SSTCState Scientific and Technical CenterNRSfor Nuclear and Radiation Safety

Conversion of MELCOR 1.8.5 model to MELCOR 2.1 for WWER-1000/V 320 reactor and containment system. Problems identified during conversion. Comparative SA calculations with different MELCOR versions

Oleksandr Kotsuba/SSTC NRS ol_kotsuba@sstc.com.ua

Contents

- 1. Short description of MELCOR WWER-1000/V 320 model
- 2. Conversion procedure and models main changes
- 3. Problems identified during conversion
- 4. Comparative SA calculations with MELCOR 1.8.5 and MELCOR 2.1
- 5. Comparative SA calculations with different MELCOR 2.1 Release versions
- 6. Comparative SA calculations with different time step
- 7. Conclusions

01 Short description of MELCOR WWER-1000/V 320 model Hydraulic model of reactor

- 7 control volumes for reactor model
- 9 flow paths for reactor model
- 4 flow paths for hydroaccumulators

01 Short description of MELCOR WWER-1000/V 320 model Primary circuit model

Single/triple loops:

- 4 control volumes each
- 6 flow paths

01 Short description of MELCOR WWER-1000/V 320 model Hydraulic model of pressurizer

- 1 control volume for the surge line connecting PRZ with single hot leg;
- 3 control volumes for pressurizer;
- 1 control volume for bubbler tank;
- 4 flow paths for pressurizer and surge line;
- 3 flow paths for PRZ pilot operating relief valves;
- 1 flow paths for rupture disk between bubbler tank and containment;

01 Short description of MELCOR WWER-1000/V 320 model Hydraulic model of SG (primary circuit)

Single/triple SG model:

- 22 control volumes
- 30 flow paths

01 Short description of MELCOR WWER-1000/V 320 model Secondary circuit model

- 10 control volumes (include single/triple SG)
- 14 flow paths

01 Short description of MELCOR WWER-1000/V 320 model Hydraulic model of Containment

- 21 control volume
- 51 flow paths

01 Short description of MELCOR WWER-1000/V 320 model Reactor core model

HS10201	HS10203	HS10205		
117	217	317	HS10224	Upper unheated part of the reactor core
116	216	316	HS10222	Fuel part of the
115	215	315	HS10220	reactor core
114	214	314	HS10218	
113	213	313	HS10216	
112	212	312	HS10214]
111	211	311	HS10212	
110	210	310	HS10210	
109	209	309	HS10208]
108	208	308	HS10206	
107	207	307	HS10204	
106	206	306	HS10202	Bottom unheated part of the reactor core above support structures
105	205	305	HS10108	
104	204	304	-	Elements of reactor
103	203	303	-	barrel bottom and
102	202	302	-	support structures
101	201	301	-	
1	2 Reactor bottom	3		

3 radial rings

17 axial sections

02 Conversion procedure and models main changes Converting Melcor 1.8.5 model for Melcor 1.8.6:

> Detailed Lower head Model

Core nodalization changes (re-noding axial segments for detailed LH model, add radial rings for cylindrical part of LH)

