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VVER-440 simulations using MELCOR 2.2

Input model conversion M1.8.6 → M2.2

Using Reader: conversion finally successfull with MELCOR version 2.2 (release
02-22-2017)

The last problem identified:

In the MELCOR 1.8.6 input distinction of canister types CN and CB was not done
explicitly (split is done by M1.8.6 internaly using sensitivity coefficients 1501).

In MELCOR 2.2 mass input for both CN and CB is required. However previous
version of MELGEN 2.x failed with converted input model by segmentation fault
and it did not indicate where the problem is.

In the current model: xmcnzr = xmcbzr
= xmcnzr/2.0 from 1.8.6., default value of sensitivity coefficients 1501 is 0.5
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VVER-440 simulations using MELCOR 2.2

Comparison of M1.8.6 vs. M2.2 with converted input
Large break LOCA scenario:

∙ reasonable agreement for core and RCS

∙ larger differences in results for containment
(MELCOR 2.2 pressure too high)

– probably due to the Bug 1848 in release 02-22-2017 ?
– not analysed in detail yet (analyses in 2017 were fo-

cused on reflood and boric acid transport)

∙ problems with occasional CVH (coupled with COR) tem-
perature going to 10000 K (reported Bug 1946)
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VVER-440 simulations using MELCOR 2.2

Boric acid transport model

∙ transport in liquid coolant — user defined fission product class BAC with
molar mass 61.8 g/mol, declared as “radioactive”. Initial inventory specified
– for primary RCS volumes (including hydroaccumulators)
– and for the volume representing trays of the containment pressure

suppression system.

∙ additional removal processes from the pool:
– removal from the pool due to oversaturation
– transport from pool to atmosphere due to intensive boiling

Data on boric acid propertities are based on literature review, mainly on:

∙ P. Wang, J.J. Kosinski, M.M. Lencka, A. Anderko and R.D. Springer: Thermodynamic modeling of boric acid and selected metal
borate systems. Pure Appl. Chem., Vol. 85, No. 11, pp. 2117–2144, 2013. http://dx.doi.org/10.1351/PAC-CON-12-07-09

∙ A. Bruggeman, J. Braet, F. Smaers and P.De Regge: Separation of Boric Acid from PWR Waste by Volatilization During Evapo-
ration. Separation Science and Technology, 1997 32:1-4, 737-757, http://dx.doi.org/10.1080/01496399708003227
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VVER-440 simulations using MELCOR 2.2

Removal due to oversaturation
Saturation concentration is temperature dependent — lookup table setup based on
approximation of literature data (in comparison with correlation used in MAAP5):
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Removal rate calculated using control functions and negative source in selected
control volumes.
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VVER-440 simulations using MELCOR 2.2

Removal due to rapid coolant evaporation

H3BO3(aq) → H3BO3(g)

Transport rate is proportional to the boiling rate
with distribution coefficient dependent again on
the boiling rate, e.g.:

𝐷 = 𝐶𝑔
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Pool→steam distribution coefficient 𝐷 in boiling
conditions.

In the current input model 𝐷 is taken constant (0.01 or 0.001 for large break LOCA).
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VVER-440 simulations using MELCOR 2.2

Removal due to rapid coolant evaporation (cont.)

Removal rate is calculated using control functions.

Boiling rate has to be calculated from:

∙ change of pool mass in the control volume

∙ inlet and outlet of pool through all flow paths

Mass of pool evaporated, Δ𝑚𝑣𝑎𝑝, in the time interval between 𝑡𝑖−1 and 𝑡𝑖−1 can be
calculated:

Δ𝑚𝑣𝑎𝑝 = 𝑚(𝑡𝑖) − (𝑚(𝑡𝑖−1) + Δ𝑚𝑓𝑙𝑜𝑤) for 𝑚(𝑡𝑖) < (𝑚(𝑡𝑖−1) + Δ𝑚𝑓𝑙𝑜𝑤)
Δ𝑚𝑣𝑎𝑝 = 0 for 𝑚(𝑡𝑖) ≥ (𝑚(𝑡𝑖−1) + Δ𝑚𝑓𝑙𝑜𝑤)

where Δ𝑚𝑓𝑙𝑜𝑤 is mass of pool entering the volume in this time interval.

