :	XH135M value is	0.21007838+08	0.21437878+08	0.21397328+08	isotope no	41 :	SK 91 value 15	0.68315998+08	0.69405948+08	0.69332221
isotope no	10 :	XM138 value is	0.91104788+08	0.92785218+08	0.92656288+08	isotope no	42 :	SK 92 value 1s	0.73242078+08	0.74432438+08	0.7436236
isotope no	11	I131 value is	0.52938868+08	0.53445338+08	0.53286158+08	isotope no		BA139 Value is	0.98097548+08	0.99943148+08	0.9979550
isotope no	12 .	T132 value is	0 76469388+08	0 78201748+08	0 77581268+08	isotope no	44 :	BA140 value is	0.95275278+08	0.95815318+08	0.9598611
isotope no	13 -	II33 value is	0 10899128+09	0 11045528+09	0 11087148+09	isotope no	45 :	RU103 value is	0.77907488+08	0.78316718+08	0.7831919
isotope no	14 -	T134 value is	0 11984598+09	0 12214318+09	0 12195208+09	isotope no	46 :	RU105 value is	0.50548203+08	0.51851058+08	0.5169680
isotope no	15 .	T135 malue is	0 10166228+09	0 10364008+00	0 10346918+09	isotope no	47 :	RU106 value is	0.22479238+08	0.22693128+08	0.2277230
isotope no	16 .	CC134 malue is	0100214	0211160	0314500	isotope no	48 :	RH105 value is	0.45193388+08	0.45590428+08	0.4643525
isotope no	479	CO135 value 15	061 21 21	0211100.	0314300.	isotope no	49 :	TC 99M value is	0.88690875+08	0.92045198+08	0.8976137
isotope no	11 :	Collo Value 15	2013131.	201/102.	2009200.	isotope no	50 :	CB141 value is	0.90724065+08	0.9090987 H +08	0.9100380
isotope no	10 :	USIS/ Value 15	3313000.	33/1102.	341/330.	isotope no	51 :	CE143 value is	0.84150305+08	0.85528408+08	0.8558574
isotope no	19 :	KD 00 VALUE 15	10/090.9	100202.3	109370.0	isotope no	52 :	CB144 value is	0.66404061+08	0.66161768+08	0.6634290
isotope no	20 :	RB 88 value 15	0.41484258+08	0.42117108+08	0.42087848+08	isotope no	53 :	PU238 value is	135413.7	138637.2	141289.0
isotope no	21 :	KB 89 value 1s	0.53348508+08	0.54152028+08	0.54116108+08	isotope no	54 :	PU239 value is	17643.93	17692.44	17732.78
isotope no	22 :	Y 90 Value 15	4251015.	9258958.	4293483.	isotope no	55 :	PU240 value is	22385.16	22622.81	22798.68
isotope no	23 :	Y 91 value is	0.71492285+08	0.71358792+08	0.71448078+08	isotope no	56 :	PU241 value is	5355599.	5424096.	5434228.
isotope no	24 :	Y 92 value is	0.73540842+08	0.74738032+08	0.74667142+08	isotope no	57 :	NP239 value is	0.99555582+09	0.1016936B+10	0.1014476
isotope no	25 :	Y 93 value is	0.83915428+08	0.8537906E+08	0.85245728+08	isotope no	58 :	LA140 value is	0.97964101+08	0.9840705E+08	0.9862507
isotope no	26 :	SR 95 value is	0.93117748+08	0.93108871+08	0.93186148+08	isotope no	59 :	LA141 value is	0.89627672+08	0.9130798 B+ 08	0.9117287
isotope no	27 :	SR 97 value is	0.90463948+08	0.92148105+08	0.92027408+08	isotope no	60 :	LA142 value is	0.87002905+08	0.88612348+08	0.8848649
isotope no	28 :	NB 95 value is	0.93669088+08	0.93512735+08	0.93557378+08	isotope no	61 :	ND147 value is	0.35892558+08	0.36131778+08	0.36201201
isotope no	29 :	MO 99 value is	0.10040548+09	0.10200795+09	0.10212988+09	isotope no	62 -	PR143 value is	0.84756658+08	0.85039338+08	0.8521966
isotope no	30 :	TH127 value is	5434436.	5656210.	5480388.	isotope no	63 -	AM241 value is	5685.771	5812.345	5894.213
isotope no	31 :	TB127M value is	697372.1	699458.1	699248.2	isotope no	64	CN242 value is	1195870.	1236393.	1258511
and and and and		Thi29 walue is	0.16283038+08	0.16614788+08	0.16578578+08		-				