> RN, HS changes connected with changes in number of LH segments

02 Conversion procedure and models main changes Lower head Model changes

VVER 1000 lower head

LH MELCOR 1.8.5 nodalization

LH MELCOR 1.8.6, 2.1 nodalization

02 Conversion procedure and models main changes CORE Model changes

Bottom elevation, m	Top elevation, m	Section height, m	HS10201	HS10203	HS10205		
22,301	23,018	0,717	117	217	317	HS10224	Upper unheated part of the reactor core
21,946	22,301	0,355	116	216	316	HS10222	Fuel part of the
21,591	21,946	0,355	115	215	315	HS10220	reactor core
21,236	21,591	0,355	114	214	314	HS10218	
20,881	21,236	0,355	113	213	313	HS10216	
20,526	20,881	0,355	112	212	312	HS10214	
20,171	20,526	0,355	111	211	311	HS10212	
19,816	20,171	0,355	110	210	310	HS10210	
19,461	19,816	0,355	109	209	309	HS10208	
19,106	19,461	0,355	108	208	308	HS10206	
18,751	19,106	0,355	107	207	307	HS10204	
18,525	18,751	0,226	106	206	306	HS10202	Bottom unheated part of the reactor core above support structures
18,348	18,525	0,177	105	205	305	HS10108	
17,878	18,348	0,470	104	204	304		Elements of reactor
17,119	17,878	0,759	103	203	303		barrel bottom and support structures
16,999	17,119	0,120	102	202	302	[
16,899	16,999	0,1	101	201	301		
			1	2 Reactor bottom	3		

MELCOR 1.8.5 CORE nodalization

Bottom elevation, m	Top elevation, m	Section height, m	HS10201	H\$10203	HS10205	HS10205		
22.301	23.018	0.717	125	225	325	425	HS10224	Upper unheated par of the reactor core
21.946	22.301	0.355	124	224	324	424	HS10222	Fuel part of the
21.591	21.946	0.355	123	223	323	423	HS10220	reactor core
21.236	21.591	0.355	122	222	322	422	HS10218	
20.881	21.236	0.355	121	221	321	421	HS10216	
20.526	20.881	0.355	120	220	320	420	HS10214	
20.171	20.526	0.355	119	219	319	419	HS10212	
19.816	20.171	0.355	118	218	318	418	HS10210	
19.461	19.816	0.355	117	217	317	417	HS10208	
19.106	19.461	0.355	116	216	316	416	HS10206	
18.751	19.106	0.355	115	215	315	415	HS10204	
18.525	18.751	0.226	114	214	314	414	H\$10202	Bottom unheated pa of the reactor cor above suppo structures
18.348	18.525	0.177	113	213	313	413	HS10108	
18.219	18.348	0.129	112	212	312	412	-	
18.099	18.219	0.120	111	211	311	411	-	
17.979	18.099	0.120	110	210	310	410	-	
17.878	17.979	0.101000	109	209	309	409	-	
17.787053	17.878	0.090947	108	208	308	408	-	Elements of react
17.691573	17.78705	0.095480	107	207	307	407	-	barrel bottom an
17.595671	17.69157	0.095902	106	206	306	406	-	support structures
17.509051	17.59567	0.086620	105	205	305	405	-	
17.417259	17.50905	0.091792	104	204	304	404	-	
17.226125	17.41726	0.191134	103	203	303	403	-	
17.061902	17.22612	0.164222	102	202	302	402	-	
16.899	17.0619	0.162902	101	201	301	401	-	
		1	1	2 Reactor	3	4		,

MELCOR 1.8.6, 2.1 CORE nodalization

02 Conversion procedure and models main changes CORE hydraulics model changes

MELCOR 1.8.5 reactor nodalization with one core CV

MELCOR 1.8.6/2.1 reactor nodalization with one core CV

MELCOR 1.8.6/2.1 reactor nodalization with 18 core CVs

O2 Conversion procedure and models main changes Conversion of MELCOR 1.8.6 model to MELCOR 2.1

Conversion to MELCOR 2.1 code version using SNAP software

> Change of incorrectly converted parts of the model MELCOR 1.8.6

> Verification of MELCOR 2.1 model

MELCOR 2.1 requires two arguments for MULTIPLY function

		i - 6	- 6	
1	ciname	lcInum	citype	
CF_ID	'FW_ENTS-2'	236	MULTIPLY	
1	cfscal	cfadcn		
CF_SAI	1.676E5	0.0		
1	icflim			
CF_ULB	DEFAULT	0.0	0.0	
1	size			
CF_ARG	2 !n	cfarg	arscal	aradon
	1 CF-VALU	('TX20_RATE-4')	1.0	
	2	EXEC-TIME	0.0	1.0
	-			

