

Analysis of Severe Accident in Safety Upgraded Krško NPP

Matjaž Leskovar Jožef Stefan Institute Ljubljana, Slovenia

EMUG, Zagreb • April 25–27, 2018

Outline

- Introduction
- Analyzed SA scenarios
- Krško NPP MELCOR model
- Simulation results
- Discussion
- Conclusions

Krško NPP

2-loop Westinghouse PWR with 1,994 MW_{th} and 696 MW_{el}

Analyzed SA scenarios

Initial event: Strong earthquake resulting in simultaneous SBO and LBLOCA

Analyzed three scenarios:

- 1. Without DEC alternative safety systems
- 2. 24 h after accident coolant injection through containment sprays using alternative ACI system
- 3. 24 h after accident coolant injection in RCS using alternative ASI system

Simulations performed with MELCOR 1.8.6 revision 4073

Krško NPP primary and secondary systems nodalization

Krško NPP containment nodalization

7

Flow path through reactor cavity ventilation duct

Performed simulations

- 3 scenarios (noASS, ACI, ASI)
- Without and with flow path through ventilation duct (VD)
- Together 2 x 3 = 6 calculations
- 300,000 s (3.5 days) of accident

Denotation	Scenario	DEC equipment	Injection	Ventilation duct
noASS	1	No	1	No
ACI	2	Yes	Containment	No
ASI	3	Yes	RCS	No
noASS_VD	1	No	1	Yes
ACI_VD	2	Yes	Containment	Yes
ASI_VD	3	Yes	RCS	Yes

Containment pressure

Natural circulation with VD: improved heat transfer from melt to containment atmosphere \rightarrow faster temperature increase of cont. atmosphere \rightarrow faster increase of cont. pressure

Containment temperature

Natural circulation with VD: improved heat transfer from melt to containment atmosphere \rightarrow faster temperature increase of cont. atmosphere

Temperature of cavity atmosphere

Natural circulation with VD: lower temperature of cavity atmosphere

Bottom of eroded cavity

Natural circulation with VD: improved heat transfer from melt to containment atmosphere

Thickness of corium-concrete layer

By heat conduction through corium crust only ~8 cm thick melt layer may be cooled

Mass of released gasses

In decreasing order: CO, CO₂, H₂O, H₂

Mass of H₂ released during MCCI

In-vessel about ~170 kg H₂ is released

EMUG, Zagreb • April 25–27, 2018

H₂ fraction

Global H₂ fraction is typically below 5% limit for combustion due to PARs

CO fraction

Global CO fraction may be high, but when O₂ level is already low

O₂ fraction

O₂ fraction is in general low due to oxidation processes (mainly due to PARs operation)

Discussion

- Calculation results show that despite operation of DEC alternative safety equipment MCCI in cavity can not be stopped
- In MELCOR 1.8.6 heat transfer from flooded corium melt to water is treated conservatively in regard to MCCI
 - Heat transfer only by conduction through crust
 - It is expected that cooling will be more effective due water ingression and melt eruption
- Added flow path through ventilation duct significantly influences course of severe accident in all scenarios
 - Natural circulation of atmosphere through cavity established, which importantly improves heat transfer from corium melt
 - Consequently temperature of containment atmosphere increases
- Best SA mitigation measure is ASI strategy
 - Corium melt flooded earlier than with ACI strategy
 - With ACI strategy regular operators actions needed (containment underpressure)

Discussion / Conclusions

- MELCOR 1.8.6 and MAAP 4.07 results differ significantly
 - Different conclusions regarding best SA mitigation strategy
- MAAP 4.07
 - After corium melt flooding MCCI stops immediately
 - Turbulent boiling after melt flooding → may exceed PCFVS capacity
 - Best SA mitigation measure is ACI strategy, where due to spraying containment pressure first decreases
- Difficult to judge which results and conclusions regarding SA mitigation strategy are more credible
- Planned to repeat the study with new version MELCOR 2.2
 - New insight into SA understanding and modelling incorporated
 - More realistic modelling of heat transfer from flooded corium melt, considering water ingression and melt eruption