Plant/time specific isotopic AST for core and SFP

NEK CYC 29 MAAP AST

isotope no		KR 85	value is	2830606.
isotope no		KR 85M	value is	0.1010337E-03
isotope no		KR 87	value is	0.00000
isotope no		KR 88	value is	0.9404835E-10
isotope no		XE131M	value is	537025.2
isotope no		XE133	value is	0.5081996E+08
isotope no		XE133M	value is	572477.7
isotope no		XE135	value is	924.0756
isotope no		XE135M	value is	0.4346192
isotope no	10 :	XE13 8	value is	0.00000
isotope no	11 :	1131	value is	0.2976197E+08
isotope no	12 :	I132	value is	0.1767195E+08
isotope no	13 :	1133	value is	436338.0
isotope no	14 :	I134	value is	0.000000
isotope no	15 :	1135	value is	2.713417
isotope no	16 :	CS134	value is	0.1644154E+08
isotope no	17 :	CS136	value is	1816951.
isotope no	18 :	CS137	value is	0.4708686E+08
isotope no	19 :	RB 86	value is	82418.08
isotope no	20 :	RB 88	value is	0.1050234E-09
isotope no	21 :	RB 89	value is	0.000000
isotope no	22 :	Y 90	value is	0.3404086E+08
isotope no	23 :	¥ 91	value is	0.6529821E+08
isotope no	24 :	¥ 92	value is	0.2218537E-05
isotope no	25 :	¥ 93	value is	934.1150
isotope no	26 :	ZR 95	value is	0.8526901E+08
isotope no	27 :	ZR 97	value is	98380.98
isotope no	28 :	NB 95	value is	0.9193740E+08
isotope no	29 :	MO 99	value is	0.1746566E+08
isotope no	30 :	TE127	value is	2184612.
isotope no	31 :	TE127M	value is	689268.0
isotope no	32 :	TE129	value is	1364335.
isotope no	33 :	TE129M	value is	2095957.

isotope	no	34	TE131M	value	is	161725.6
isotope	no		TE132	value	is	0.1715215E+08
isotope	no	36	TE134	value	is	0.00000
isotope	no	37	SB127	value	is	1575780.
isotope	no	38	SB129	value	is	0.4303171E-04
isotope	no	39	SR 89	value	is	0.5017956E+08
isotope	no	40	SR 90	value	is	0.3400630E+08
isotope	no	41	SR 91	value	is	365.5141
isotope		42	SR 92	value	is	0.2443898E-10
isotope		43	BA139	value	is	0.00000
isotope	no	44	BA140	value	is	0.6484011E+08
isotope	no		RU103	value	is	0.6832914E+08
isotope	no	46	RU105	value	is	0.2758141E-03
isotope	no	47	RU106	value	is	0.2899825E+08
isotope	no	48	RH105	value	is	2038195.
isotope	no	49	TC 99M	value	is	0.1682420E+08
isotope	no	50	CE141	value	is	0.7773817E+08
isotope	no	51	CE143	value	is	2569492.
isotope	no	52	CE144	value	is	0.7441254E+08
isotope		53	PU238	value	is	1935245.
isotope	no	54	PU239	value	is	204264.1
isotope	no		PU240	value	is	290833.3
isotope	no	56	PU241	value	is	0.3826934E+08
isotope	no	57	NP239	value	is	0.1307932E+09
isotope	no	58	LA140	value	is	0.7398141E+08
isotope		59	LA141	value	is	0.1774350E-04
isotope	no	60	LA142	value	is	0.00000
isotope	no	61	ND147	value	is	0.2306991E+08
isotope	no	62	PR143	value	is	0.6497990E+08
isotope		63	AM241	value	is	1195580.
isotope	no	64	CM242	value	is	1322429.
isotope	no		CM244	value	is	1041043.