The CV names with double quotes need to be replaced with single quotes

CV00500 "HA-1" 2 2 1 CV00501 0 0

User material names 'ALUM', "ALUM" before conversion need to be replaced with 'ALUMINIUM'

HS30201201	ם דאד 1							
11550201201	FAINT I	HS30201201	'PAINT'	1		HS30301201	PAINT	1
HS30201202	ALUM 2					HS30301202	'ALUMINIUM'	2
HS30201203	Bst3ps5 6	HS30201202	'Bst3ps5'	6	٦/	HS30301203	'Bst3ps5'	6

	HS_ND	31	! n	n	xi	tempin	matnam
			1	1	0.0	-	'PAINT'
			2	2	1.9E-4	-	'ALUMINIUM'
			3	3	4.4E-4	-	'Bst3ps5'
			4	4	8.4E-4	-	'Bst3ps5'
,			5	5	1.56E-3	-	'Bst3ps5'
			6	6	2.93E-3	-	'Bst3ps5'

Parameters for variables "RNVL", "RNAL", "RNVG", "RNAG" need to be changed manually since no automatic conversion possible

RNVG435	109 1.	9.84E	-07 0.	0. 6.84E	-08 0.	0.0.0	. 0. 0.	0.0.0	. 0. 0. 0.
RNAG436	109 2 3	1. 5.5	8E-06	0. 0. 0	. 0.				
RNAG437	109 3 3	1. 6.0	2E-11	0. 0. 0	. 0.				
RNAG438	109 4 3	1. 6.1	6E-07	0. 0. 0	. 0.				RN1 VG 2 ! NSTR IVOL ICLSS RFRAC XMASS
RNAG439	109 6 3	1. 3.5	8E-12	0. 0. 0	. 0.				
RNAG440	109 8 3	1. 1.3	8E-11	0. 0. 0	. 0.				1 FR2_10F AE 1.0 9.04E-07
RNAG441	109 9 3	1. 4.1	6E-09	0. 0. 0	. 0.				2 'PRZ TOP' I2 1.0 6.84E-08
									·
					_				RNI_AG 6 ! NSTR IVOL ICLSS RERAC XMASS
									1 'PRZ TOP' CS 1.0 5.58E-06
								-	
·	1001	lCISS	rirac	xmassi	xmass2	XMass3	xmass4	xmass5	2 FR2_10F DA 1.0 0.02D-11
RNAG000	109	2	1.0	5.58E-6	0.0	0.0	0.0	0.0	3 'PRZ TOP' I2 1.0 6.16E-07
RNAG001	109	3	1.0	6.02E-11	0.0	0.0	0.0	0.0	
RNAG002	109	4	1.0	6.16E-7	0.0	0.0	0.0	0.0	4 FRZ_10F R0 1.0 5.30E-12
RNAG003	109	6	1.0	3.58E-12	0.0	0.0	0.0	0.0	5 'PRZ_TOP' CE 1.0 1.38E-11
RNAG004	109	8	1.0	1.38E-11	0.0	0.0	0.0	0.0	6 'PR7 TOP' LA 1.0 4.16E-09
RNAG005	109	9	1.0	4.16E-9	0.0	0.0	0.0	0.0	

Number format "3E-11" shall be changed to "3.E-11" (with decimal point)

In MELCOR 2.1 the argument "AE" in steam part of Pressurizer could not be read. This argument was replaced with "PE"

03 Problems identified during conversion Verification MELCOR 2.1 model

- Line-by-line review of input data of the MELCOR version 2.1 model and comparison with input data for the MELCOR version 1.8.5 model;
- Additional verification of the MELCOR version 2.1 model in the process of creating nodalization diagram of operation systems using the software SNAP and comparing with nodalization schemes of MELCOR version 1.8.5 model;
- Verification of the MELCOR version 2.1 model in the process of test calculation (verify masses of core materials, systems operation logic etc.)