Δ𝑚𝑉 𝐴𝑃
𝐵𝐴𝐶 = 𝐷 · 𝑚𝐵𝐴𝐶 · Δ𝑚𝑣𝑎𝑝

𝑚(𝑡𝑖−1)
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VVER-440 simulations using MELCOR 2.2

Removal implementation

Total removal rate is calculated:

𝑚̇𝐵𝐴𝐶 = Δ𝑚𝐷𝐸𝑃
𝐵𝐴𝐶 + Δ𝑚𝑉 𝐴𝑃

𝐵𝐴𝐶

EXEC-DT (⇒ 𝑚̇𝐵𝐴𝐶 ≤ 0)

Removal is implemented using fission product source to the pool in the control
volume.

Input RN1_AS, with negative source rate.

Enhancement of RN1_AS proposed as a bug 1927.
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VVER-440 simulations using MELCOR 2.2

Testing of the boric acid transport model

Large break LOCA scenario with blackout, variants:

00 — converted 1.8.6 input model

01 — BAC class added

02 — like 01 but removal from pool due to oversaturation

03 — like 01 but removal from pool with steam 𝐷 = 0.001

04 — like 03 but 𝐷 = 0.01

05 — both removal processes, 𝐷 = 0.01

06 — both removal processes, 𝐷 = 0.001
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VVER-440 simulations using MELCOR 2.2
Testing of the boric acid transport model
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VVER-440 simulations using MELCOR 2.2
Degradation of borated steel from control elements
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Why does NS melt to MB1 instead of MB2?
What does it held molten steel in the bypass after canister failure? Reported as a bug 1957.
Should I put control elements into separate ring(s)?11
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VVER-440 simulations using MELCOR 2.2

Reflood calculations
Reflood calculations with converted model were not successfull — quenching of the
core not efficient even in cases when it should be (early reflood with large injection
rate) ⇒ review of the input model:

∙ opening height of channel↔bypass radial cross flow flowpaths (blockage option
channel-box) — increased for the whole height of connected volumes

∙ channel↔channel radial cross flow flowpaths in the upper core added. Each
flowpath is opened by control function on canister failure.

∙ refined COR axial nodalization in the upper core: 5 → 10 axial levels in the
fuel region. CVH/FL nodalization kept the same.

∙ refined COR radial nodalization: 4 → 5 or 6 rings including CVH/FL for each
ring.

⇒ results looks better

(anyway validation on QUENCH11 is planned to be done in 2018 to gain more
confidence)
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VVER-440 simulations using MELCOR 2.2

Reflood calculations — refined nodalization
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Reflood calculations
Scenario:

∙ large break LOCA on a cold leg, blackout

∙ alternative core cooling recovery at certain time

Reflood with the flow rate 0.3 m3/s of clean water at 55∘C was assumed. The coolant is
distributed by equal portion both below and above the core. For 312 fuel assemblies in the
upper part of the core and 126 rods in the assembly it corresponds to about 8 g/(s·rod)
(4 g/(s·rod) from above the core — coolant injected below the core is lost to the break).

Variants with different time of injection start:

11 — at 400 s (6.7 min), i.e.: shortly after the criterion 550∘C on the core exit is met.

21 — at 600 s (10 min), shortly before the onset of rapid cladding oxidation.

31 — at 800 s (13.3 min), shortly before the onset of steel components melting.

41 — at 1100 s (18.3 min), during the melting of steel components.

51 — at 1300 s (21.7 min), shortly before the first loss of fuel rods geometry.

61 — at 1400 s (23.3 min), after fuel relocation in the limited part of the core.

(based on timing of the calculation with the converted input)14



VVER-440 simulations using MELCOR 2.2
Reflood calculations — base case without reflood
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VVER-440 simulations using MELCOR 2.2
Reflood calculations — maximum clading temperature

11,21: Temperature increase after reflood at the top fuel node in the peripheral ring
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VVER-440 simulations using MELCOR 2.2
Reflood calculations — hydrogen production
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VVER-440 simulations using MELCOR 2.2
51 vs 61 — Hydrogen production
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VVER-440 simulations using MELCOR 2.2
M22 Total core energy
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VVER-440 simulations using MELCOR 2.2
M22 hydrogen production
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Conclusions

∙ input model successfuly converted M1.8.6→M2.2

∙ results:
– comparable for core and RCS
– overestimated pressure in the containment in M2.2

(waiting for updated MELCOR release)

∙ simulations of core reflood more successfull with M2.2 (M1.8.6 too slow)

∙ boric acid transport model implemented using user defined FP class and lot of
CFs — not numerically stable and reliable
⇒ enhacement of MELCOR code requested

∙ non-physical behaviour of molten steel from control elements
observed ⇒ ?
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