NEK CYC 29 MAAP AST

NEK CYC 29 MAAP AST

MAAP 4.0.9 and RADTRAD 3.03

RADTRAD and ARCON96 release and dispersion

Time interval	ECR/TSC intake	ECR/TSC roof		
	χ/Q (s/m³)	χ/Q (s/m³)		
0 – 2 h	2.15E-04	3.09E-04		
2 – 8 h	1.46E-04	2.05E-04		
8 – 24 h	6.91E-05	9.90E-05		
1- 4 days	6.71E-05	9.05E-05		
4 -30 days	5.18E-05	7.18E-05		

RADTRAD compartment model used in calculation

ECR HVAC filter doses, 4th HVAC sequence

NEK ES SGTR ECR 1200 ---+ - |- | - | + |-| -I I I I I I I I I I 1 1.1 A-BUA 1 1 1 1 1 1 1 1.1.1.1.1.1 1100 i i i i i i i i i i 1 1 1 1 1 1 1 1 I I I I I I I I I 1 1 1 1 1 1 1 1 1000 sum_activity_ecr01d.dat + 1.1.1.1.1.1 1 sum_activity_ecr02d.dat Х 900 I I I I I I I sum_activity_ecr03d.dat 1.1.1.1.1 1 1 sum activity ecr04d.dat 11111 i i i i i i i i i Δ 800 · - | - | + | -Total filter activity (Ci) 1 Jana - E E E E E E E E 1 I I I I I I I 11 1.10 ידוקי 700 1 | | | | | | | | | 1.1.1.1.1.1 ĹШ 1 1 1 1 1 I IX 600 111101 1-6070 1 I I I I I I I I 1.1.1.1.1 1111 TITT 500 1 1 1 1 1 1 1 I I I I I I I I 1.1.1.1.1 400 -----------1 | | | | | | | | | -----1 1 1 1 1 1 1 1 | | | | | | | | | | 300 I- + -I -I + FI+ - - - - + -1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.1.1.11 200 דות דר הדו ם דבובים ггот 1 - 1 - 1 - 1 - 1 + 1 + 11.1.1.1.1.1 1 1 1 1 1 1 1 100 1-6010 1 1 1 1 1 1 1 1 1 1 1 ----------٥ 10[°] 10¹ 10² Time (h)

Dose at BB1 top (hemisph R=200, 500m, homogenouse or X/Q)

b2

NEK ES SGTR ECR

NEK ES SGTR ECR

NEK ES SGTR ECR

NEK AB

- NEK Equipment Survivability for DEC
- model similiar to the model developed in GOTHIC
- AB model has 115 control volumes, 202 flow paths and 510 heat structures, control functions are used for door opening on pressure difference

SBO accident – Temperatures in AB

57

NEK SBO ES AB

SBO accident – H₂ concentration in AB

58

NEK SBO ES AB

NEK SFP calculation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 3940 4142 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7

NEK SFP between two cycles \rightarrow 9 days after shutdown

FAs 9 - 12150 days old

59

60 61 62 63 64 65 66 67 68 69 70

Time to boiling (h) vs. Decay heat (MW) for different scenarios

60

NEK SFP

Elevation of water in pool (m) vs. time (h) for different scenarios and different level of decay heat (MW)

NEK SFP

FHB

FHB model

NEK FHB gubitak hladjenja SFP (6.28 MW)

SFP GOTHIC models

SFP model - simple

SFP model - detailed

SFP GOTHIC calculation

NEK SFP

MELCOR SFP model

Without spray - 1 cm² break

SFP Separ/ 7/13/17 /17:45:20 /SFP

Without and with spray - 1 cm² break

68

NEK SFP Melcor