03 | Problems identified during conversion Additional changes based on the results of calculation SA

Low mass of ejected debris after LH failure

Total debris mass ejected through vessel breach

CAVITY ablation elevation

03 Problems identified during conversion Additional changes based on the results of calculation SA

Adding support structures to the fourth ring

04 Comparative SA calculations

Scope of analysis:

- Analysis with Melcor 1.8.5 and 2.1 version
- Analysis with different Melcor 2.1 Release version
- Analysis with different time step

Analysis was made for SA scenarios:

- Blackout
- LB LOCA with Blackout

05 Comparative SA calculations with MELCOR 1.8.5 and MELCOR 2.1 Type of calculation

- Melcor 1.8.5 model with 1 core CV
- Melcor 2.1 (revision 6342) model with 1 core CV
- Melcor 2.1 (revision 6342) model with 18 core CVs

Cladding temperature

Base plate support structure temperature

Mass change of steel oxide

Mass change of zircaloy oxide

Total debris mass ejected through vessel breach

CAVITY ablation elevation

90000

Hydrogen generations

Cladding temperature

Support structure temperature

Mass change of steel oxide

Mass change of zircaloy oxide

Total debris mass ejected through vessel breach

CAVITY ablation elevation

Hydrogen generations

Calculation results

Blackout:

- Melcor 2.1 model with detailed core shows increased oxidation of the zirconium structural elements and mass of hydrogen for In-Vessel phase;
- Melcor 2.1 model with detailed lower part of the core (LH, Support structures) shows increase the oxidation of the support steel structural elements;
- SA Ex-Vessel phase for Melcor 1.8.5 and Melcor 2.1 models are different for melt spreading and core-concrete interaction between cavity models.

LB LOCA:

- Melcor models with one core CV shows at the start of SA increase the cladding temperature by the reason of fast pool drain and delayed refloodding;
- Melcor 2.1 models show faster failure of core structures and earlier LH failure;
- SA Ex-Vessel phase for Melcor 1.8.5 and Melcor 2.1 models are different for melt spreading and core-concrete interaction between cavity models.

Scope of calculation

- Melcor 2.1.6342 for model with 18 CVs for fuel part of core
- Melcor 2.1.8512 for model with 18 CVs for fuel part of core
- Melcor 2.1.9319 for model with 18 CVs for fuel part of core
- Melcor 2.1.9541 for model with 18 CVs for fuel part of core

Cladding temperature in top segments

Base plate support structure temperature

25000 -COR-MZR02-TOT_M21_6342 G -COR-MZR02-TOT_M21_8512 *****—***** COR-MZRO2-TOT_M21_9319 20000 COR-MZR02-TOT_M21_9541 ලි ¹⁵⁰⁰⁰ ජ Mass 10000 5000 70000 80000 90000 40000 50000 60000 20000 10000 30000 0 Time (s)

Mass change of steel oxide

Mass change of zircaloy oxide

06 Comparative SA calculations with different MELCOR 2.1 Release version Blackout

Total debris mass ejected through vessel breach

CAVITY ablation elevation

06 Comparative SA calculations with different MELCOR 2.1 Release version Blackout

Hydrogen generations

Cladding temperature in top segments

Base plate support structure temperature

Mass change of steel oxide

Mass change of zircaloy oxide

Total debris mass ejected through vessel breach

CAVITY ablation elevation

Hydrogen generations

Calculation results

Blackout:

- Melcor 2.1.6342 calculations compared with other M2.1 version for In-Vessel phase show the later failure of core claddings structures which cause the increase the zirconium structural elements oxidation and gives greater mass of hydrogen for In-Vessel phase;
- Melcor 2.1.9319 and Melcor 2.1.9541 show the faster failure of LH and start core-concrete interaction which cause hydrogen mass generation increase compared to Melcor 2.1.6342 and Melcor 2.1.8512;
- SA Ex-Vessel phase for various Melcor 2.1 versions are different for melt spreading and core-concrete interaction between cavity models (differences between the Melcor 2.1.9319 and Melcor 2.1.9541 are not quite significant).

LB LOCA:

- The heating and cladding failure are almost identical between versions MELCOR 2.1.9319 and 2.1.9541. This SA phase have similar behavior for Melcor versions 2.1.6342 and 2.1.8512;
- Melcor 2.1.6342 calculations compared with other M2.1 versions for In-Vessel phase show greater mass of hydrogen for In-Vessel phase;
- SA Ex-Vessel phase for various Melcor 2.1 version is different for melt spreading and core-concrete interaction between cavity models (differences between the Melcor 2.1.9319 and Melcor 2.1.9541 are not quite significant).

Scope of calculation

Blackout:

- Melcor 2.1.6342 and time step 0.01
- Melcor 2.1.6342 and time step 0.05
- Melcor 2.1.6342 and time step 0.116
- Melcor 2.1.6342 and time step 0.5
- Melcor 2.1.6342 and time step 1.

LB LOCA:

- Melcor 2.1.6342 and time step 0.05
- Melcor 2.1.6342 and time step 0.116
- Melcor 2.1.6342 and time step 0.5

Calculation results

Blackout:

- Cladding failure time is almost identical for all calculations. But for time step 0.116 cladding failure started in other core rings compared to other time steps;
- Increasing the time steps causes the earlier time of support base plate and LH failure ;
- Calculations with the time step 0.01 and 0.05 show the maximum mass of steel oxides. Also after the LH failure for these time steps less molten fragments masses are left in reactor;
- The greatest total mass of hydrogen for In-Vessel phase was generated for time step 0.01, 0.05 and 1.0. The lowest mass of hydrogen for In-Vessel phase was obtained for time step 0.5;
- Calculation with the time step 0.116 shows the greatest mass of hydrogen for Ex-Vessel phase;
- SA Ex-Vessel phase for various time steps behaves differenly in cavity melt spreading and coreconcrete interaction.

Calculation results LB LOCA:

- Increasing the time steps caused the increasing the time of claddings failure;
- Time support plate failure was earlier for time step 0.116. For different time step support plate failure started in different rings.
- Calculation with the time step 0.5 shows the maximum mass of steel oxides (for blackout scenario it was for steps 0.05 and 1.0);
- Calculation with the time step 0.116 show the maximum mass of zirconium oxide;
- The greatest total mass of hydrogen for In-Vessel phase was generated for time step 0.116 and 0.5 (for blackout scenario it was for steps 0.01, 0.05 and 1.0).
- Calculation with the time step 0.116 shows the faster LH failure
- Increasing the time steps caused the decreasing the hydrogen generation for Ex-Vessel phase.
- SA Ex-Vessel phase for various time steps behaves differenly in cavity melt spreading and coreconcrete interaction.

08 | Conclusions

- During the conversion of the Melcor model 1.8.5/1.8.6 to version 2.1, it is necessary to perform its detailed verification.
- The propagation of molten fragments into the LH and LH failure needs further detailed modeling with different approaches for LH and support structures modeling for WWER type reactor.
- It is needed to perform sensitivity and uncertainty analysis in relation to MELCOR code version and timestep for specific SA analysis;
- Uncertainty in Ex-Vessel melt spreading for cavities models and core-concrete interaction depends heavily on MELCOR code version/revision and timestep. This issue can be refined by using separate CAVITY models with initial conditions for melt, and also by use of special melt spreading codes (for example, LAVA).

SSTC
NRSState Scientific and Technical Center
for Nuclear and Radiation Safety

Thanks for your attention

Cladding temperature in top segments

Base plate support structure temperature

Total debris mass ejected through vessel breach

CAVITY ablation elevation

Hydrogen generations

Cladding temperature in top segments

Base plate support structure temperature

Total debris mass ejected through vessel breach

CAVITY ablation elevation

Hydrogen generations